New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacteriological Testing of Milk Samples
2.2. Antibiotic Susceptibility Testing of Mastitis-Associated Bacteria
2.3. EOs’ Chemical Composition Analysis
2.4. EOs’ Antioxidant Potential Evaluation
2.5. EOs Effectiveness against Mastitis-Associated Bacteria
3. Materials and Methods
3.1. Essential Oils
3.2. EOs Chemical Composition Analysis
3.3. EOs’ Antioxidant Potential Evaluation
3.4. Sampling Procedure
3.5. Antibiotic Susceptibility Testing of Mastitis-Associated Bacteria
3.6. EOs’ Effectiveness Determination against Mastitis-Associated Bacteria
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Kalińska, A.; Gołębiewski, M.; Wójcik, A. Mastitis pathogens in dairy cattle—A review. World Sci. News 2017, 89, 22–31. [Google Scholar]
- Kalinska, A.; Slósarz, J. Influence of cow temperament and milking speed on herd life, lifetime milk yield and reasons of cow culling. Ann. Wars. Univ. Life Sci.-SGGW Anim. Sci. 2016, 55, 177–186. [Google Scholar]
- Wilson, D.J.; Gonzalez, R.N.; Das, H.H. Bovine mastitis pathogens in New York and Pennsylvania: Prevalence and effects on somatic cell count and milk production. J. Dairy Sci. 1997, 80, 2592–2598. [Google Scholar] [CrossRef]
- Akers, R.M.; Nickerson, S.C. Mastitis and its impact on structure and function in the ruminant mammary gland. J. Mammary Gland. Biol. Neoplasia 2011, 16, 275–289. [Google Scholar] [CrossRef]
- Krömker, V.; Leimbach, S. Mastitis treatment—Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Lopes, T.S.; Fontoura, P.S.; Oliveira, A.; Rizzo, F.A.; Silveira, S.; Streck, A.F. Use of plant extracts and essential oils in the control of bovine mastitis. Res. Vet. Sci. 2020, 131, 186–193. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, S.; Khurana, R. Essential oils and mastitis in dairy animals: A review. Haryana Vet 2020, 59, 1–9. [Google Scholar]
- Baskaran, S.A.; Kazmer, G.; Hinckley, L.; Andrew, S.; Venkitanarayanan, K. Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J. Dairy Sci. 2009, 92, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Kovacevic, Z.; Radinovic, M.; Cabarkapa, I.; Kladar, N.; Božin, B. Natural Agents against Bovine Mastitis Pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef]
- Cho, B.-W.; Cha, C.-N.; Lee, S.-M.; Kim, M.-J.; Park, J.-Y.; Yoo, C.-Y.; Son, S.-E.; Kim, S.; Lee, H.-J. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J. Vet. Res. 2015, 55, 253–257. [Google Scholar] [CrossRef] [Green Version]
- De Mastro, G.; Tarraf, W.; Verdini, L.; Brunetti, G.; Ruta, C. Essential oil diversity of Origanum vulgare L. populations from Southern Italy. Food Chem. 2017, 235, 1–6. [Google Scholar]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential oil profile of oregano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crop. Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [Green Version]
- Dunkić, V.; Kremer, D.; Dragojević Müller, I.; Stabentheiner, E.; Kuzmić, S.; Jurišić Grubešić, R.; Vujić, L.; Kosalec, I.; Randić, M.; Srečec, S. Chemotaxonomic and micromorphological traits of Satureja montana L. and S. subspicata Vis.(Lamiaceae). Chem. Biodivers. 2012, 9, 2825–2842. [Google Scholar] [CrossRef]
- Slavkovska, V.; Jancic, R.; Bojovic, S.; Milosavljevic, S.; Djokovic, D. Variability of essential oils of Satureja montana L. and Satureja kitaibelii wierzb. ex Heuff. from the central part of the balkan peninsula. Phytochemistry 2001, 57, 71–76. [Google Scholar] [PubMed]
- Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef]
- Šarić, L.; Paperbark, I.; Šarić, B.; Plavšić, D.; Lević, J.; Pavkov, S.; Kokić, B. Composition and antimicrobial activity of some essential oils from Serbia. Agro. Food Ind. Hi-Tech. 2014, 25, 40–43. [Google Scholar]
- Aćimović, M.; Zorić, M.; Zheljazkov, V.D.; Pezo, L.; Čabarkapa, I.; Stanković Jeremić, J.; Cvetković, M. Chemical characterization and antibacterial activity of essential oil of medicinal plants from Eastern Serbia. Molecules 2020, 25, 5482. [Google Scholar] [CrossRef] [PubMed]
- Plavšić, D.V.; Dimić, G.R.; Psodorov, Đ.B.; Psodorov, D.Đ.; Šarić, L.Ć.; Čabarkapa, I.S.; Košutić, M.B. Antifungal activity of Mentha piperita and Carum carvi essential oils. Zb. Matice Srp. Za Prir. Nauk. 2017, 133, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Radinović, M.; Davidov, I.; Kovačević, Z.; Stojanović, D.; Galfi, A.; Erdeljan, M. Basic Principles of Mastitis Therapy. Vet. Žurnal Repub. Srp. 2019, 19. [Google Scholar] [CrossRef]
- Vakanjac, S.; Pavlovic, V.; Magas, V.; Pavlovic, M.; Djuric, M.; Maletic, M.; Nedic, S.; Soco, I. Investigations of efficacy of intramammary applied antimicrobials and glucocorticosteroides in the treatment of subclinical and clinical mastitis in cows. Vet. Glas. 2013, 67, 15–27. [Google Scholar] [CrossRef]
- Andjelkovic, J.; Radonjic, V. Usage of Intramammary Antimicrobial Veterinary Medicinal Products in The Republic of Serbia from 2011 to 2014. Serb. J. Exp. Clin. Res. 2017, 18, 27–32. [Google Scholar] [CrossRef] [Green Version]
- The Plant List. Origanum vulgare L. Available online: http://www.theplantlist.org/tpl1.1/record/kew-143954 (accessed on 15 July 2021).
- Kosakowska, O.; Węglarz, Z.; Bączek, K. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crop. Prod. 2019, 141, 111782. [Google Scholar] [CrossRef]
- The Plant List. Satureja montana L. Available online: http://www.theplantlist.org/tpl1.1/record/kew-185794 (accessed on 15 July 2021).
- Sevarda, L.; Kuznjecova, A.; Živanović, R.; Pavlović, S.; Vujčić, S. Essential oil configuration of some population of the species Satureja kitaibelii Wierzb. et Heuf. Arch. Pharm. 1989, 39, 159–162. [Google Scholar]
- Kustrak, D.; Kuftinec, J.; Blazevic, N.; Maffei, M. Comparison of the essential oil composition of two subspecies of Satureja montana. J. Essent. Oil Res. 1996, 8, 7–13. [Google Scholar] [CrossRef]
- Chalchat, J.-C.; Gorunovic, M.; Maksimovic, Z. Essential oil of Satureja kitaibelii Wierzb. f. aristata (Vand.) Hayek, Lamiaceae from eastern Serbia. J. Essent. Oil Res. 1999, 11, 691–692. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the determination of biological antioxidant capacity in vitro: A review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Basiricò, L.; Morera, P.; Dipasquale, D.; Bernini, R.; Santi, L.; Romani, A.; Lacetera, N.; Bernabucci, U. (-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells. Animal 2019, 13, 2847–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanigan, R.S.; Yamarik, T.A. Final report on the safety assessment of BHT (1). Int. J. Toxicol. 2002, 21, 19–94. [Google Scholar] [PubMed]
- Gavaric, N.; Mozina, S.S.; Kladar, N.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil-Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crop. Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B. Essential Oils from Lamiaceae Species as Promising Antioxidant and Antimicrobial Agents. Nat. Prod. Commun. 2007, 2, 445–452. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef]
