Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases
Abstract
:1. Introduction
2. Platform Design for AD Biosensors
2.1. Bioelement Immobilization Methods
2.2. Signal Generation
2.2.1. Labels in Electrochemical Immunosensors
2.2.2. Label-Free Electrochemical Immunosensors
3. Biosensors for ADs Based on Antibodies and Antigens
4. Biosensors for ADs Based on Peptides
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Scanlin, A. Autoimmune Diseases: The Growing Impact. BioSupply Trends Quarterly. 2014. Available online: http://www.bstquarterly.com (accessed on 12 September 2018).
- European Parliament. Directorate-General for Internal Policies: Autoimmune Disease—Modern Diseases. Available online: http://www.europarl.europa.eu/cmsdata/133620/ENVI%202017-09%20WS%20Autoimmune%20diseases%20%20PE%20614.174%20.
- National Institute of Allergy and Infectious Diseases, Autoimmune Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions/autoimmune-diseases (accessed on 7 December 2018).
- Zhang, X.; Zambrano, A.; Lin, Z.-T.; Xing, Y.; Rippy, J.; Wu, T. Immunosensors for Biomarker Detection in Autoimmune Diseases. Arch. Immunol. Ther. Exp. 2017, 65, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Jeremias, P.; Matthias, T. The World Incidence and Prevalence of Autoimmune Diseases is Increasing. Int. J. Celiac Dis. 2015, 4, 151–155. [Google Scholar] [CrossRef]
- Hosu, O.; Selvolini, G.; Cristea, C.; Marrazza, G. Electrochemical Immunosensors for Disease Detection and Diagnosis. Curr. Med. Chem. 2017, 24, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shen, G.; Yu, R. Electrochemical Sensors, Biosensors and their Biomedical Applications; Academic Press, Inc.: Cambridge, MA, USA, 2008; pp. 237–260. [Google Scholar]
- Ullah, M.F.; Aatif, M. The footprints of cancer development: Cancer biomarkers. Cancer Treat Rev. 2009, 35, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.Z.; Florea, A.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Zhang, A.; Sandulescu, R.; Lagarde, F.; Jaffrezic-Renault, N. 1,3,5-Trinitrotoluene detection by a molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework. Sens. Actuator B Chem. 2015, 207, 960–966. [Google Scholar] [CrossRef]
- Florea, A.; Cristea, C.; Vocanson, F.; Sandulescu, R.; Jaffrezic-Renault, N. Electrochemical sensor for the detection of estradiol based on electropolymerized molecularly imprinted polythioaniline film with signal amplification using gold nanoparticles. Electrochem. Commun. 2015, 59, 36–39. [Google Scholar] [CrossRef]
- Florea, A.; Guo, Z.Z.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Dzyadevych, S.; Sandulescu, R.; Lagarde, F.; Jaffrezic-Renault, N. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 2015, 138, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.; Kalra, P.; Bansal, V.; Bruno, J.G.; Sharma, T.K. Aptamer-based point-of-care diagnostic platforms. Sens. Actuator B Chem. 2017, 246, 535–553. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.M.; Hashim, U. Aptamer-based “point-of-care testing”. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Patris, S.; Vandeput, M.; Kauffmann, J.M. Antibodies as target for affinity biosensors. Trends Anal. Chem. 2016, 79, 239–246. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical analysis. Bioelectrochemistry 2018, 120, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Balkenhohl, T.; Lisdat, F. Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human sera. Anal. Chim. Acta 2007, 597, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Li, P.; Yi, W.; Zhang, Z.; Chen, S.; Su, S.; Zhao, L.; Hu, C. Development of a novel method to measure macrophage migration inhibitory factor (MIF) in sera of patients with rheumatoid arthritis by combined electrochemical immunosensor. Int. Immunopharmacol. 2008, 8, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Cristea, C.; Florea, A.; Tertiș, M.; Săndulescu, R. Immunosensors in Biosensors-Micro and Nanoscale Applications; House Intech.: London, UK, 2016; pp. 165–202. [Google Scholar]
- Holzinger, M.; le Goff, A.; Holzinger, S.C.M.; le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef] [PubMed]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Taleat, Z.; Ravalli, A.; Mazloum-Ardakani, M.; Marrazza, G. CA125 Immunosensor based on poly-anthranilic acid modified screen-printed electrodes. Electroanalysis 2012, 25, 269–277. [Google Scholar] [CrossRef]
- Baraket, A.; Lee, M.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 2017, 93, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Cernat, A.; Tertis, M.; Papara, C.N.; Bodoki, E.; Sandulescu, R. Nanostructured platform based on graphene-polypyrrole composite for immunosensor fabrication. Procedia Technol. 2017, 27, 108–109. [Google Scholar] [CrossRef]
- Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci. 2014, 9, 3287–3318. [Google Scholar]
- Trojanowicz, M. Flow chemistry vs flow analysis. Talanta 2016, 146, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, C.; Pandiaraj, M.; Santharaman, P. Immunosensors. Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [Green Version]
