Electrochemical Immunosensors for Antibiotic Detection
Abstract
:1. Introduction
2. Electrochemical Sensing Mechanisms
3. Antibiotics and Their General Characteristics
4. Recent Reports on Electrochemical Immunosensors Designated for Antibiotic Determination
4.1. Immunosensors for Determination of Tetracycline
4.2. Immunosensors for Determination of Sulfonamides
4.3. Immunosensors for Determination of β-lactams
4.4. Immunosensors for Determination of Chloramphenicol (Phenicol Class)
4.5. Immunosensors for Determination of Quinolones
4.6. Immunosensors for Determination of Doxorubicin (Anthracyclines Class)
4.7. Immunosensor for Determination of Neomycin (Aminoglycosides Class)
4.8. Two-Component Immunoassays
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Theâvenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Luppa, P.B.; Sokoll, L.J.; Chan, D.W. Immunosensors—Principles and applications to clinical chemistry. Clin. Chim. Acta 2001, 314, 1–26. [Google Scholar] [CrossRef]
- Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Holford, T.R.J.; Davis, F.; Higson, S.P.J. Recent trends in antibody based sensors. Biosens. Bioelectron. 2012, 34, 12–24. [Google Scholar] [CrossRef]
- Patris, S.; Vandeput, M.; Kauffmann, J.-M. Antibodies as target for affinity biosensors. Trends Anal. Chem. 2017, 79, 239–246. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Haitham, I.; Mohammed, A.H.; Ibrahim, A.D. Automated flow fluorescent noncompetitive immunoassay for measurement of human plasma levels of monoclonal antibodies used for immunotherapy of cancers with KinExA (TM) 3200 biosensor. Talanta 2019, 192, 331–338. [Google Scholar]
- Chiu, N.F.; Lin, T.L.; Kuo, C.T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sens. Actuators B Chem. 2018, 265, 264–272. [Google Scholar] [CrossRef]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef]
- Pan, M.; Li, S.; Wang, J.; Sheng, W.; Wang, S. Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. Sensors 2017, 17, 1–14. [Google Scholar]
- Kun, Z.; Wei, W.; Ling, J.; Zhu, F.; Du, D. Use of Carbon Nanotubes as a Solid Support To Establish Quantitative (Centrifugation) and Qualitative (Filtration) Immunoassays To Detect Gentamicin Contamination in Commercial Milk. J. Agric. Food Chem. 2016, 64, 7874–7881. [Google Scholar]
- Zhang, Y.-F.; Gao, Z.-X. Antibody development and immunoassays for polycyclic aromatic hydrocarbons (PAHs). Curr. Org. Chem. 2017, 21, 2612–2621. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Li, H.; Yue, W.; Kang, Q.; Shen, D. A smartphone-based ratiometric resonance light scattering device for field analysis of Pb2+ in river water samples and immunoassay of alpha fetoprotein using PbS nanoparticles as signal tag. Sens. Actuators B Chem. 2018, 271, 358–366. [Google Scholar] [CrossRef]
- Fruhmann, P.; Sanchis, A.; Mayerhuber, L.; Vanka, T.; Kleber, C.; Salvador, J.P.; Marco, M.P. Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater. Anal. Bioanal. Chem. 2018, 410, 5923–5930. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015, 132, 162–174. [Google Scholar] [CrossRef]
- Yalow, R.S.; Berson, S.A. Assay of plasma insulin in human subjects by immunological methods. Nature 1959, 184, 1648–1649. [Google Scholar] [CrossRef]
- Crowther, J.R. The ELISA Guidebook, 2nd ed.; Humana Press: New York, NY, USA, 2009; ISBN 978-1-60327-253-7. [Google Scholar]
- Kokkinos, C.; Economou, A.; Prodromidis, M.I. Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 2016, 79, 88–105. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Cristea, C.; Tertis, M.; Galatus, R. Magnetic Nanoparticles for Antibiotics Detection. Nanomaterials 2017, 7, 119. [Google Scholar] [CrossRef]
- Zheng, J.; Xi, C.; Wang, G.; Cao, S.; Tang, B.; Mu, Z. Rapid Screening and Determination of the Residues of Hormones and Sedatives in Milk Powder Using the UHPLC-MS/MS and SPE. Food Anal. Methods 2018, 11, 3435–3451. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem. 2019, 276, 419–426. [Google Scholar] [CrossRef]