- Ćavar, S.; Maksimović, M.; Šolić, M.E.; Jerković-Mujkić, A.; Bešta, R. Chemical composition and antioxidant and antimicrobial activity of two Satureja essential oils. Food Chem. 2008, 111, 648–653. [Google Scholar] [CrossRef]
- Serrano, C.; Matos, O.; Teixeira, B.; Ramos, C.; Neng, N.; Nogueira, J.; Nunes, M.L.; Marques, A. Antioxidant and antimicrobial activity of Satureja montana L. extracts. J. Sci. Food Agric. 2011, 91, 1554–1560. [Google Scholar] [CrossRef]
- Žitek, T.; Borjan, D.; Golle, A.; Knez, Ž.; Knez, M. Optimization of Extraction of Phenolic Compounds with Antimicrobial Properties from Origanum vulgare. Processes 2021, 9, 1032. [Google Scholar] [CrossRef]
- Kosakowska, O.; Węglarz, Z.; Pióro-Jabrucka, E.; Przybył, J.L.; Kraśniewska, K.; Gniewosz, M.; Bączek, K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef]
- Maccelli, A.; Vitanza, L.; Imbriano, A.; Fraschetti, C.; Filippi, A.; Goldoni, P.; Maurizi, L.; Ammendolia, M.G.; Crestoni, M.E.; Fornarini, S.; et al. Satureja montana L. Essential Oils: Chemical Profiles/Phytochemical Screening, Antimicrobial Activity and O/W NanoEmulsion Formulations. Pharmaceutics 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Vitanza, L.; Maccelli, A.; Marazzato, M.; Scazzocchio, F.; Comanducci, A.; Fornarini, S.; Crestoni, M.E.; Filippi, A.; Fraschetti, C.; Rinaldi, F. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microb. Pathog. 2019, 126, 323–331. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef]
- Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, J.L.; Zweijtzer, C.; Burt, S.A.; Haagsman, H.P. Structural requirements for the antimicrobial activity of carvacrol. J. Agric. Food Chem. 2006, 54, 1874–1879. [Google Scholar] [CrossRef]
- Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Ultee, A.; Kets, E.P.; Alberda, M.; Hoekstra, F.A.; Smid, E.J. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol. 2000, 174, 233–238. [Google Scholar] [CrossRef]
- Lambert, R.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Dorman, H.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef]
- Kundaković, T.; Stanojković, T.; Kolundžija, B.; Marković, S.; Šukilović, B.; Milenković, M.; Lakušić, B. Cytotoxicity and antimicrobial activity of the essential oil from Satureja montana subsp. pisidica (Lamiceae). Nat. Prod. Commun. 2014, 9, 1934578X1400900437. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-S.; Lin, K.-L.; Chou, C.-T.; Chiang, A.-J.; Liang, W.-Z.; Chang, H.-T.; Tsai, J.-Y.; Liao, W.-C.; Huang, F.-D.; Huang, J.K. Effect of thymol on Ca2+ homeostasis and viability in human glioblastoma cells. Eur. J. Pharmacol. 2011, 670, 85–91. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crop. Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.-l. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Nuutila, A.M.; Puupponen-Pimiä, R.; Aarni, M.; Oksman-Caldentey, K.-M. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- National Mastitis Council (NMC). Microbiological Procedures for the Diagnosis of Udder Infection, 3rd ed.; Arlington: National Mastitis Council Inc.: New Prague, MN, USA, 2004. [Google Scholar]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Protocol; American Society for Microbiology (ASM): Washington, DC, USA, 2009; Available online: https://www.asmscience.org/docserver/fulltext/education/protocol/protocol.3189.pdf?expires=1613515898&id=id&accname=guest&checksum=835F5125F08BB2AB46FF21C23963C9B7 (accessed on 1 September 2021).