- Cho, I.H.; Lee, J.; Kim, J. Current technologies of electrochemical immunosensors: Perspective on signal amplification. Sensors 2018, 18, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, P.; Li, F.; Chu, Q.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core–shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens. Bioelectron. 2017, 87, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.; Jan, M.R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 2004, 126, 3010–3011. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J.D.; Kim, S.N.; Gillespie, J.; Gutkind, J.S.; Papadimitrakopoulos, F.; et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 2006, 128, 11199. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.A.; Yoshikawa, H.; Tamiya, E.; Yasin, H.M.; Ahmed, M.U. A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Adv. 2014, 4, 58460–58466. [Google Scholar] [CrossRef]
- Dequaire, M.; Degrand, C.; Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 2000, 72, 5521–5528. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lin, Y. A renewable electrochemical magnetic immunosensor based on gold nanoparticle labels. J. Nanosci. Nanotechnol. 2005, 5, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Aziz, M.A.; Yang, H. A Nanocatalyst-Based Assay for Proteins: DNA-Free Ultrasensitive Electrochemical Detection Using Catalytic Reduction of p-Nitrophenol by Gold-Nanoparticle Labels. J. Am. Chem. Soc. 2006, 128, 16022–16023. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Fu, X.; Chen, K.; Shen, G.; Yu, R. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens. Bioelectron. 2005, 20, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Lai, G.; Yan, F. Electrochemical immunosensors. In Immunosensing for the Detection of Protein Biomarkers; Ju, H., Lai, G., Yan, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 77–110. [Google Scholar]
- Lai, G.S.; Wu, J.; Leng, C.; Ju, X.U.; Yan, F. Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase-functionalized silica nanosphere tags. Biosens. Bioelectron. 2011, 26, 3782–3787. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.F.; Deng, L.; Gan, H.; Shen, R.J.; Yang, M.H.; Zhang, Y. Sensitive immunosensor for tumor necrosis factor α based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod. Biosens. Bioelectron. 2013, 39, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, S.; Xue, Y.; Liang, J.; Cui, L.; Li, Q.; Zhou, S.; Hunag, Y.; Li, G.; Zao, Y. A Fe3O4@Au-basedpseudo-homogenous electrochemical immunosensor for AFP measurements using AFP-antibody-GNPs-HRP as detection probe. Anal. Biochem. 2017, 534, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Nekooei, S.; Torkzadeh-Mahani, M. Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer ionic-liquid carbon paste electrode. Talanta 2018, 188, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yan, F.; Chen, Z.; Ju, H.X. Reagentless amperometric immunosensor based on direct electrochemistry of horseradish peroxidase for the determination of carcinoma antigen 125. Anal. Chem. 2003, 75, 5429–5434. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lu, X.B.; Li, J.; Yao, J.; Li, J.H. Direct electrochemistry of glucose-oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 2007, 22, 3203–3209. [Google Scholar] [CrossRef] [PubMed]
- Derkus, B.; Emregul, E.; Yucesan, C.; Cebesoy Emregul, K. Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 2013, 46, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, K.; Fairchild, A.; Alonas, E.; Bishop, D.; La Belle, J.; Sweeney, J.; Alford, T.L.; Joshi, L. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes. Biosens. Bioelectron. 2009, 25, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens. Bioelectron. 2017, 97, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Kumar, S.; Srivastava, A.; Maurya, P.K.; Singh, R.; Chandra, P. Chapter 14—Electrochemical Immunosensors: Fundamentals and Applications in Clinical Diagnostics. In Handbook of Immunoassay Technologies; Vashist, S.K., Luong, J.H.T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 359–414. [Google Scholar]
- Wu, H.; Liao, J.; Li, Q.; Yang, M.; Zhao, M.; Lu, Q. Epigenetics as biomarkers in autoimmune diseases. Clin. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Biomarkers and surrogate endpoints. Br. J. Clin. Pharmacol. 2005, 59, 491–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipriani, P.; Ruscitti, P.; Carubbi, F.; Liakouli, V.; Giacomelli, R. Methotrexate: An old new drug in autoimmune disease. Expert Rev. Clin. Immunol. 2014, 10, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Szentpétery, Á.; Horváth, Á.; Gulyás, K.; Petho, Z.; Bhattoa, H.; Szanto, S.; Szucs, G.; Fitzgerald, O.; Schett, G. Effects of targeted therapies on the bone in arthritides. Autoimmun. Rev. 2017, 16, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Mowat, A.M. Coeliac Disease—A Meeting Point for Genetics, Immunology, and Protein Chemistry. Lancet 2003, 361, 1290–1292. [Google Scholar] [CrossRef]
