Alkaloids as Photosensitisers for the Inactivation of Bacteria
Abstract
:1. Introduction
2. Overview of Alkaloids in the 21st Century
3. Antimicrobial Photodynamic Therapy
4. Alkaloids in Photoinactivation of Microorganisms
4.1. Quinoline-Based Alkaloids
4.2. Pterin-Like Alkaloids
4.3. Carbazole Molecules
4.4. β-Carbolines Molecules
4.5. Aporphine Alkaloids
4.6. Protoberberine-like Alkaloids
4.7. Indigo-Like Alkaloids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. WHO Priority Pathogens List for R&D of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Roope, L.S.J.; Smith, R.D.; Pouwels, K.B.; Buchanan, J.; Abel, L.; Eibich, P.; Butler, C.C.; Tan, P.S.; Walker, A.S.; Robotham, J.V.; et al. The challenge of antimicrobial resistance: What economics can contribute. Science 2019, 364, eaau4679. [Google Scholar] [CrossRef] [PubMed]
- Wanted: A reward for antibiotic development. Nat. Biotechnol. 2018, 36, 555. [CrossRef] [PubMed] [Green Version]
- Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules 2021, 26, 1836. [Google Scholar] [CrossRef]
- Funayama, S.; Cordell, G.A. Alkaloids: A Treasury of Poisons and Medicines, 1st ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Meissner, W. Über Pflanzenalkalien: II. Über ein neues Pflanzenalkali (Alkaloid). J. Chem. Phys. 1819, 25, 379–381. [Google Scholar]
- Giles, P.M., Jr. Revised section F: Natural products and related compounds. Pure Appl. Chem. 1999, 71, 587–643. [Google Scholar] [CrossRef]
- Avcia, F.G.; Atas, B.; Aksoya, C.S.; Kurpejovica, E.; Toplan, G.G.; Gurer, C.; Guillerminet, M.; Orelle, C.; Jault, J.-M.; Akbulut, B.S. Repurposing bioactive aporphine alkaloids as efflux pump inhibitor. Fitoterapia 2019, 139, 104371. [Google Scholar] [CrossRef] [PubMed]
- Bauzon, J.; Lee, G.; Cummings, J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimer’s Res. Ther. 2020, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, E.M.; Gamal, M.; Ghoneim, M.M.; Hussein, S.; El-Ghorab, A.H.; Abdelgawad, M.A.; Musa, A. Repurposing of FDA Approved Alkaloids as COVID 19 Inhibitors; in silico Studies. Pharmacogn. J. 2021, 13, 110–123. [Google Scholar] [CrossRef]
- Bai, L.; Li, X.; Ma, X.; Zhao, R.; Wu, D. In Vitro Effect and Mechanism of Action of Ergot Alkaloid Dihydroergocristine in Chemoresistant Prostate Cancer Cells. Anticancer Res. 2020, 40, 6051–6062. [Google Scholar] [CrossRef] [PubMed]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Loh, J.S.; Tan, L.K.S.; Lee, W.L.; Ming, L.C.; How, C.W.; Foo, J.B.; Kifli, N.; Goh, B.H.; Ong, Y.S. Do Lipid-Based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers 2021, 13, 5346. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodinamic Therapyof Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Karges, J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew. Chem. Int. Ed. 2021. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–667. [Google Scholar] [CrossRef]
- Newman, D.K. Photodynamic therapy: Current role in the treatment of chorioretinal conditions. Eye 2016, 30, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, E.H.C.; van Rijssen, T.J.; Subhi, Y.; Boon, C.J.F. Photodynamic Therapy for Chorioretinal Diseases: A Practical Approach. Ophthalmol. Ther. 2020, 9, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Bozzini, G.; Colin, P.; Betrouni, N.; Ouzzane, N.A.; Puech, P.; Villers, A.; Mordon, S. Photodynamic therapy in urology: What can we do now and where are we heading? Photodiagn. Photodyn. Ther. 2012, 9, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Gilaberte, Y.; Rezusta, A.; Juarranz, A.; Hamblin, M.R. Editorial: Antimicrobial Photodynamic Therapy: A New Paradigm in the Fight against Infections. Front. Med. 2021, 8, 788888. [Google Scholar] [CrossRef]
- Lei, X.; Liu, B.; Huang, Z.; Wu, J. A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with Pseudomonas aeruginosa. Arch. Dermatol. Res. 2015, 307, 49–55. [Google Scholar] [CrossRef]