- Vardali, S.C.; Samanidou, V.F.; Kotzamanis, Y.P. Development and validation of an ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (in MSE mode) method for the quantitative determination of 20 antimicrobial residues in edible muscle tissue of European sea bass. J. Chromatogr. A 2018, 1575, 40–48. [Google Scholar] [CrossRef]
- Guaraldo, T.T.; Goulart, L.A.; Moraes, F.C.; Lanza, M.R.V. Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Appl. Surf. Sci. 2019, 410, 555–564. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, L.; Waterhouse, G.I.N.; Wang, M.; Qiao, X.; Xu, Z. Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@COF for sulfamerazine determination. Sens. Actuators B Chem. 2019, 281, 107–114. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Zhang, L.; Xu, X. Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. J. Mater. Sci. 2019, 54, 2066–2078. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, H.C.; Liu, J.; Wang, J.P. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal. Biochem. 2019, 564–565, 40–46. [Google Scholar] [CrossRef]
- Karaseva, N.A.; Ermolaeva, T.N. Piezoelectric immunosensors for the detection of individual antibiotics and the total content of penicillin antibiotics in foodstuffs. Talanta 2014, 120, 312–317. [Google Scholar] [CrossRef]
- Roushani, M.; Ghanbari, K. An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode. Microchim. Acta 2019, 186, 115. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, C.; Sun, Y.; Shao, Y.; Cai, Y.; Zhang, Y.; Miao, J.; Miao, P. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Microchim. Acta 2019, 185, 548. [Google Scholar] [CrossRef]
- Naik, L.; Sharma, R.; Mann, B.; Lata, K.; Rajput, Y.S.; Nath, B.S. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay. Food Chem. 2017, 219, 85–92. [Google Scholar] [CrossRef]
- Sheng, W.; Chang, Q.; Shi, Y.; Duan, W.; Zhang, Y.; Wang, S. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim. Acta 2018, 185, 404. [Google Scholar] [CrossRef]
- Piro, B.; Shi, S.; Reisberg, S.; Noël, V.; Anquetin, G. Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security. Biosensors 2016, 6, 7. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A. Ultrasensitive Bioaffinity Electrochemical Sensors: Advances and New Perspectives. Electroanalysis 2018, 30, 2803–2840. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; et al. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Anal. Chem. 2018, 109, 260–274. [Google Scholar] [CrossRef]
- Bottari, F.; Blust, R.; De Wael, K. Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics. Curr. Opin. Electrochem. 2018, 10, 136–142. [Google Scholar] [CrossRef]
- Ionescu, R.E.; Jaffrezic-Renault, N.; Bouffier, L.; Gondran, C.; Cosnier, S.; Pinacho, D.G.; Marco, M.-P.; Sánchez-Baeza, F.J.; Healy, T.; Martelet, C. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic. Biosens. Bioelectron. 2007, 23, 549–555. [Google Scholar] [CrossRef]
- Jornet, D.; González-Martínez, M.A.; Puchades, R.; Maquieira, A. Antibiotic immunosensing: Determination of sulfathiazole in water and honey. Talanta 2010, 81, 1585–1592. [Google Scholar] [CrossRef]
- Liu, B.; Li, M.; Zhao, Y.; Pan, M.; Gu, Y.; Sheng, W.; Fang, G.; Wang, S. A sensitive electrochemical immunosensor based on PAMAM dendrimer-encapsulated Au for detection of norfloxacin in animal-derived foods. Sensors 2018, 18, 1946. [Google Scholar] [CrossRef]
- Serafin, V.; Martinez-Garcia, G.; Aznar-Poveda, J.; Lopez-Pastor, J.A.; Garcia-Sanches, A.J.; Garcia-Haro, J.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Determination of progesterone in saliva using an electrochemical immunosensor and a COTS-based portable potentiostat. Anal. Chim. Acta 2019, 1049, 65–73. [Google Scholar] [CrossRef]