- Tack, G.J.; Verbeek, W.H.M.; Schreurs, M.W.J.; Mulder, C.J.J. The spectrum of celiac disease: Epidemiology, clinical aspects and treatment. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Briani, C.; Samaroo, D.; Alaedini, A. Celiac disease: From gluten to autoimmunity. Autoimmun. Rev. 2008, 7, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Rivera, L.C.; Acero-Sánchez, J.L.; Lozano-Sánchez, P.; Katakis, I. O’Sullivan, C.K. Electrochemical immunosensor detection of antigliadin antibodies from real human serum. Biosens. Bioelectron. 2011, 26, 4471–4476. [Google Scholar] [CrossRef] [PubMed]
- Dahlbom, I.; Olsson, M.; Forooz, N.K.; Sjöholm, A.G.; Truedsson, L.; Hansson, T. Immunoglobulin G (IgG) Anti-Tissue Transglutaminase Antibodies used as Markers for IgA-Deficient Celiac Disease Patients. Clin. Diagn. Lab Immunol. 2005, 12, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, M.; Bianchi, V.; Gentili, S.; Fortunati, S.; De Munari, I.; Careri, M. An integrated IoT-Wi-Fi board for remote data acquisition and sharing from innovative immunosensors. Case of study: Diagnosis of celiac disease. Sens. Actuator B Chem. 2018, 273, 1395–1403. [Google Scholar] [CrossRef]
- Neves, M.M.P.S.; González-García, M.B.; Delerue-Matos, C.; Costa-García, A. Multiplexed electrochemical immunosensor for detection of celiac disease serological markers. Sens. Actuator B Chem. 2013, 187, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Real-Fernandez, F.; Passalacqua, I.; Peroni, E.; Chelli, M.; Lolli, F.; Papini, A.M.; Rovero, P. Glycopeptide-based antibody detection in multiple sclerosis by surface plasmon resonance. Sensors 2012, 12, 5596–5607. [Google Scholar] [CrossRef] [PubMed]
- Chanson, J.B.; Paolini, I.; Collongues, N.; Alcaro, M.C.; Blanc, F.; Barbetti, F.; Fleury, M.; Peroni, E.; Rovero, P.; Rudolf, G.; et al. Evaluation of new immunological targets in neuromyelitis optica. J. Pept. Sci. 2013, 19, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Real-Fernandez, F.; Rossi, G.; Lolli, F.; Papini, A.M.; Rovero, P. Label-free method for anti-glucopeptide antibody detection for multiple sclerosis. MethodX 2015, 2, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Bellagha-Chenchah, W.; Sella, C.; Real-Fernandez, F.; Peroni, E.; Lolli, F.; Amatore, C.; Thouin, L.; Papini, A.M. Interactions between Human Antibodies and Synthetic Conformational Peptide Epitopes: Innovative Approach for Electrochemical Detection of Biomarkers of Multiple Sclerosis at Platinum Electrodes. Electrochim. Acta 2015, 176, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Kurkó, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of rheumatoid arthritis—A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.J.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, T. Biomarkers as a treatment guide in rheumatoid arthritis. Clin. Immunol. 2018, 186, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Raptopoulou, A.; Sidiropoulos, P.; Katsouraki, M.; Boumpas, D.T. Anti-Citrulline Antibodies in the Diagnosis and Prognosis of Rheumatoid Arthritis: Evolving Concepts. Crit. Rev. Clin. Lab Sci. 2007, 44, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, N.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosens. Bioelectron. 2016, 77, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.M.P.S.; González-García, M.B.; Santos-Silva, A.; Costa-García, A. Voltammetric immunosensor for the diagnosis of celiac disease based on the quantification of anti-gliadin antibodies. Sens. Actuator B Chem. 2012, 163, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Giannetto, M.; Mattarozzi, M.; Umiltà, E.; Manfredi, A.; Quaglia, S.; Careri, M. An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human serum. Biosens. Bioelectron. 2014, 62, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Pividori, M.I.; Lermo, A.; Bonanni, A.; Alegret, S.; del Valle, M. Electrochemical immunosensor for the diagnosis of celiac disease. Anal. Biochem. 2009, 388, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kaushal, A.; Kumar, A.; Kumar, D. Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int. J. Biol. Macromol. 2017, 105, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Thunkhamrak, C.; Reanpang, P.; Ounnunkad, K.; Jakmunee, J. Sequential injection system with amperometric immunosensor for sensitive determination of human immunoglobulin G. Talanta 2017, 171, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, T.; Qu, F.; Ding, L.; Shen, Z.; Yang, M. Electrochemical immunosensor for the detection of interleukin-17 based on Cd2+incorporated polystyrene spheres. Sens. Actuator B Chem. 2013, 185, 658–662. [Google Scholar] [CrossRef]
- Hu, H.; Pan, D.; Xue, H.; Zhang, M.; Zhang, Y.; Shen, Y. A photoelectrochemical immunoassay for tumor necrosis factor-α using a GO-PTCNH2nanohybrid as a probe. J. Electroanal. Chem. 2018, 824, 195–200. [Google Scholar] [CrossRef]
- Scopus. Available online: www.scopus.com (accesed on 4 December 2018).
