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Abstract: An electrochemical immunosensor for the quantification of carcinoembryonic antigen
(CEA) using a nanocomposite of polypropylene imine dendrimer (PPI) and carbon nanodots
(CNDTs) on an exfoliated graphite electrode (EG) is reported. The carbon nanodots were prepared
by pyrolysis of oats. The nanocomposites (PPI and CNDTs) were characterized using X-ray
powder diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR),
high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM).
The proposed immunosensor was prepared on an exfoliated graphite electrode sequentially by drop
coating CNDTs, the electrodeposition of G2-PPI (generation 2 poly (propylene imine) dendrimer),
the immobilization of anti-CEA on the modified electrode for 80 min at 35 ◦C, and dropping of
bovine serum albumin (BSA) to minimize non-specific binding sites. Cyclic voltammetry was used to
characterize each stage of the fabrication of the immunosensor. The proposed immunosensor detected
CEA within a concentration range of 0.005 to 300 ng/mL with a detection limit of 0.00145 ng/mL by
using differential pulse voltammetry (DPV). The immunosensor displayed good stability and was also
selective in the presence of some interference species such as ascorbic acid, glucose, alpha-fetoprotein,
prostate-specific antigen and human immunoglobulin. Furthermore, the fabricated immunosensor
was applied in the quantification of CEA in a human serum sample, indicating its potential for real
sample analysis.

Keywords: carcinoembryonic antigen; immunosensor; cancer; polypropylene imine; exfoliated
graphite electrode

1. Introduction

The fabrication of an effective and efficient diagnostic tool for the detection of cancer and
monitoring its progression during therapy is a vital task in biomedical analysis. The possibilities
of such analysis in oncology have been enhanced by the discovery of tumor biomarkers such as
alpha-fetoprotein, CA125, prostate-specific antigen, cytokeratin 19 fragment and carcinoembryonic
antigen (CEA) to name a few [1,2].

CEA is a tumor marker associated with liver, ovarian, breast, colorectal and lung cancer [3].
The average concentration of CEA in a healthy human is 5 µg/L and a concentration above 20 µg/L is
an indication of cancer [4]. Changes in CEA concentrations in a patient with colorectal cancer can be
used to monitor different stages of the disease and to detect early recurrence after surgery [3,4]. It is
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important to highlight that among all the existing methods for the quantification of CEA, immunoassay
is used as a benchmark, or standard, for single-protein detection because of the reactivity of an
antibody with its corresponding antigen to form an immunocomplex reaction [5]. Such methods
include chemiluminescence immunoassay [6], surface-enhanced Raman scattering immunoassay [7]
and electrochemical immunoassay [8,9]. Among these methods, the electrochemical immunosensor
has been of interest to scientists because of its fascinating properties, which include high sensitivity,
fast response, low cost, short diagnostic time and miniaturization [3,10].

The crucial steps in the construction of an electrochemical immunosensor are the immobilization
of the immunoreagent on the electrode surface and the enhancement of the electrochemical signal
produced by the immunoconjugates. To enhance electrochemical signals, smart nanomaterials are used
as a stage for the immobilization of antibodies or antigens for the construction of immunosensor for
cancer biomarkers or biosensors [2,11–13]. Different analogues of nanomaterials, such as nanowires,
nanoflakes, nanotubes, nanofibers, quantum dots, dendrimers, and nanodots, have helped to improve
the surface area and to facilitate electron transport on the surface of an electrode. For instance,
Gu et al. reported the use of gold nanoparticles with a ferrocene derivative for the construction of
an electrochemical sensor for carcinoembryonic antigens; the sensor displayed good performance
and stability for more than four weeks [1]. Similarly, gold nanoparticles, in conjunction with silver
nanoparticles, were employed in the construction of a sandwich-type immunosensor. It was reported
that the Ag/Au nanostructure displayed good electrochemical activity in the working potential
range, which enhanced the current response and a detection limit of 8 pgm/L [9]. In another report,
a silver nanocluster alongside a horseradish peroxidase nanocomposite was used in the construction
of an immunosensor for the detection of CEA; the developed nanocluster/enzyme signal probe was
successfully used for the detection of CEA with a limit of detection of 0.5 pg/mL [8].