- Javed, F.; Samaranayake, L.P.; Romanos, G.E. Treatment of oral fungal infections using antimicrobial photodynamic therapy: A systematic review of currently available evidence. Photochem. Photobiol. Sci. 2014, 13, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Abdel-kader, M.H. The Journey of PDT Throughout History: PDT from Pharos to Present. In Photodynamic Medicine: From Bench to Clinic; Kostron, H., Hasan, T., Eds.; Royal Society of Chemistry: London, UK, 2016. [Google Scholar]
- Siewert, B.; Stuppner, H. The photoactivity of natural products—An overlooked potential of phytomedicines? Phytomedicine 2019, 60, 152985. [Google Scholar] [CrossRef]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Nakonieczna, J.; Wozniak, A.; Pieranski, M.; Rapacka-Zdonczyk, A.; Ogonowska, P.; Grinholc, M. Photoinactivation of ESKAPE pathogens: Overview of novel therapeutic strategy. Future Med. Chem. 2019, 11, 443–461. [Google Scholar] [CrossRef]
- Wainwright, M. Photoantimicrobials and PACT: What’s in an abbreviation? Photochem. Photobiol. Sci. 2019, 18, 12–14. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kedzierska, E.; Knap-Czop, K.; Kotlinska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Benov, L. Photodynamic Therapy: Current Status and Future Directions. Med. Princ. Pract. 2015, 24, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Montoya, S.C.N.; Comini, L.R.; Sarmiento, M.; Becerra, C.; Albesa, I.; Argüello, G.A.; Cabrera, J.L. Natural anthraquinones probed as Type I and Type II photosensitizers: Singlet oxygen and superoxide anion production. J. Photochem. Photobiol. B 2005, 78, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial Photodynamic Therapy- What We Know and What We don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in Antibacterial Photodynamic Therapy: An Overview. Laser Ther. 2018, 27, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Maisch, T. Resistance in Antimicrobial Photodynamic Inactivation of Bacteria. Photochem. Photobiol. Sci. 2015, 14, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Perez-Laguna, V.; Garcia-Luque, I.; Ballesta, S.; Rezusta, A.; Gilaberte, Y. Photodynamic therapy combined with antibiotics or antifungals against microorganisms that cause skin and soft tissue infections: A planktonic and biofilm approach to overcome resistances. Pharmaceuticals 2021, 14, 603. [Google Scholar] [CrossRef]
- Yin, R.; Agrawal, T.; Khan, U.; Gupta, G.K.; Rai, V.; Huang, Y.-Y.; Hamblin, M.R. Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine 2015, 10, 2379–2404. [Google Scholar] [CrossRef] [Green Version]
- Hosmane, R.S.; Liebman, J.F. Paradoxes and Paradigms: Why is Quinoline less Basic then Pyridine or Isoquinoline? A Classical Organic Chemical Perspective. Struct. Chem. 2009, 20, 693–697. [Google Scholar] [CrossRef]
- Brown, H.C. Determination of Organic Structures by Physical Methods; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Motten, A.G.; Martínez, L.J.; Holt, N.; Sik, R.H.; Reszka, K.; Chignell, C.F.; Tonnensen, H.H.; Roberts, J.E. Photophysical Studies on Antimalarial Drugs. Photochem. Photobiol. 1999, 69, 282–287. [Google Scholar] [CrossRef]
- Tappeiner, H.V. Ueber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab. Munch. Med. Wochenschr. 1900, 47, 5–7. [Google Scholar]
- Doniach, L. A Comparision of the Photodynamic Activity of Some Carcinogenicwith Non-Carcinogeic Compounds. Br. J. Exp. Path. 1939, 20, 227–235. [Google Scholar]
- Calcutt, G. The Role of Radiation in Photodynamic Action. J. Exp. Biol. 1951, 28, 537–540. [Google Scholar] [CrossRef]
- Von Tappeiner, H.; Jodlbauer, A. History of Photodynamic Therapy in Dermatology. Arch. Klin. Med. 1904, 80, 427–487. [Google Scholar]
- Ferguson, J.; Addo, H.A.; Johnson, B.E.; Frain-Bell, W. Quinine Induced Photosensitivity: Clinical and Experimental Studies. Br. J. Dermatol. 1987, 117, 631–640. [Google Scholar] [CrossRef]
- Search Performed in PubMed Database. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 21 November 2021).