- Guerrero, S.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Oxidative grafting vs. monolayers self-assembling on gold surface for the preparation of electrochemical immunosensors. Application to the determination of peptide YY. Talanta 2019, 193, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zambrano, A.; Lin, Z.T.; Xing, Y.; Rippy, J.; Wu, T. Immunosensors for Biomarker Detection in Autoimmune Diseases. Arch. Immunol. Ther. Exp. 2017, 65, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Zhang, X.; Wang, H.; Xia, T.; Bian, C.; Liang, S.; Tang, X.; Wang, X. Electrochemical immunosensor for HBe antigen detection based on a signal amplification strategy: The co-catalysis of horseradish peroxidase and nanoporous gold. Sens. Actuators B Chem. 2019, 284, 296–304. [Google Scholar] [CrossRef]
- Yu, X.; Kim, S.N.; Papadimitrakopoulos, F.; Rusling, J.F. Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. Mol. BioSyst. 2005, 1, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, X.; Tang, Y.; Ge, L.; Guo, B.; Yao, C. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase. Anal. Chim. Acta 2014, 815, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Bai, H.; He, P.; Cha, Y.; Yang, G.; Tan, L.; Yang, Y. A reagentless amperometric immunosensor for α-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode. Anal. Chim. Acta 2008, 615, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Gould, K.Y.; Kumar, V.S.; Hayat, A.; Gobi, K.V.; Song, H.; Kim, K.-H.; Marty, J.L. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. J. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar]
- Li, X.; Liu, L.; Dong, X.; Zhao, G.; Li, Y.; Miao, J.; Fang, J.; Cui, M.; Wei, Q.; Cao, W. Dual mode competitive electrochemical immunoassay for B-type natriuretic peptide based on GS/SnO2/polyaniline-Au and ZnCo2O4/N-CNTs. Biosens. Bioelectron. 2019, 126, 448–454. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, L.; Yang, H.; Cheng, C.; Deng, W.; Tan, Y.; Xie, Q.; Yao, S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens. Bioelectron. 2019, 126, 493–500. [Google Scholar] [CrossRef]
- Yan, Q.; Cao, L.; Dong, H.; Tan, Z.; Hu, Y.; Liu, Q.; Liu, H.; Zhao, P.; Chen, L.; Liu, Y.; et al. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens. Bioelectron. 2019, 127, 174–180. [Google Scholar] [CrossRef]
- Wu, M.-F.; Wang, Y.; Li, S.; Dong, X.-X.; Yang, J.-Y.; Shen, Y.-D.; Wang, H.; Sun, Y.-M.; Lei, H.-T.; Xu, Z.-L. Ultrasensitive immunosensor for acrylamide based on chitosan/SnO2-SiC hollow sphere nanochains/gold nanomaterial as signal amplification. Anal. Chim. Acta 2019, 1049, 188–195. [Google Scholar] [CrossRef]
- Supraja, P.; Tripathy, S.; Vanjari, S.R.K.; Singh, V.; Singh, S.G. Label free, electrochemical detection of atrazine using electrospun Mn2O3 nanofibers: Towards ultrasensitive small molecule detection. Sens. Actuators B Chem. 2019, 285, 317–325. [Google Scholar] [CrossRef]
- Supraja, P.; Sudarshan, V.; Tripathy, S.; Agrawal, A.; Singh, S.G. Label free electrochemical detection of cardiac biomarker troponin T using ZnSnO3 perovskite nanomaterials. Anal. Methods 2019, 11, 744–751. [Google Scholar] [CrossRef]
- Rizwan, M.; Hazmi, M.; Lim, S.A.; Ahmed, M.U. A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J. Electroanal. Chem. 2019, 833, 462–470. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Jia, Y.; Li, Y.; Wang, P.; Liu, Q.; Xu, Z.; Li, X.; Dong, Y. Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosens. Bioelectron. 2019, 126, 785–791. [Google Scholar] [CrossRef]
- Kivirand, K.; Kagan, M.; Rinken, T. Biosensors for the Detection of Antibiotic Residues in Milk. Available online: https://www.intechopen.com/books/biosensors-micro-and-nanoscale-applications/biosensors-for-the-detection-of-antibiotic-residues-in-milk (accessed on 29 April 2019).