- Kou, B.B.; Zhang, L.; Xie, H.; Wang, D.; Yuan, Y.L.; Chai, Y.Q.; Yuan, R. DNA enzyme-decorated DNA nanoladders as enhancer for peptide cleavage-based electrochemical biosensors. ACS Appl. Mater. Interfaces 2016, 8, 22869–22874. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.S.; Liu, Y.; Gao, Y.; Kwa, T.; Matharu, Z.; Revzin, A. Micropatterned surfaces functionalized with electroactive peptides for detecting protease release from cells. Anal. Chem. 2013, 85, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhu, Y.; Chen, Y.; Liu, J.; Zeng, X. Labeled and non-label electrochemical peptide inhibitor-based biosensing platform for determination of hemopexin domain of matrix. Talanta 2019, 194, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.M.; Lima, L.R.; Moraes, M.L. Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1–40 peptide and silk fibroin thin films. Mater. Sci. Eng. C 2016, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ma, Z. Dual-reaction triggered sensitivity ampli fi cation for ultrasensitive peptide- cleavage based electrochemical detection of matrix metalloproteinase-7. Biosens. Bioelectron. 2018, 108, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, H.; Huang, L.; Lin, Z.; Guo, L.; Qiu, B. Electrochemical biosensor for epidermal growth factor receptor detection with peptide ligand. Electrochim. Acta 2013, 109, 233–237. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, X.; Zhao, G. Amplified QCM biosensor for type IV collagenase based on collagenase- cleavage of gold nanoparticles functionalized peptide. Biosens. Bioelectron. 2018, 106, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Rodovalho, V.R.; Araujo, G.R.; Vaz, E.R.; Ueira-vieira, C.; Goulart, L.R.; Madurro, J.M. Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection. Biosens. Bioelectron. 2018, 100, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Biela, A.; Watkinson, M.; Meier, U.C.; Baker, D.; Giovannoni, G.; Becer, C.R.; Krause, S. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens. Bioelectron. 2015, 68, 660–667. [Google Scholar] [CrossRef] [PubMed]
Target | Electrode Architecture | Type of Assay | Label | Detection Method | LOD | LR | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Celiac Disease | ||||||||
IgA anti-tTG IgB anti-tTG | AuNPs/SAM-GCE | Indirect | AP | DPV | 3.2 AU mL−1 1.4 AU mL−1 | 0–30 AU mL−1 | Real patients serum | [55] |
CNTs/AuNPs-SPE | Indirect | AP | CV | 9.1 U mL−1 9.0 U mL−1 | - | Real patients serum | [66] | |
Au/SAM-GCE | Indirect | HRP | CV | 1.7 AU mL−1 2.7 AU mL−1 | 0–30 AU mL−1 | Serum | [67] | |
IgA anti-tTG | Graphite epoxy | Indirect | HRP | Chronoamperometry | - | - | Real patients serum | [68] |
GQD/AuNPs/MWCNTS/PAMAM | Direct | - | DPV with redox probe | 20 fg mL−1 | - | Spiked serum | [69] | |
Anti-tTG | poly (sodium-4-styrensulfonic acid)- gold SPE | Indirect | POD | EIS | - | - | Real patients serum | [16] |
Multichannel SPE array | Indirect | CdSe QDs | DPV | 7 U mL−1 | 0–40 U mL−1 | Spiked serum | [70] | |
AGA | Gold electrodes with carboxylic-ended bipodal alkanethiol | Indirect | HRP | Chronoamperometry | 46 ng mL−1 | 0–1 μg mL−1 | Real patients serum | [53] |