Carbon nanodots (CNDTs) are quasi-spherical analogues of carbon material with a particle
size of less than 10 nm. It consists of an amorphous or nanocrystalline core with predominantly
sp2 hybridization and an oxidized carbon surface containing different functional groups such as
carboxyl, hydroxyl and aldehyde groups [14,15]. Carbon nanodots are an important member in
the family of carbon nanomaterials because of its interesting properties, such as low toxicity, high
aqueous solubility, photophysical properties, low cost, robust chemical inertness, ease of synthesis,
and excellent biocompatibility [15–17]. These unique properties of CNDTs attracted its application in
different fields such as bio-imaging [18], chemical sensing and biosensing [19–21], drug delivery [22],
dye sensitizers [23], catalysis [24] and fuel cells [25].

Few reports can be found in the literature on the application of CNDTs in the construction
of biosensors. For instance, Zhang et al. reported the application of dendrimer functionalized
carbon nanodots for the electrochemical detection of alpha-fetoprotein [26]. In another report,
horseradish peroxidase was immobilized on carbon nanodot-/CoFe-layered double hydroxides and
employed for the electrochemical quantification of hydrogen peroxide [27]. Furthermore, thionine
and chitosan-entrapped carbon nanodot films were used for the fabrication of an electrochemical
biosensor in wastewater toxicity assessments [28]. More so, carbon nanodots have been employed as a
peroxidase nanozyme for biosensing [29]. The remarkable results obtained from these reports spurred
us towards employing carbon nanodots for this study.

Furthermore, another class of nanomaterial that has fascinating properties is poly (propylene
imine) dendrimer (PPI). It is a polymer with a tree-like morphological structure consisting of
high-density terminal groups and a peripheral functionality [30–32]. The properties of dendrimer
include chemical stability, self-assembly, poly-valency, low cytotoxicity, host–guest supramolecular
features, solubility, high surface area, exterior functional groups and excellent biocompatibility
features [30–32]. These unique properties lend dendrimers to be used for various applications such
as bio-imaging and gene delivery [33], as catalysts [34], in nanomedicine [35], in biomedicine [36],
as a water treatment membrane [37] and as a DNA biosensor [38]. Moreover, we have explored the
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application of dendrimers as a smart nanomaterial for the detection of various health-related diseases
such as HIV, cholera, urea and alpha-fetoprotein [39–42].

In this novel study, we report the concept of a synergic combination between polypropylene imine
dendrimers and carbon nanodots in the construction of an immunosensor for the quantification of
carcinoembryonic antigens. More so, the host–guest supramolecular properties and biocompatibility
properties of dendrimers are employed to facilitate the immobilization of the antibody. We anticipated
that this approach to CEA quantification would improve immunosensor performance. To the best of
our knowledge, no report has been documented for the electrochemical quantification of CEA using
CNDTs/PPI modified on an exfoliated graphite electrode.

2. Experimental

2.1. Materials and Instruments

Natural graphite (NG) flakes, generation 2 (G2) PPI dendrimer, carcinoembryonic antigen (CEA),
anti-carcinoembryonic antigen, prostate-specific antigen, urea, human immunoglobulin, bovine serum
albumin, ascorbic acid, Na2HPO4, NaH2PO4, HAuCl4, KCl and HNO3 were purchased from Sigma
Aldrich (Johannesburg, South Africa). Alpha-fetoprotein was purchased from Celtic Diagnostic (Cape
Town, South Africa). The following analytical techniques were used for characterization: X-ray
diffractometry (XRD) on a Rigaku Smartlab X-ray diffractometer (Wilmington, MA, USA), and Raman
spectrum was carried out on a Raman microscope (PerkinElmer Raman micro 200, Waltham, MA, USA)
with ×50 objective. The SEM and TEM electron micrographs were taken using (TESCAN, Vega 3 XMU,
Czech Republic and JEOL 2100 HRTEM 200 V, Tokyo, Japan). Fourier transform infrared spectroscopy
(FTIR) was done on PerkinElmer Spectrum 100 spectrometer (Waltham, MA, USA). Ivium Compactstat
potentiostat (Eindhoven, The Netherlands) was used for all electrochemical measurements.