- Reeves, P.T. Antibiotics: Groups and properties. Chem. Anal. Antibiot. Residues Food 2012, 1, 1–59. [Google Scholar]
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- Rabbani, A.; Finn, R.M.; Ausio, J. The anthracycline antibiotics: Antitumor drugs that alter chromatin structure. BioEssays 2004, 27, 50–56. [Google Scholar] [CrossRef]
- Conzuelo, F.; Gamella, M.; Campuzano, S.; Reviejo, J.A.; Pingarrón, J.M. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal. Chim. Acta 2012, 737, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, B.; Chen, G.; Tang, D. Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim. Acta 2014, 181, 257–262. [Google Scholar] [CrossRef]
- Que, X.; Chen, X.; Fu, L.; Lai, W.; Zhuang, J.; Chen, G.; Tang, D. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J. Electroanal. Chem. 2013, 704, 111–117. [Google Scholar] [CrossRef]
- Conzuelo, F.; Stratmann, L.; Grützke, S.; Pingarron, J.M.; Schuhmann, W. Detection and quantification of sulfonamide antibiotic residues in milk using scanning electrochemical microscopy. Electroanalysis 2014, 26, 481–487. [Google Scholar] [CrossRef]
- Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L. Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: Milk, serum, urine. J. Pharm. Biomed. 2015, 106, 186–196. [Google Scholar] [CrossRef]
- Baeza-Fonte, A.N.; Garcés-Lobo, I.; Luaces-Alberto, M.D.; Moreira Gonçalves, L.; Sotomayor, M.D.P.T.; Valdés-González, A.C. Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers. J. Chromatogr. Sci. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Samaha-Kfoury, J.N.; Araj, G.F. Recent developments in β lactamases and extended spectrum β lactamases. Clin. Rev. 2003, 327, 1209–1213. [Google Scholar]
- Karaseva, N.A.; Ermolaeva, T.N. A piezoelectric immunosensor for chloramphenicol detection in food. Talanta 2012, 93, 44–48. [Google Scholar] [CrossRef]
- Zang, S.; Liu, Y.; Lin, M.; Kang, J.; Sun, Y.; Lei, H. A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim. Acta 2013, 90, 246–253. [Google Scholar] [CrossRef]
- Gaynor, M.; Mankin, A.S. Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance. Curr. Top. Med. Chem. 2003, 3, 949–961. [Google Scholar] [CrossRef]
- Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev. 2010, 23, 590–615. [Google Scholar] [CrossRef]
- Rezaei, B.; Askarpour, N.; Ensafi, A.A. A novel sensitive doxorubicin impedimetric immunosensor based on a specific monoclonal antibody–gold nanoparticle–sol–gel modified electrode. Talanta 2014, 119, 164–169. [Google Scholar] [CrossRef]
- Yim, G.; Thaker, M.N.; Koteva, K.; Wright, G. Glycopeptide antibiotic biosynthesis. J. Antibiot. 2014, 67, 31–41. [Google Scholar] [CrossRef]
- Santalo, O.; Baig, U.; Poulakos, M.; Brown, D. Early vancomycin concentrations and the applications of a pharmacokinetic extrapolation method to recognize sub-therapeutic outcomes. Pharmacy 2016, 4, 37. [Google Scholar] [CrossRef]
- Saluti, G.; Diamanti, I.; Giusepponi, D.; Pucciarini, L.; Rossi, R.; Moretti, S.; Sardella, R.; Galarini, R. Simultaneous determination of aminoglycosides and colistins in food. Food Chem. 2018, 266, 9–16. [Google Scholar] [CrossRef]
- Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 2004, 23, 113–119. [Google Scholar] [CrossRef]
- Moellering, R.C. Linezolid: The First Oxazolidinone Antimicrobial. Ann. Intern. Med. 2003, 138, 135–142. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; Hu, Y.; Li, Z.; Luo, F.; He, Z. Electrochemical Immunosensor Based on the Chitosan-Magnetic Nanoparticles for Detection of Tetracycline. Food Anal. Methods 2016, 9, 2972–2978. [Google Scholar] [CrossRef]