- Spikes, J.D. Photosensitizing properties of quinine and synthetic antimalarials. J. Photochem. Photobiol. B Biol. 1998, 42, 1–11. [Google Scholar] [CrossRef]
- Viola, G.; Salvador, A.; Cecconet, L.; Basso, G.; Vedaldi, D.; Dall’Acqua, F.; Aloisi, G.G.; Amelia, M.; Barbafina, A.; Latterini, L.; et al. Photophysical Properties and Photobiological Behavior of Amodiaquine, Primaquine and Chloroquine. Photochem. Photobiol. 2007, 83, 1415–1427. [Google Scholar] [CrossRef]
- Dodda, E.L.; Bohle, D.S. Orienting the heterocyclic periphery: A structural model for chloroquine’s antimalarial activity. Chem. Commun. 2014, 50, 13765–13768. [Google Scholar] [CrossRef] [PubMed]
- Kalyankar, T.M.; Kakade, R.B.; Attar, M.S.; Kamble, A.R. Simultaneous Spectrophotometric Estimation of Artesunate and Mefloquine. J. Chem. 2013, 679857. [Google Scholar] [CrossRef]
- Arise, R.O.; Elizabeth, S.-N.; Farohunbi, S.T.; Nafiu, M.O.; Tella, A.C. Mechanochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex. Acta Fac. Med. Naissensis 2017, 34, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Lorente, C.; Thomas, A.H. Photophysics and Photochemistry of Pterins in Aqueous Solution. Acc. Chem. Res. 2006, 39, 395–402. [Google Scholar] [CrossRef]
- Vignoni, M.; Walalawela, N.; Bonesi, S.M.; Greer, A.; Thomas, A.H. Lipophilic Decyl Chain-Pterin Conjugates with Sensitizer Properties. Mol. Pharm. 2018, 15, 798–807. [Google Scholar] [CrossRef]
- Lorente, C.; Thomas, A.H.; Villata, L.S.; Hozbor, D.; Lagares, A.; Capparelli, A.L. Photoinduced cleavage of plasmid DNA in the presence of pterin. Pteridines 2000, 11, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Kawanishi, S. Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: Sequence specificity and mechanism. Biochemistry 1997, 36, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Dantola, M.L.; Reid, L.O.; Castaño, C.; Lorente, C.; Oliveros, E.; Thomas, A.H. Photosensitization of peptides and proteins by pterin derivatives. Pteridines 2017, 28, 105–114. [Google Scholar] [CrossRef]
- Hirakawa, K.; Suzuki, H.; Oikawa, S.; Kawanishi, S. Sequencespecific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product. Arch. Biochem. Biophys. 2003, 410, 261–268. [Google Scholar] [CrossRef]
- Miñán, A.; Lorente, C.; Ipiña, A.; Thomas, A.H.; Fernández, M.; De Mele, L.; Schilardi, P.L. Photodynamic Inactivation Induced by Carboxypterin: A Novel Non-Toxic Bactericidal Strategy Against Planktonic Cells and Biofils of Staphylococcus aureus. Biofouling 2015, 31, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, M.N.; Sosa, M.J.; Pissinis, D.E.; Cánneva, A.; Minan, A.G.; Vignoni, M.; Calvo, A.; Thomas, A.H.; Schilardi, P.L. Immobilization of Alkyl-Pterin Photosensitizer on Silicon Surfacess through in situ SN2 Reaction as Suitable Approach for Photodynamic Inactivation of Staphylococcus aureus. Colloids Surf. B Biointerfaces 2021, 198, 111456. [Google Scholar] [CrossRef]