2.2. Fabrication Procedure for the Exfoliated Graphite Electrode

NG flakes (approximately 300 µm particle size) were intercalated with a mixture of concentrated
nitric acid and sulfuric acid in a volume ratio of 1:3 for 24 h at room temperature to form a
graphite-intercalated compound (GIC) [43]. The intercalated material was washed several times
with deionized water until a pH of 6.5 was attained; after this, it was subjected to thermal shock at
800 ◦C for half a minute so as to force the intercalated material out of the graphite lattice, thus rupturing
the layers. This process formed a puffed carbon material called exfoliated graphite (EG). The prepared
EG was used to form a pellet by compressing 0.4 g of it at a pressure of 70 kPa for 4 h. The exfoliated
graphite electrode was fabricated from the compressed pellets using copper wire, a glass rod and
conductive silver paint. The procedure for the fabrication of the EG electrode was done by using a
puncher to cut the EG pellet into a circle 3 mm in diameter. After this, the top layer of the copper wire
was scraped off with a blade to remove any oxide on the surface, while the other end was coiled to
form a circular surface. A conductive silver paint was rubbed on to the circular coil so that the 3 mm
diameter of the exfoliated graphite pellet could sit on it. It was then left to dry at room temperature
After drying, the electrode was inserted into a glass tube and further coated with an Araldite epoxy
resin (an insulator), leaving only the basal plane of the pellet. The EG electrode was polished using
P1500-grit emery sheets to obtain a smooth uniform surface.

2.3. Synthesis of the Carbon Nanodot

The carbon nanodot was synthesized by weighing 10 g of oats, which was further crushed and
pyrolyzed in a muffle furnace at 400 ◦C for 2 h [14]. The color of the oats changed from white to black
after 2 h. It was allowed to cool at room temperature and finally crushed to a fine powder. The product
obtained was dispersed in ultrapure water and centrifuged several times at 7800 revolutions per
minute (rpm) to remove the larger particles. The carbon nanodot aqueous suspension was filtered and
dried in an oven for 24 h at 80 ◦C.
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2.4. Preparation of the Immunosensor

The fabricated exfoliated graphite electrode (EG) was polished using emery sheets to obtain a
smooth, uniform surface. A 30 mg mass of the synthesized carbon nanodots was carefully weighed
and gently dispersed in 5 mL of dimethylformamide, and it was ultrasonicated for 60 min. Hereafter,
20 µL of the dispersed carbon nanodot solution was drop-dried on the fabricated exfoliated graphite
electrode at room temperature; the electrode was assigned as EG-CNDTs. Furthermore, G2-PPI was
electrochemically deposited onto the EG-CNDTs from an electrolytic solution of 5 mM G2-PPI by
running a potential from −400 to 1100 mV for ten cycles at a scan rate of 50 mV/s [42]. This electrode
was labelled as EG/CNDTs@PPI. Thereafter, 20 µL of aqueous glutaraldehyde (25%) was drop-dried on
EG/CNDTs@PPI as a cross-link for the immobilization of anti-CEA. Furthermore, 20 µL of 300 ng/mL
anti-CEA solution, prepared in a phosphate buffer solution (PBS) of pH 7.2, was immobilized on
EG/CNDTs@PPI. The electrode was ascribed as EG-CNDTs/anti-CEA and was then incubated
with 0.25% of bovine serum albumin (BSA) for 3 h. The constructed immunosensor was labelled
as EG/CNDTs@PPI/anti-CEA/BSA and stored at 4 ◦C when not in use. The schematic for the
construction of the immunosensor is presented in Scheme 1.
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Scheme 1. Processes involved in the preparation of the immunosensor.