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved standard M02-A12; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
Bacterial Strains Culture | AMX | AMP | CRO | ENR | ERY | GEN | LIN | NEO | PEN | STR | TET | AMC | NB | SXT | CLO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strep_bh | S | S | S | S | S | R | S | R | R | S | S | S | S | R | R |
Strep | R | R | R | R | R | I | R | R | R | S | R | R | R | R | R |
Strep | R | R | R | R | R | I | R | R | R | S | R | R | R | R | R |
Staph_cn | S | S | I | S | S | S | S | S | R | S | S | S | S | S | R |
Strep | R | R | R | R | I | S | R | R | R | S | R | R | R | R | R |
Strep_bh | I | R | S | S | R | S | R | S | R | S | I | S | I | S | R |
E_c | R | R | R | S | R | S | R | S | R | S | R | R | R | S | R |
E_c | R | R | R | S | R | S | R | S | R | S | I | R | R | S | R |
Strep_bh | R | R | S | S | R | S | R | S | R | S | R | S | R | R | R |
K_o | R | R | S | S | R | S | R | S | R | S | R | R | R | S | R |
E_c | R | R | R | S | R | S | R | S | R | S | I | R | R | S | R |
Strep | R | R | I | S | R | S | I | R | R | S | R | S | R | R | R |
E_c | R | R | R | S | R | S | R | S | R | S | R | R | R | S | R |
E_s | R | R | R | S | R | S | R | S | R | S | S | R | R | S | R |
Staph_a | I | R | S | S | S | S | S | S | R | S | S | S | S | S | R |
E_c | I | R | S | S | R | S | R | S | R | S | I | S | R | S | R |
Strep_u | S | S | I | S | I | S | R | R | R | S | S | S | R | R | R |
E_c | I | R | S | S | R | S | R | S | R | S | S | S | R | S | R |
Staph_a | I | R | S | S | S | S | S | S | R | S | S | S | S | S | R |
Strep_d | S | R | R | S | I | I | R | R | R | S | R | S | I | R | R |
Strep | S | S | S | S | S | S | R | R | R | R | R | S | R | R | R |
Peack No. | Compound | RI * | O. vulgare | S. montana |
---|---|---|---|---|
Monoterpene Hydrocarbons | 3.53 | 18.47 | ||
1 | α-Thujene | 930 | n.d. | 1.28 |
2 | α-Pinene | 937 | 0.26 | 0.81 |
3 | Camphene | 952 | 0.09 | 0.38 |
4 | β-Pinene | 978 | 0.53 | 0.83 |
5 | β-Myrcene | 991 | 0.27 | 1.06 |
7 | α-Phellandrene | 1005 | 0.04 | 0.23 |
8 | δ-3-Carene | 1011 | n.d. | 0.06 |
9 | α-Terpinene | 1017 | 0.36 | 2.01 |
11 | Limonene | 1030 | 0.45 | 0.52 |
13 | β-Ocimene | 1037 | n.d. | 0.06 |
14 | γ-Terpinene | 1060 | 1.53 | 11.09 |
16 | Terpinolene | 1088 | n.d. | 0.14 |
Aromatic Monoterpene Hydrocarbons | 4.82 | 14.71 | ||
10 | p-Cymene | 1025 | 4.82 | 14.71 |
Oxygenated Monoterpenes | 2.58 | 3.81 | ||
12 | 1,8-Cineole | 1032 | 0.51 | 0.32 |
15 | cis-Sabinene hydrate | 1070 | n.d. | 0.24 |
17 | Linalool | 1099 | 0.97 | 0.81 |
18 | Camphor | 1145 | 0.04 | 0.05 |
19 | endo-Borneol | 1167 | 0.41 | 1.04 |
20 | Terpinen-4-ol | 1177 | 0.52 | 0.75 |
21 | α-Terpineol | 1189 | 0.13 | 0.26 |
22 | Carvone | 1242 | n.d. | 0.15 |
27 | Geranyl acetate | 1382 | n.d. | 0.19 |
Aromatic Oxygenated Monoterpenes | 84.56 | 55.34 | ||
23 | Thymol | 1291 | 4.21 | 0.33 |
24 | Carvacrol | 1299 | 80.35 | 55.01 |
Sesquiterpene Hydrocarbons | 2.96 | 6.96 | ||
25 | α-Cubebene | 1351 | 0.03 | 0.05 |
26 | α-Copaene | 1376 | n.d. | 0.16 |
28 | (-)-β-Bourbonene | 1384 | n.d. | 0.15 |
29 | β-Cubenene | 1388 | n.d. | 0.03 |