- Thomas, A.H.; Lorente, C.; Capparelli, A.L.; Pokhrel, M.R.; Braun, A.M.; Oliveros, E. Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem. Photobiol. Sci. 2002, 1, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Dántola, M.L.; Vignoni, M.; Thomas, A.H.; Lorente, C. Production and quenching of reactive oxygen species by pterin derivatives, an intriguing class of biomolecules. Pure Appl. Chem. 2011, 83, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, F.M.; Petroselli, G.; Lorente, C.; Capparelli, A.L.; Thomas, A.H.; Braun, A.M.; Oliveros, E. Substituent Effects on the Photophysical Properties of Pterin Derivatives in Acidic and Alkaline Aqueous Solutions. Photochem. Photobiol. 2005, 81, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Greger, H. Phytocarbazoles: Alkaloids with Great Structural Diversity and Pronounced Biological Activities. Phytochem. Rev. 2017, 16, 1095–1153. [Google Scholar] [CrossRef]
- Ramírez, C.L.; Parisea, A.R.; Bertolotti, S.G.; Previtali, C.M.; Arbeloa, E.M. Study on the triplet states of N-phenyl carbazoles. Transient spectra and singlet oxygen generation. J. Photochem. Photobiol. A Chem. 2020, 397, 112503. [Google Scholar] [CrossRef]
- Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics—chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828–2842. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, L.; Shuai, Z.; Wei, Z. A–π–D–π–A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review. Macromol. Rapid Commun. 2017, 38, 1700470. [Google Scholar] [CrossRef]
- Zheng, Y.-C.; Zheng, M.-L.; Li, K.; Chen, S.; Zhao, Z.-S.; Wang, X.-S.; Duan, X.-M. Novel Carbazole-Based Two-Photon Photosensitizer for Efficient DNA Photocleavage in Anaerobic Condition Using Near-Infrared Light. RSC Adv. 2015, 5, 770–774. [Google Scholar] [CrossRef]
- Chen, L.-L.; Zheng, M.-L.; Zheng, Y.-C.; Jin, F.; Chai, Q.-Q.; Zhao, Y.-Y.; Meng, Z.-W.; Liu, Y.-H.; Duan, X.-M. Laser-Induced Antibacterial Activity of Novel Symmetric Carbazole-Based Ethynylpyridine Photosensitizer. ACS Omega 2018, 3, 3737–3743. [Google Scholar] [CrossRef]
- Kukula-Koch, W.A.; Widelski, J. Alkaloids. In Pharmacognosy: Fundamentals, Applications and Strategies; Badal, S., Delgoda, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhang, L.; Li, D.; Yu, S. Pharmacological effects of harmine and its derivatives: A review. Arch. Pharmacal Res. 2020, 43, 1259–1275. [Google Scholar] [CrossRef]
- Olmedo, G.M.; Cerioni, L.; González, M.M.; Cabrerizo, F.M.; Volentini, S.I.; Rapisarda, V.A. UVA Photoactivation of Harmol Enhances its Antifungal Activity Against the Phytopathogens Penicillium digitatus and Botrytis cinerea. Front. Microbiol. 2017, 8, 347. [Google Scholar] [CrossRef]
- Yañuk, J.G.; Denofrio, M.P.; Rasse-Suriani, F.A.O.; Villarruel, F.D.; Fassetta, F.; García-Einschlag, F.S.; Erra-Balsells, R.; Epe, B.; Cabrerizo, F.M. DNA Damage Photo-Induced by Chloroharmine Isomers: Hydrolysis versus Oxidation of Nucleobases. Org. Biomol. Chem. 2018, 16, 2170–2184. [Google Scholar] [CrossRef]
- González, M.M.; Rasse-Suriani, F.A.O.; Franca, C.A.; Diez, R.P.; Gholipour, Y.; Nonami, H.; Erra-Balsells, R.; Cabrerizo, F.M. Photosensitized Electron Transfer within a Self-Assembled Norharmane-2’-deoxyadenosine5’-monophosphate (dAMP) Complex. Org. Biomol. Chem. 2012, 10, 9359–9372. [Google Scholar] [CrossRef]