2.5. Experimental Measurements

Electrochemical measurements were carried out on a three-electrode system configured of a
working electrode (3 mm exfoliated graphite electrode), reference electrode (Ag/AgCl (3 M KCl)),
and a counter electrode (platinum wire). The experimental parameters for the cyclic voltammetry (CV)
measurements were an E-step of 10 mV, current range of 1 µA, potential from −0.6 V to 1.2 V, and a
scan rate of 50 mV/s in a solution of 1 mM [Fe(CN)6]3−/4− prepared in 0.1 M KCl as the supporting
electrolyte. The experimental parameters for differential pulse voltammetry (DPV) were a pulse time
of 10 ms, a pulse amplitude of 10 mV, E-step of 10 mV, current range of 1 µA, a scan rate of 50 mV/s,
and equilibration time of 5 s.
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3. Results and Discussion

3.1. Characterization of the Nanomaterials

The XRD pattern of the synthesized CNDTs is depicted in Figure 1A. Two diffraction peaks
were observed at 2θ values of 24.63◦ and 42.64◦, the former represented (111) lattice plane and the
latter represented a diamond phase in the CNDTs [44]. The Raman spectrum of the synthesized
CNDTs in Figure 1B shows two broad peaks at 1355 and 1591 cm−1, which corresponded to the D
and G bands of the graphite. The ratio of D to G peaks, which is a measure of disorder in the crystal
structure, was calculated to be 0.85. This ratio confirmed a high degree of disorder in the CNDTs.
The functional groups present in the synthesized CNDTs were investigated using FTIR, as depicted in
Figure 1B. The peak at 3430 cm−1 was attributed to the –OH vibration of water, the peaks at 2923 and
2073 cm−1 corresponded to an aliphatic (C-H) stretch band and (-C≡N), indicating the presence of
amino-containing functional groups. Moreover, the three absorption peaks at 1620, 1105, and 615 cm−1

were attributed to the carbonyl (C=O) stretching vibration, symmetric carboxylate stretch, and aryl
group (=C-H) of the CNDTs, respectively [45,46].
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Figure 1. (A) XRD spectrum of carbon nanodots (CNDTs). (B) Raman spectrum of CNDTs. (C) Fourier
transform infrared spectroscopy (FTIR) of CNDTs. (D) TEM image of CNDTs. (E) SEM image of
CNDTs. (F) SEM image of the exfoliated graphite electrode. (G) SEM image of CNDTs deposited on
exfoliated graphite electrode. (H) SEM image of G2-PPI electrodeposited on the exfoliated graphite
electrode. (I) SEM image of CNDTs@G2-PPI on the exfoliated graphite electrode.



Biosensors 2019, 9, 39 7 of 16

An oval/spherical shape structure of CNDT was observed from the TEM image (Figure 1D).
Similarly, an aggregated structure of CNDT was revealed by the SEM image depicted in Figure 1E.
The morphology of the exfoliated graphite electrode before and after the modification process was
investigated using scanning electron microscopy (SEM). The SEM micrograph of the compressed
exfoliated graphite was flower-like in shape, as shown in Figure 1F. After modifying the compressed
EG with CNDTs, aggregates of CNDTs were dispersed on the compressed EG, as shown in Figure 1G.
Similarly, electrodeposition of G2-PPI on compressed EG revealed the spherical shape of the dendrimer,
as depicted in Figure 1H. The spherical and oval-like shape of CNDTs and G2-PPI were evenly
dispersed on the compressed EG, as presented in Figure 1I.