30 | Longifolene | 1408 | n.d. | 0.51 |
31 | trans-β-Caryophyllene | 1419 | 2.02 | 2.26 |
32 | β-Copaene | 1432 | n.d. | 0.08 |
33 | γ-Elemene | 1433 | n.d. | 0.03 |
34 | Aromandendrene | 1440 | n.d. | 0.12 |
35 | cis-β-Famesene | 1443 | n.d. | 0.02 |
36 | Humulene | 1454 | 0.24 | 0.08 |
37 | trans-β-Famesene | 1456 | 0.21 | n.d. |
38 | allo-Aromandendrene | 1461 | n.d. | 0.18 |
39 | γ-Muurolene | 1477 | n.d. | 0.24 |
40 | Germacrene D | 1482 | 0.03 | 0.58 |
41 | β-Selinene | 1486 | n.d. | 0.21 |
42 | α-Muurolene | 1499 | n.d. | 0.09 |
43 | β-Bisabolene | 1509 | n.d. | 1.51 |
44 | γ-Cadinene | 1513 | n.d. | 0.2 |
45 | δ-Cadinene | 1524 | 0.43 | 0.46 |
Oxygenated Sesquiterpenes | 0.93 | 0.35 | ||
46 | Caryophyllenyl alcohol | 1572 | 0.00 | 0.06 |
47 | Caryophyllene oxide | 1581 | 0.93 | 0.27 |
48 | α-Cadinol | 1653 | n.d. | 0.02 |
Aliphatic Compunds | 0.04 | 0.02 | ||
6 | 3-Octanol | 994 | 0.04 | 0.02 |
TOTAL OF IDENTIFIED COMPOUNDS | 99.42 | 99.66 |
Samples | Assay | ||||
---|---|---|---|---|---|
DPPH IC50 | OH IC50 (µg/mL) | NO IC50 | LP IC50 | FRAP (mg AAE */mL EO) | |
** ± SD *** | |||||
O. vulgare | 15 ± 0.11 | 250 ± 4.32 | n.d. **** | 17 ± 0.83 | 35.09 ± 1.51 |
S. montana | 21 ± 0.19 | n.d. | n.d. | 59 ± 1.73 | 34.41 ± 2.18 |
AA | / | 20.25 ± 8.39 | / | / | / |
PG | 0.75 ± 0.03 | 8.67 ± 0.63 | / | / | / |
BHT | 4.23 ± 0.09 | 0.04 ± 0.01 | / | 7.59 ± 0.46 | / |
Sample | OV * (MIC) (mg/mL) | OV * (MBC) (mg/mL) | SM ** (MIC) (mg/mL) | SM ** (MBC) (mg/mL) |
---|---|---|---|---|
4 strain E. coli | 0.78 | 1.56 | 3.125 | 6.25 |
Cronobacter sakazakii | 6.25 | 12.5 | 6.25 | 12.5 |
2 Streptococcus spp. β haemoliticus | 3.125 | 6.25 | 1.56 | 3.125 |
Streptococcus spp. β haemoliticus | 3.125 | 6.25 | 0.39 | 0.78 |
Streptococcus spp.01 | 3.125 | 6.25 | 6.25 | >12.5 |
Streptococcus spp.02 | 6.25 | 12.5 | 6.25 | 12.5 |
Streptococcus spp.03 | 3.125 | 6.25 | 6.25 | 12.5 |
Staphylococcus spp.04 | 3.125 | 6.25 | 6.25 | 12.5 |
Staphylococcus spp. coagulase negative | 3.125 | 6.25 | 6.25 | 12.5 |
Klebsiella oxytoca | 3.125 | 6.25 | 3.125 | 6.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, Z.; Kladar, N.; Čabarkapa, I.; Radinović, M.; Maletić, M.; Erdeljan, M.; Božin, B. New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives. Antibiotics 2021, 10, 1460. https://doi.org/10.3390/antibiotics10121460
Kovačević Z, Kladar N, Čabarkapa I, Radinović M, Maletić M, Erdeljan M, Božin B. New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives. Antibiotics. 2021; 10(12):1460. https://doi.org/10.3390/antibiotics10121460
Chicago/Turabian StyleKovačević, Zorana, Nebojša Kladar, Ivana Čabarkapa, Miodrag Radinović, Milan Maletić, Mihajlo Erdeljan, and Biljana Božin. 2021. "New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives" Antibiotics 10, no. 12: 1460. https://doi.org/10.3390/antibiotics10121460
APA StyleKovačević, Z., Kladar, N., Čabarkapa, I., Radinović, M., Maletić, M., Erdeljan, M., & Božin, B. (2021). New Perspective of Origanum vulgare L. and Satureja montana L. Essential Oils as Bovine Mastitis Treatment Alternatives. Antibiotics, 10(12), 1460. https://doi.org/10.3390/antibiotics10121460