- El Hassani, N.E.A.; Baraket, A.; Boudjaoui, S.; Neto, E.T.T.; Bausellse, J.; Bari, N.; Bouchikhi, B.; Elaissari, A.; Errachid, A.; Zine, N. Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical BioMEMS. Biosens. Bioelectron. 2018, 130, 330–337. [Google Scholar] [CrossRef]
- Conzuelo, F.; Vivekananthan, J.; Pçller, S.; Pingarron, S.M.; Schuhmann, W. Immunologically controlled biofuel cell as a self-powered biosensor for antibiotic residue determination. ChemElectroChem 2014, 11, 1854–1858. [Google Scholar] [CrossRef]
- Valera, E.; Muriano, A.; Pividori, I.; Sanchez-Baeza, F.; Marco, M.P. Development of a Coulombimetric immunosensor based on specific antibodies labeled with CdS nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosens. Bioelectron. 2013, 43, 211–217. [Google Scholar] [CrossRef]
- El Hassani, N.E.A.; Baraket, A.; Neto, E.T.T.; Lee, M.; Salvador, J.-P.; Marco, M.-P.; Bauselle, J.; Bari, N.E.; Bouchiki, B.; Elaissari, A.; et al. Novel strategy for sulfapyridine detection using a fully integrated electrochemical Bio-MEMS: Application to honey analysis. Biosens. Bioelectron. 2017, 93, 282–288. [Google Scholar] [CrossRef]
- Conzuelo, F.; Gamella, M.; Campuzano, S.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarron, J.M. Disposable and integrated amperometric immunosensor for direct determination of sulfonamide antibiotics in milk. Biosens. Bioelectron. 2012, 36, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhu, L.; Ding, Y.; Wang, J.; Li, J.; Du, X. Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Mater. Sci. Eng. C Mater. 2012, 32, 2623–2627. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Wu, X.; Dong, S.; Zhu, N.; Gyimah, E.; Wang, K.; Li, Y. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels. Chemosphere 2019, 225, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, B.; Wang, D.; Zhou, Y.; Zhang, H.; Xia, W.; Xu, S.; Li, Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J. Biotechnol. 2015, 203, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L. New immunosensor for β-lactam antibiotics determination in riverwaste waters. Sens. Actuators B Chem. 2014, 199, 301–313. [Google Scholar] [CrossRef]
- Wu, H.; Fan, S.; Zhang, W.; Chen, H.; Peng, L.; Jin, X.; Mab, J.; Zhang, H. Amperometric immunosensor based on covalent immobilization of new methylene blue and penicillin polyclonal antibody for determination of penicillin G in milk. Anal. Meth. 2014, 6, 497–502. [Google Scholar] [CrossRef]
- Tomassetti, M.; Merola, G.; Martini, E.; Campanella, L.; Sanzò, G.; Favero, G.; Mazzei, F. Comparison between a Direct-Flow SPR Immunosensor for Ampicillin and a Competitive Conventional Amperometric Device: Analytical Features and Possible Applications to Real Samples. Sensors 2017, 17, 819. [Google Scholar] [CrossRef]
- He, G.; Yang, X.; Hu, Y.; Hu, Y.; Zhang, F. A sensitive and selective amperometric immunosensor for chloramphenicol detection based on magnetic nanocomposites modify screen-printed carbon electrode as a disposable platform. Int. J. Electrochem. Sci. 2014, 9, 6962–6974. [Google Scholar]
- El-Moghazy, A.Y.; Zhao, C.; Istamboulie, G.; Amaly, N.; Si, Y.; Noguer, T.; Sun, G. Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. Biosens. Bioelectron. 2018, 117, 838–844. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Martini, E.; Castrucci, M.; Campanella, L. Enzymatic DMFC device used for direct analysis of chloramphenicol and a comparison with the competitive immunosensor method. Sens. Actuators B Chem. 2018, 255, 1545–1552. [Google Scholar] [CrossRef]
- He, Z.; Zang, S.; Liu, Y.; He, Y.; Lei, H. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron. 2015, 73, 85–92. [Google Scholar] [CrossRef]
- Pinacho, D.G.; Sánchez-Baeza, F.; Pividori, M.I.; Marco, M.P. Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor. Sensors 2014, 14, 15965–15980. [Google Scholar] [CrossRef]