3.2. Electrochemical Characterization and Optimization

The fabrication steps of the immunosensor were interrogated using cyclic voltammetry in a
solution containing 1 mM [Fe(CN)6]3−/4− prepared in 0.1 M KCl, as shown in Figure 2A. The bare
exfoliated graphite gave a reversible redox peak (Figure 2Aa). About a 24% enhancement in current
signal was noticed after modifying the exfoliated graphite electrode with G2-PPI; this electrode was
labelled EG-PPI (Figure 2Ab). The increase in peak current signal was due to an enhancement
in the surface area of the electrode and an improvement in the conductivity of the exfoliated
graphite electrode. On modifying exfoliated graphite with CNDTs, a 48% current enhancement was
observed, owing to the accelerating electron transfer kinetics of the CNDTs on bare exfoliated graphite;
this electrode was ascribed as EG-CNDTs (Figure 2Ac). A synergic increase in peak currents of 71%
(relative to the bare electrode) was obtained after modification with the nanocomposite of CNDTs@PPI
(Figure 2Ad). This can be from the interplay of surface area, conductivity, and acceleration of electron
transport on the bare exfoliated graphite electrode. The electrode was tagged EG/CNDTs@PPI.
As expected, there was a decrease in peak current signal by 14.2% after the immobilization of 300 ng/mL
anti-CEA on EG/CNDTs@PPI, as shown in (Figure 2Ae). This was due to the non-conducting
property of anti-CEA, which retarded the flow of electrons at the electrode interface, and this electrode
was branded as EG/CNDTs@PPI/anti-CEA. A similar event unfolded on incubating 0.25% BSA on
EG/CNDTs@PPI/anti-CEA to block the non-specific binding, a reduction in peak current signal of
16.6% was obtained. This electrode was marked as EG/CNDTs@PPI/anti-CEA/BSA and was referred
to as the immunosensor. After the immunosensor was incubated in 100 ng/ml of CEA, the peak
current, as expected, decreased (Figure 2Ag) owing to the immunocomplex formed at the electrode
surface, indicating a successful binding event.
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Table 1 shows the electrochemical impedance spectroscopy (EIS) data of the immunosensor
preparation as fitted using the Randle–Sevcik model. The EIS results presented in Figure 2B and Table 1
agreed with the CV (Figure 2A). It is important to highlight that an increase in current connotes lower
charge transfer resistance or less resistance to current flow. The lowest charge transfer resistance was
obtained from the nanocomposite of CNDTs@PPI (Figure 2Bd), which was in concord with the highest
peak current obtained (from Figure 2Ad).

Table 1. The result obtained from the circuit fitting for the construction of the immunosensor depicted
in Figure 2B.

Circuit Element EG EG/CNDTs EG/PPI EG/CNDTs@PPI EG/CNDTs@PPI
Antibody

EG/CNDTs@PPI
Antibody

EG/CNDTs@PPI
Antibody + CEA

Rs (Ω 95.5 92.7 93.1 90.2 91.8 92.7 89.5
Rct (Ω) 964.8 385.8 523.0 293.9 519.5 658.4 972.6

The stability of the platform—EG/CNDTs@PPI/Anti-CEA/BSA—employed in the construction
of the immunosensor was interrogated as depicted in Figure 2C. It was observed that the peak
currents and the square roots of scan rates were in direct proportionality with a correlation coefficient,
R2 = 0.9961. This proportionality predominately indicated a diffusion-controlled system, which is thus
suitable for electroanalysis.

The incubation time and temperature of the immunosensor were optimized. Incubation time
depended predominantly on the kinetic features of the immunochemical reaction and mass transfer of
immunoreagents. The fabricated immunosensor was incubated with 200 ng/mL CEA using differential
pulse voltammetry, the peak current increased progressively from 10 to 50 min, as depicted in Figure 2D.
A reduction in peak current after this time was an indicator that binding was completed. Thus, 50 min
was chosen as the optimum incubation time.
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Figure 2E shows the effect of temperature (from 15 to 50 ◦C) on the incubation process. The peak
current increased proportionately with an increase in incubation time from 15 to 35 ◦C, and the peak
current of 35 ◦C was chosen as the working temperature. The decrease in current after this temperature
may be a result of the denaturing of the protein (antibody).