- Pardo, A.; Reyman, D.; Martin, E.; Poyato, J.M.L.; Camacho, J.J.; Hidalgo, J.; Sanchez, M. Quantum yield and fluorescence lifetime measurements of neutral and cationic species for six β-carboline derivatives. J. Lumin. 1988, 42, 163–168. [Google Scholar] [CrossRef]
- Mortazavi, N.; Heidari, M.; Rabiei, Z.; Enferadi, S.T.; Monazzah, M. Loading harmine on nanographene changes the inhibitory effects of free harmine against MCF-7 and fibroblast cells. Med. Chem. Res. 2021, 30, 1108–1116. [Google Scholar] [CrossRef]
- Becker, R.S.; Ferreira, L.F.V.; Elisei, F.; Machado, I.; Latterini, L. Comprehensive Photochemistry and Photophysics of Land- and Marine-based P-carbolines Employing Time-resolved Emission and Flash Transient Spectroscopy. Photochem. Photobiol. 2005, 81, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Domonkos, C.; Fitos, I.; Visy, J.; Zsila, F. Fatty Acid Modulated Human Serum Albumin Binding of the β-Carboline Alkaloids Norharmane and Harmane. Mol. Pharm. 2013, 10, 4706–4716. [Google Scholar] [CrossRef] [PubMed]
- Nafisi, S.; Panahyab, A.; Sadeghi, G.B. Interactions between β-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach. J. Lumin. 2012, 132, 2361–2366. [Google Scholar] [CrossRef]
- Ubeda, A.; Montesinos, C.; Paya, M.; Terencio, C.; Alcaraz, M.J. Antioxidant action of benzylisoquinoline alkaloids. Free. Radic. Res. Commun. 1993, 18, 167–175. [Google Scholar] [CrossRef]
- Flores, C.; Prat, C.; Suau, R.; Nájera, F.; Nonell, S. Photochemistry of Phytoalexins Containing Phenalenone-like Cromophores: Photophysics and Singlet Oxygen Photosensitizing Properties of the Plant Oxoaporphine Alkaloid Oxoglaucine. Photochem. Photobiol. 2005, 81, 120–124. [Google Scholar] [CrossRef]
- Andreazza, N.L.; de Lourenço, C.C.; Hernández-Tasco, A.J.; Pinheiro, M.L.B.; Alves-Stefanello, M.E.; Vilaça-Costa, E.; Salvador, M.J. Antimicrobial Photodynamic Effect of Extracts and Oxoaporphine Alkaloid Isomoschatoline from Guatteria blepharophylla. J. Photochem. Photobiol. B 2016, 160, 154–162. [Google Scholar] [CrossRef]
- Diaz, M.S.; Freile, M.L.; Gutierrez, M.I. Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem. Photobiol. Sci. 2009, 8, 970–974. [Google Scholar] [CrossRef]
- Megyesi, M.; Biczok, L.; Gorner, H. Dimer-promoted fluorescence quenching of coralyne by binding to anionic polysaccharides. Photochem. Photobiol. Sci. 2009, 8, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Redmond, R.W.; Gamlin, J.N. A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem. Photobiol. 1999, 70, 391–475. [Google Scholar] [CrossRef]
- Inbaraj, J.I.; Kukielczak, B.M.; Bilski, P.; He, Y.-Y.; Sik, R.H.; Chignell, C.F. Photochemistry and Photocytotoxicity of Alkaloids from Goldenseal (Hydrastis Canadensis L.).2. Palmatine, Hydrastine, Canadine and Hydrastinine. Chem. Res. Toxicol. 2006, 19, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Rondão, R.; de Melo, J.S.S.; Voss, G. Characterization of the Excited States of Indigo Derivatives in their Reduced Forms. ChemPhysChem 2010, 11, 1903–1908. [Google Scholar] [CrossRef]