Rheumatoid Arthritis | ||||||||
MIF | AuNPs-NTiP-Thi-gold electrode | Direct | - | DPV with redox probe | 0.7 ng mL−1 | 0.03–230 ng mL−1 | Real patients serum | [67] |
Multiple Sclerosis | ||||||||
Anti-MBP | Gelatin-NTiP-Pt electrodes | Direct | - | EIS | 0.15 ng mL−1 | 0.48–2500 ng mL−1 | Spiked serum Spiked CSF | [42] |
Non-Specific Biomarkers | ||||||||
HIgG | GO-SPE | Direct | - | CV with redox probe | 1.70 ng mL−1 | 2–100 ng mL−1 | Urine | [71] |
AuNPs-PDA-GO | Sandwich | AgNPs/carbon nanocomposite/benzoquinone | DPV | 0.001 ng mL−1 | 0.1–100 ng mL−1 | Spiked serum | [17] | |
IL-17 | Graphene-GC | Sandwich | cadmium-polystyrene beads | SWV | 50 fg mL−1 | 0.1 pg −1 ng mL−1 | Spiked serum | [72] |
IL-12 | Electroplating gold onto a disposable printed circuit board electrode | Direct | - | EIS | <100 fM | 0–25 pg mL−1 | Spiked serum | [43] |
TNFα | Poly(3-thiophene acetic acid)-ITO | Direct | - | EIS | 3.7 fg mL−1 | 0.01–2 pg mL−1 | Serum | [44] |
GO-PTCNH2 | Direct | - | Photoeletrochemical | 3.33 pg mL−1 | 10–100 ng mL−1 | Serum | [73] |
Analyte | Electrode Architecture | Method | Peptide Sequences | Label | LD (ng mL−1) | LOQ (ng mL−1) | Linear Range (ng mL−1) | Real Samples | Ref. |
---|---|---|---|---|---|---|---|---|---|
MMP-14 | Gold electrode | DPV | VMDGYPMP-(CH2)6-Cys | CIS-Fc | 3 10−4 | 10−3 | 10−3–10−2 | - | [78] |
MMP-14 | EIS | Cys- (CH2)6—VMDGYPMP-NH-CO-Fe | - | 0.03 | 0.1 | 0.1–7 | - | ||
Aβ1 Ab | SPE | CV | DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAI IGLMVGGVV (Aβ1-40) | - | 0–10 | - | [79] | ||
MMP-7 | Au-rGO/MB-SA +PdNP | SWV | NH2-KKKRPLALWRSCCC-SH | - | 3 10−6 | 10−5 | 10−5–10 | Spiked serum samples | [80] |
EGFR | Gold electrode | DPV | YHWYGYT- PQNVI | 9-mercapto-1-nonanol | 3.7 10−5 | 10−4 | 10–10−4 | Diluted human serum | [81] |
Type IV collagenase | QCM gold electrode | QCM | AuNP modified P | - | 0.96 | 10 | 10–60 | Spiked serum samples | [82] |
Type IV collagenase | QCM | P | - | 21 | 40 | 40–120 | - | ||
JIA—IgG | SPE | DPV | ACSSWLPRGCGGGS | - | 1:300 diluted serum | 1:10–1:300 diluted serum | Real patients serum | [83] | |
MMP-9 | Gold SPE | EIS | Leu–Gly–Arg–Met–Gly–Leu–Pro–Gly–Lys | Dextran | 50 | 50–400 | - | [84] | |
MMP-9 | Gold electrode | SWV | Gly-Pro-Leu-Gly-Met-Trp-Ser-Arg-Cys | MB | 6 10−2 nM | 6 10−2–50 nM | Spiked serum samples | [77] | |
MMP-7 | AuNP-GCE- P-PtNPs-S1 | DPV | NH2-KKKRPLALWRSCCC-SH | - | 0.05 10−3 | 2 10−3 | 2 10−3–20 | - | [76] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florea, A.; Melinte, G.; Simon, I.; Cristea, C. Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. Biosensors 2019, 9, 38. https://doi.org/10.3390/bios9010038
Florea A, Melinte G, Simon I, Cristea C. Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. Biosensors. 2019; 9(1):38. https://doi.org/10.3390/bios9010038
Chicago/Turabian StyleFlorea, Anca, Gheorghe Melinte, Ioan Simon, and Cecilia Cristea. 2019. "Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases" Biosensors 9, no. 1: 38. https://doi.org/10.3390/bios9010038
APA StyleFlorea, A., Melinte, G., Simon, I., & Cristea, C. (2019). Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. Biosensors, 9(1), 38. https://doi.org/10.3390/bios9010038