3.3. Analytical Application of the Immunosensor

The immunosensor was prepared on various platforms as controls for the determination of
50 ng/mL CEA (Figure 3A). The maximum peak current signal was obtained from the nanocomposite
from CNDTs@PPI in relation to other platforms, strengthening the synergetic effect and optimum
performance of the CNDT and PPI platforms.
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Figure 3. (A) Differential pulse voltammetry (DPV) of various constructed immunosensors for the
detection of 300 ng/mL Carcinoembryonic antigen (CEA) fabricated from (a) EG/Antibody@BSA,
(b) EG/PPI@Antibody/BSA, (c) EG/CNDTs@Antibody/BSA, and (d) EG/CNDTs@PPI@Antibody/BSA.
(B) DPV of various concentrations of CEA from 0.005 to 300 ng/mL in 1 mM [Fe(CN)6]3−/4−.
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The immunosensor was utilized to quantify different concentrations of CEA under the optimized
experimental conditions. An inverse proportionality between the CEA concentration and current was
noticed with differential pulse voltammetry (Figure 3B). This was due to the fact that an increase in the
amount of bound CEA led to a more constrained electron flow that resulted from the non-conducting
properties of the CEA or the immunocomplex. The formula used in calculating the limit of detection
was 3×SD

S , where SD and S represent the standard deviation of the blank and the slope of the calibration
graph, respectively. The following were derived from the calibration: a linear concentration range of
0.005 to 300 ng/mL with a linear regression equation of Y(µA) = 102.7 − 0.070x (DPV), a detection
limit of 0.00145 ng/mL (±4.67 × 10−6) (DPV), and a correlation coefficient of 0.9834.

The low detection limit of the fabricated label-free immunosensor can be attributed to the
following: the possible supramolecular chemistry (electrostatic attraction and host–guest chemistry)
between the dendrimer and the antigen; the characteristic of CNDT as nanozyme (nanomaterials
with enzyme-like characteristics) [29]; the biocompatibility of both CNDTs and PPI; and the synergic
features of CNDTs@PPI. The bio-recognition efficiency of bioreceptors depended on its molecular
conformation or integrity. That is, the way the molecules are conformed in nature. This conformation
may be affected by covalent bonds, which can deactivate a functional group or make rigid certain
parts of the molecules, thus, reducing binding and folding. Since supramolecular interactions protect
the natural conformity of molecules, it is envisaged that a biosensor development that allows more
supramolecular interactions (like the dendrimer-antibody in this report) enables a closer representation
of nature (biomimicry) and, thus, better bio-recognition.

Table 2 shows a comparison between the immunosensor in this study with others reported in
the literature for CEA. Although the synergy of gold and platinum biosensors gave a better detection
limit than the reported immunosensor, this report had a lower cost compared to the expensive gold
and platinum. However, the proposed immunosensor compares well (or performs better in some
cases) with other reports because of the unique analytical merits of the nanomaterials (CNDTs@PPI),
which includes: (i) The CNDT was prepared from a natural oat, which is also an inexpensive carbon
source (green method); (ii) the electrode used was fabricated from cheap carbon material (natural
graphite); (iii) there was a wide linear range of 0.005 to 300 ng/mL; (iv) the immunosensor involved a
simple two-step preparation method; (v) electrostatic attraction between the positive and negative
charge of the two modifiers assisted in obtaining a lower detection limit; (vi) the modifiers employed
have biocompatibility properties; and (vii) the electrode employed for this study was cheaper in
comparison to glassy carbon electrodes that are commonly used.

Table 2. Comparing the performance of the reported immunosensor to previous reports in the literature.

