Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Setup and Liquid Chamber
2.2. Biological Interaction Analysis and Polyelectrolyte Formation Measurements
2.3. Impedance Analyzer, Impedance Probe, and Impedance Calibration
2.4. QCM Models and Data Analysis
2.5. QCM Software Control
3. Results and Discussion
3.1. Biological Interaction Analysis
3.2. Formation of Polyelectrolyte Multilayers
3.3. Higher Harmonic Impedance Measurements
4. Conclusions
Acknowledgments
Author contribution
Conflicts of Interest
References
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. (In German) [Google Scholar] [CrossRef]
- Janshoff, A.; Galla, H.-F.; Steinem, C. Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angew. Chem. Int. Ed. 2000, 39, 4004–4032. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Marx, K.A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 2003, 4, 1099–1120. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Li, Q.; Tang, J.; Su, B.; Chen, G. An enzyme-free quartz crystal microbalance biosensor for sensitive glucose detection in biological fluids based on glucose/dextran displacement approach. Anal. Chim. Acta 2011, 686, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hu, C.H.; Chou, T.C. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron. 2004, 20, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Vikinge, T.P.; Hansson, K.M.; Sandström, P.; Liedberg, B.; Lindahl, T.L.; Lundström, I.; Tengvall, P.; Höök, F. Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation. Biosens. Bioelectron. 2000, 15, 605–613. [Google Scholar] [CrossRef]
- Su, X.; Wu, Y.-J.; Knoll, W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens. Bioelectron. 2005, 5, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Peh, W.Y.; Reimhult, E.; Teh, H.F.; Thomsen, J.S.; Su, X. Understanding ligand binding effects on the conformation of estrogen receptor alpha-DNA complexes: A combinational quartz crystal microbalance with dissipation and surface plasmon resonance study. Biophys. J. 2007, 92, 4415–4423. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Elimelech, M. Adsorption of plasmid DNA to a natural organic matter-coated silica surface: Kinetics, conformation, and reversibility. Langmuir 2007, 23, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Elimelech, M. Plasmid DNA adsorption on silica: Kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 2007, 8, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Wittmer, C.R.; Phelps, J.A.; Saltzman, W.M.; van Tassel, P.R. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials 2007, 28, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Scheideler, L.; Rupp, F.; Wendel, H.P.; Sathe, S.; Geis-Gerstorfer, J. Photocoupling of fibronectin to titanium surfaces influences keratinocyte adhesion, pellicle formation and thrombogenicity. Dent. Mater. 2007, 23, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, J.; Agheli, H.; Kingshott, P.; Sutherland, D.S. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: Quantification of protein layer properties using QCM-D and SPR. Langmuir 2007, 23, 9760–9768. [Google Scholar] [CrossRef] [PubMed]
- Atthoff, B.; Hilborn, J. Protein adsorption onto polyester surfaces: Is there a need for surface activation? J. Biomed. Mat. Res. B Appl. Biomat. 2007, 80B, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Arnau, A. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors 2008, 8, 370–411. [Google Scholar] [CrossRef]
- Johannsmann, D. Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys. Chem. Chem. Phys. 2008, 10, 4516–4534. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.C. Quartz Crystal Microbalance with Dissipation Monitoring: Enabling Real-Time Characterization of Biological Materials and Their Interactions. J. Biomol. Tech. 2008, 19, 151–158. [Google Scholar] [PubMed]
- Keysight Technologies. Impedance Measurement Handbook: A Guide to Measurement Technology and Techniques, 5th ed.; Agilent Technologies: Santa Clara, CA, USA, 2015. [Google Scholar]
- Hianik, T.; Ostatná, V.; Sonlajtnerova, M.; Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, B.; Zauner, D.; Lehtonen, S.I.; Koskinen, M.; Thomson, C.; Kähkönen, N.; Kukkurainen, S.; Määttä, J.A.E.; Ihalainen, T.O.; Kulomaa, M.S.; et al. Reversible Biofunctionalization of Surfaces with a Switchable Mutant of Avidin. Bioconjug. Chem. 2014, 25, 2233–2243. [Google Scholar]
- Green, N.M. Avidin. Adv. Protein. Chem. 1975, 29, 85–113. [Google Scholar] [PubMed]
- Kienberger, F.; Mueller, H.; Pastushenko, V.; Hinterdorfer, P. Following single antibody binding to purple membranes in real time. EMBO Rep. 2004, 5, 579–583. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasper, M.; Traxler, L.; Salopek, J.; Grabmayr, H.; Ebner, A.; Kienberger, F. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies. Biosensors 2016, 6, 23. https://doi.org/10.3390/bios6020023
Kasper M, Traxler L, Salopek J, Grabmayr H, Ebner A, Kienberger F. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies. Biosensors. 2016; 6(2):23. https://doi.org/10.3390/bios6020023
Chicago/Turabian StyleKasper, Manuel, Lukas Traxler, Jasmina Salopek, Herwig Grabmayr, Andreas Ebner, and Ferry Kienberger. 2016. "Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies" Biosensors 6, no. 2: 23. https://doi.org/10.3390/bios6020023
APA StyleKasper, M., Traxler, L., Salopek, J., Grabmayr, H., Ebner, A., & Kienberger, F. (2016). Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies. Biosensors, 6(2), 23. https://doi.org/10.3390/bios6020023