- De Melo, J.S.S.; Moura, A.P.; Melo, M.J. Photophysical and Spectroscopic Studies of Indigo Derivatives in their Keto and Leuco Forms. J. Phys. Chem. A 2004, 108, 6975–6981. [Google Scholar] [CrossRef] [Green Version]
- De Melo, J.S.S.; Rondão, R.; Burrows, H.D.; Melo, M.J.; Navaratnam, S.; Edge, R.; Voss, G. Spectral and Photophysical Studies of Substituted Indigo Derivatives in their Keto Forms. ChemPhysChem 2006, 7, 2303–2311. [Google Scholar] [CrossRef] [Green Version]
- Rondão, R.; de Melo, J.S.S.; Bonifácio, V.D.B.; Melo, M.J. Dehydroindigo, the Forgotten Indigo and Its Contribution to the Color of Maya Blue. J. Phys. Chem. A 2010, 114, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, N.L.; Lourenço, C.C.A.; Stefanello, M.É.; Zambon-Atvars, T.D.; Salvador, M.J. Photodynamic Antimicrobial Effects of Bis-indole Alkaloid from Indigofera truxillensis Kunth (Leguminosae). Lasers Med. Sci. 2015, 30, 1315–1324. [Google Scholar] [CrossRef]
- Flors, C.; Nonell, S. Light and Singlet Oxygen in Plant Defense against Pathogens: Phototoxic Phenalenone Phytoalexins. Acc. Chem. Res. 2006, 39, 293–300. [Google Scholar] [CrossRef]
- Sayeda, M.; Pal, H. Supramolecularly assisted modulations in chromophoric properties and their possible applications: An overview. J. Mater. Chem. C 2016, 4, 2685–2706. [Google Scholar] [CrossRef]
- Görner, H.; Miskolczy, Z.; Megyesi, M.; Biczók, L. Photooxidation of alkaloids: Considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation. Photochem. Photobiol. 2011, 87, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Pithan, P.M.; Decker, D.; Druzhinin, S.I.; Ihmels, H.; Schönherr, H.; Voß, Y. 8-Styryl-substituted coralyne derivatives as DNA binding fluorescent probes. RSC Adv. 2017, 7, 10660–10667. [Google Scholar] [CrossRef] [Green Version]
- Kadam, V.; Kakatkar, A.S.; Barooah, N.; Chatterjee, S.; Bhasikuttan, A.C.; Mohanty, J. Supramolecular interaction of sanguinarine dye with sulfobutylether-β-cyclodextrin: Modulation of the photophysical properties and antibacterial activity. RSC Adv. 2020, 10, 25370–25378. [Google Scholar] [CrossRef]
- Chiang, Y.-R.; Li, A.; Leu, Y.-L.; Fang, J.-Y.; Lin, Y.-K. An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules 2013, 18, 14381–14396. [Google Scholar] [CrossRef] [Green Version]
- Schindler, F.; Zahner, H. Metabolic Products of Microorganisms. Tryptanthrin, a Tryptophan Derived Antibiotic from Candida lipolytica. Arch. Microbiol. 1971, 79, 187–203. [Google Scholar]
- Mitscher, L.A.; Baker, W. Tuberculosis: A Search for Novel Therapy Starting with Natural Products. Med. Res. Rev. 1998, 18, 363–374. [Google Scholar] [CrossRef]
Compound | λabs (nm) | λem (nm) | ΦF | ΦΔ | τF (ns) | References |
---|---|---|---|---|---|---|
3 | 331 a | 367 a | 0.55 b | 0.36 c | <10−3 d | [48,51,54] |
4 | 373 a | 380 a | 5 × 10−3 a | <10−2 | 0.31, 0.69 a | [47,50,55,56] |
5 | 259 a, 350 a, 266 c | 522 a | 3.5 × 10−3 a | <10−2 | 0.06, 0.94 a | [47,54] |