Immunosensor Fabrication Linear Range (ng/mL) Detection Limit (ng/mL) References

AuNPs 1–200 0.5 [47]
AuNPs-HRP 0.5–7 0.01 [48]

Polyaniline-AuNPs 0.1–1000 0.007 [49]
Au/Pt 0.01–200 0.00011 [50]

NH2-G/Thi/AuNPs 0.02–80 0.008 [9]
AuNPs/FCN 0.05–20 0.01 [1]
CNDTs/PPI 0.005–300 0.00145 Present work

NH2-G/Thi/AuNPs-amino functionalized graphene (NH2-G)/thionine (Thi)/gold nanoparticles(AuNPs),
and AuNPs/FCN—gold nanoparticles ferrocene derivatives.

3.4. Stability, Selectivity, and Repeatability of the Immunosensor

The stability of the constructed label-free electrochemical immunosensor was interrogated after
storage for two weeks at 4 ◦C. There was less than a 4% decrease in electrochemical signal for the
detection of the same concentration of CEA (200 ng/mL) after two weeks of storage, as shown in
Figure 4A. The selectivity of the immunosensor was carried out in 200 ng/mL CEA solution and in
the presence of a 400 ng/mL concentration of possible interfering species, such as prostate-specific
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antigen, alpha-fetoprotein, human immunoglobulin G, ascorbic acid (AA), BSA, and urea (Figure 4B).
The biosensor exhibited a reasonable selectivity, owing to a current variation of less than 11% observed
for all interferents.

The repeatability of the immunosensor was carried out by constructing four immunosensors from
various electrodes, and each fabricated electrochemical sensor was used for the detection of 200 ng/mL
of CEA (Figure 4C). A low relative standard deviation (RSD) of less than 4% denoted that the method
proposed can be repeated and, thus, it is of analytical significance.
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Figure 4. (A) Stability test of the fabricated immunosensor from the 1st to the 14th day. (B) Selectivity
result of the constructed immunosensor in solution containing 1 mM [Fe(CN)6]3−/4−. (C) DPV of
different immunosensors in 1 mM [Fe(CN)6]3−/4− prepared in 0.1 M KCl.

3.5. Application of the Immunosensor

The immunosensor was applied for the detection of CEA in human serum (×100 dilution in
phosphate buffer solution). CEA concentrations of 0.5, 50, and 100 ng/mL were added to the diluted
human serum samples, and the analysis of each sample was carried out 5 times. At a 95% confidence
limit, the percentage recovery and RSD were 99.96%–100.03% and 0.0192%–0.1313%, respectively
(Table 3). The results revealed that the proposed label-free immunosensor had analytical merit or
viability in the determination of CEA in the serum sample.

Table 3. Application of immunosensors in human serum samples.

Serum Sample
(ng/mL)

The Addition
Content (ng/mL) The Detection Content (ng/mL) RSD (%, n = 6) Recovery (%) Confidence

Intervals

0.00 5.0 5.01,5.00,4.99, 5.02, 4.97 0.0192 99.96 4.98–5.01
50.0 49.94, 49.97, 50.02, 50.06, 50.03 0.0482 100.01 49.95–50.04

100.0 100.06, 99.97, 100.03, 100.08, 99.99 0.1313 100.03 99.93–100.06

4. Conclusions

In this work, a novel combination of carbon nanodots and poly(propyleneimine) dendrimers
has been employed as an electrode material for the fabrication of a label-free cancer biomarker
immunosensor for carcinoembryonic antigens. The nanocomposite platform assisted in obtaining a
low detection limit, a good reproducibility, and a good selectivity. This work reveals the applicability
of these nanocomposites in biosensor design. The biocompatibility properties of the two modifiers
assisted in the detection of CEA in the serum sample. The proposed immunosensor is anticipated to
assist in the quantification of different cancer biomarkers and other electrochemical applications.
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