- Rezaei, B.; Havakeshian, E.; Ensafi, A.A. Stainless steel modified with an aminosilane layer and gold nanoparticles as a novel disposable substrate for impedimetric immunosensors. Biosens. Bioelectron. 2013, 46, 61–66. [Google Scholar] [CrossRef]
- Wu, X.; Kuanga, H.; Hao, C.; Xing, C.; Wang, L.; Xu, C. Paper supported immunosensor for detection of antibiotics. Biosens. Bioelectron. 2012, 33, 309–312. [Google Scholar] [CrossRef]
- Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105. [Google Scholar] [CrossRef]
Class | Chemical Structure of an Exemplary Compound | Another Examples |
---|---|---|
tetracyclines | tetracycline | chlortetecycline, oxytetracycline, demeclocycline, doxycycline, lymecycline, meclocycline, methacycline, minocycline, rolitetracycline, tigecycline |
sulfonamides | sulfapyridine | sulfadiazine, sulfamethoxazole sulfamethazine, sulfadoxine, sulfamerazine |
β-lactams | penicillin G | penicillins: penicillin V, dicloxacillin, methicillin, nafcillin, ampicillin, amoxicillin, carbenicilin, piperacillin, mezlocillin, ticarcillin, benzylpenicillin, cloxacillin, oxacillin, nafcillin cephalosporins: ceftazidime, cephazolin, cefepime monobactams: aztreonam carbapenems: imipenem, meropenem, ertapenem |
phenicols | chloramphenicol | - |
quinolones | norfloxacin | cinoxacin, ofloxacin, ciproxacin, temafloxacin, sparfloxacin, nalidixic acid, enoxacin, floxacin, ciprofloxacin, levofloxacin, enrofloxacin, danofloxacin, marbofloxacin, flumequine |
macrolides | erythromycin | azithromycin, clarithromycin |
anthracyclines | doxorubicin | - |
glycopeptides | vancomycin | - |
aminoglycosides | neomycin | streptomycin, gentamicin, tobramycin, amikacin, dihydrostreptomycin, kanamycin A |
oxazolidinones | linezolid | - |
Antibiotics | Biorecognition Agent | Electrode Architecture | Detection Technique | Linear Range, ng·mL−1 | LOD, ng·mL−1 | Label | Selectivity | Sample | Ref. |
---|---|---|---|---|---|---|---|---|---|
TETRACYCLINES | |||||||||
tetracycline oxytetracycline chlortetracycline doxycycline | anti-tetracycline polyclonal sheep antibody | antiTC-ProtG-MB/SPCE | amperometry | 17.8–189.6 * 4.0–242.3 * 144.2–2001.9 * 2.6–234.9 * | 8.9 1.2 66.8 0.7 | HRP | + | spiked milk and CRM | [61] |
tetracycline | anti-tetracycline monoclonal rabbit antibody | antiTC/GA/CS/Au | LSV | 0.05–100 * | 0.006 | PtGNs | + | spiked honey, milk, peanut | [63] |
tetracycline | anti-tetracycline monoclonal antibodies | antiTC/MNPs/CS/Au | DPV | 0.08–1 | 0.0321 | - | - | spiked milk | [78] |
tetracycline | anti-tetracycline polyclonal sheep antibody | TC-Py/Py-COOH/MNPs/Au | EIS | 0.0001–1 | 0.0012 | - | + | spiked honey | [79] |
SULFONAMIDES | |||||||||
sulfapyridine | polyclonal antiserum As167 | antiSPY-ProtG/GRE | amperometry | 5–55 * | 2.4 | HRP | not available | spiked milk | [80] |
sulfapyridine | polyclonal antiserum As167 | antiSPY-ProtG/GCP | SECM | 0.5–56 * | 0.13 | HRP | not available | spiked milk | [64] |
sulfapyridine | antibody Ab155 | GEC | SWV | - | 0.015 | CdSNP | not available | spiked honey | [81] |
sulfapyridine | polyclonal antibody Ab155 | SA2-BSA/Py/Py-COOH/MNPs/Au | EIS | 0.002–50 | 0.0004 | - | + | spiked honey | [82] |
sulfapyridine | polyclonal antiserum As167 | As167/4-ABA/SPdCE | amperometry | 0.6–64.2 * | 0.15 | HRP | + | spiked milk | [83] |
sulfamethoxazole | anti-sulfamethoxazole polyclonal antibody | antiSMX/nanoCeO2-CS/GCE | DPV | 0.5–500 | 0.325 | HRP | + | milk, honey, eggs | [84] |
sulfamethazine | anti-sulfamethazine monoclonal antibody | SMZ-BSA/Au NDs/GCE | LSV | 0.33–63.81 | 0.12 | AgNPs | not available | environmental waters | [85] |
β-LACTAMS (PENICILLIN G) | |||||||||
penicillin G | anti-penicillin G antibody | antiP/AuNP/s-BLM/GCE | EIS | 3.34 × 10−6–3.34 | 2.7 × 10−7 | - | + | spiked milk | [86] |
penicillin G | anti-penicillin monoclonal antibody (antiP) | anti-P/Immobilon membrane P/Immobilon membrane | amperometry | 0.17–2.0 × 104 0.17–1.8 × 104 | 0.087 0.087 | HRP | - | spiked river, waste water | [87] |
penicillin G | anti-penicillin monoclonal antibody | P-BSA/ Immobilon membrane | amperometry | 0.01–1.0 × 105 | 0.003 | HRP | - | unspiked and spiked milk, urine, serum, drugs | [65] |
penicillin G | anti-penicillin polyclonal antibody | anti-P-HRP/NMB/GCE | CV | 1.74–13.91 | 0.61 | HRP | - | milk | [88] |
ampicillin | anti-ampicillin, monoclonal antibody | antiAMP/Immobilon membrane | amperometry | 0.17–3.49 × 104 | 0.087 | HRP | - | spiked bovine milk, river water and spring surface water | [89] |
PHENICOLS | |||||||||
chloramphenicol | anti-chloramphenicol rabbit antibody | Fe3O4-Au-NPs-BSA-CAP/GS-Nafion/SPCE | DPV | 2.0–200.0 | 0.82 | - | not available | spiked milk | [90] |
chloramphenicol | anti-chloramphenicol monoclonal antibody | antiCAP/PVA-co-PE NFM/SPCE | amperometry | 0.01–10 | 0.0047 | - | + | spiked milk | [91] |
chloramphenicol | anti-chloramphenicol monoclonal | CAP/Immobion membrane | amperometry | 3.2 × 103–3.2 × 106 | 969.4 | ExtrAvidin® peroxidase | + | pharmaceutical products | [92] |
QUINOLONES | |||||||||
R-ofloxacin S-ofloxacin | anti-R-ofloxacin antibody anti-S-ofloxacin antibody | R-OFL-OVA/MWCNT/PLL/GCE S-OFL-OVA/MWCNT/ PLL/GCE | CV | 0.37–12.8 0.26–25.6 | 0.30 0.15 | multi-HRP | + | - | [93] |
ofloxacin | anti-ofloxacin antibody | OFL-OVA/Au-nanoclusters/PPy/GCE | CV | 0.08–410 | 0.03 | multi-HRP | not available | - | [69] |
norfloxacin | anti-norfloxacin monoclonal antibody (antiNOR) | antiNOR/PAMAM-Au/GCE | DPV | 1–1 × 104 | 0.3837 | HRP | - | spiked animal- derived food | [40] |
ciprofloxacin | Ab-171 antibody | m-GEC | amperometry | 0.063–8.05 * | 0.017 | HPR | not available | spiked milk | [94] |
ANTHRACYCLINES | |||||||||
doxorubicin | anti-doxorubicin mouse antibody | antiD-BSA/AuNP/APTES/SS | EIS | 0.0025–0.03 0.03–0.1 | 0.0017 | - | not available | spiked human serum | [95] |
doxorubicin | anti-doxorubicin mouse antibody | antiD/AuNP/TB sol–gel/Au | EIS | 0.0001–0.001 0.0025–0.05 | 9 × 10−5 | - | not available | spiked human serum, urine | [72] |
AMINOGLYCOSIDES | |||||||||
neomycin | anti-neomycin rabbit polyclonal antibody | antiNEO/SWCNT/PSS/PS | amperometry | 0.2–125 | 0.04 | - | + | spiked milk | [96] |
TWO-COMPONENT ASSAYS | |||||||||
tetracycline chloramphenicol | anti-tetracycline monoclonal antibodies anti-chloramphenicol rabbit antibody | TC-CAP-BSA/AuNP/GCE | SWASV | 0.01–50 * | 0.0075 0.0054 | CdS, PbS nano-clusters | not available | spiked milk, honey | [62] |
tetracycline sulfapyridyne | anti-tetracycline polyclonal sheep antibody (antiTC) anti-sulfapyridyne polyclonal antiserum As167 (antiSPY) | antiSPY/antiTC/Protein G-4-ABA/SPdCE | amperometry | 2.84–171 * 0.48–113 * | 0.858 0.097 | HRP | + | spiked milk and milk CRM | [97] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollap, A.; Kochana, J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors 2019, 9, 61. https://doi.org/10.3390/bios9020061
Pollap A, Kochana J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors. 2019; 9(2):61. https://doi.org/10.3390/bios9020061
Chicago/Turabian StylePollap, Aleksandra, and Jolanta Kochana. 2019. "Electrochemical Immunosensors for Antibiotic Detection" Biosensors 9, no. 2: 61. https://doi.org/10.3390/bios9020061
APA StylePollap, A., & Kochana, J. (2019). Electrochemical Immunosensors for Antibiotic Detection. Biosensors, 9(2), 61. https://doi.org/10.3390/bios9020061