6 | 284 a | 377 a | 0.38 c | <10−3 d | [49,57] | |
8 | 210, 256, 341 a | 480 a, 410 e | 1.5 × 10−2 e, ≤10−4 a | 10−2–10−4 | <0.2 a | [47,50,54,58] |
Compound | pH | λabs (nm) | λem (nm) a | ΦF a | ΦΔ | τF (ns) a | References |
---|---|---|---|---|---|---|---|
10 | 4.9–5.5 | 270, 340 | 439 | 0.33 | 0.18 | 7.6 | [62,63,64] |
10–10.5 | 252, 358 | 456 | 0.27 | 0.3 | 5.0 | ||
11 | 4.9–5.5 | 271, 347 | 448 | 0.61 | 0.10 | 13.3 | [64] |
10–10.5 | 252, 363 | 460 | 0.14 | 11.2 | |||
12 | 4.9–5.5 | 273, 344 | 433 | 0.85 | 0.04 | 13.5 | [59,63,65,67,68] |
10–10.5 | 250, 358 | 445 | 0.84 | 0.1 | 11.6 | ||
13 | 4.9–5.5 | 275, 345 | 449 | 0.53 | 0.15 | 11.0 | [59,63,64,68,69] |
10–10.5 | 254, 364 | 457 | 0.46 | 0.21 | 8.4 | ||
14 | 4.9–5.5 | 276, 316 | 446 | 0.1 | 0.45 | 7.9 | [59,62,63,64,67,68,69] |
10–10.5 | 280, 370 | 454 | 0.02 | 0.47 | 2.2 | ||
15 | 4.9–5.5 | 286, 346 | 439 | 0.28 | 0.27 | 5.8 | [59,62,63,65,67,68,69] |
10–10.5 | 264, 364 | 451 | 0.18 | 0.37 | 4.1 | ||
16 | 4.9–5.5 | 274, 346 | 441 | 0.36 | 0.34 | 9.1 | [59,63,64,65,68,69] |
10–10.5 | 254, 363 | 455 | 0.29 | 0.4 | 7.6 | ||
17 | 4.9–5.5 | 274, 346 | 440 | 0.38 | 0.23 | 8.9 | [59,63,64,65,68,69] |
10–10.5 | 254, 363 | 454 | 0.31 | 0.34 | 7.4 | ||
18 | 4.9–5.5 | 273, 344 | 441 | 0.47 | 0.13 | 10.7 | [59,63,65,68,69] |
10–10.5 | 254, 363 | 455 | 0.40 | 0.16 | 7.5 | ||
19 | 4.9–5.5 | 279, 347 | 450 | 6.1 × 10−3 | <0.02 | 3.9 | [59,63,65,68,69] |
10–10.5 | 257, 366, 277 | 460 | 7.9 × 10−3 | ||||
20 | 4.9–5.5 | 285, 354 | 445 | <0.005 | <0.02 | 7.0 | [62,63,64,65] |
10–10.5 | 255, 365, 285 | 455 | 3.5 | ||||
22 | 234, 263, 354 b | 428 b | 0.012 b | 1.2 b | 0.5 b | [60] | |
23 | 240, 278, 348 b | 428 b | 0.043 b | 0.8 b | 0.36 b | [60] |
Compound | λabs (nm) | λem (nm) | ΦF | ΦΔ | τF (ns) | References |
---|---|---|---|---|---|---|
24 | 293, 329, 342 a | 363 a (λexc = 340 nm) | 0.34 a | 0.33 a | [71] | |
25 | 304, 342, 356 a | 340 a (λexc = 340 nm) | 0.12 a | 0.29 a | [71] | |
26 | 293, 329, 342 a | 363 a (λexc = 340 nm) | 0.31 a | 0.30 a | [71] | |
27 | 330, 420 b,c | 592 b,c (λexc = 415 nm) | <0.001 b,c | [74] | ||
28 | 330, 420 b,c | 576 b,c (λexc = 415 nm) | <0.001 b,c | [74] | ||
29 | 250, 300, 370 d | 430 d | 0.42 d | 0.35 d | 5.5 d | [81,82,83] |
30 | 289, 299, 349 d | 440 d | 0.67 d | 0.58 d | 8.5 d | [81,83,84,85] |
31 | 375 d | 490 d | 0.44 d | 4.0 d | [81,83,85] | |
32 | 330 b | 435 b | 0.39 b | 5.1 b | [78,83,85] | |
34 | 250, 305, 380 b (pH = 4.8) | 469 b | 0.57 b | 0.40 d | 10.6 b | [80,81,83,84,85] |
235, 280, 350 b (pH = 10) | 469 b | 0.57 b | 0.40 d | 10.6 b |
Compound | λabs (nm) | λem (nm) | ΦF | ΦΔ | τF (ns) | References |
---|---|---|---|---|---|---|
37 | 287, 320, 470, 660 a | 540 a (λexc = 470) | [87] | |||
38 | 242, 272 b | 510 b | 0.002 b | 1 c | 6.7 b, <0.1 b | [86,88,98] |
39 | 0.025 d | [88] | ||||
43 | 421 b | 555 b, 524 c | 0.02 d, 0.07 e | 0.00045 b, 0.34 f, 0.04 d | [88,91] | |
44 | 350, 430 b | 541 f, 581 d, 519 e | 0.37 f, 0.01 d, 0.24 e | 0.20 f, 0.11 d, 0.04 e | [91,99] | |
45 | 310, 425 b | 525 b | 0.05 b | 0.7 c | [100,101] | |
46 | 327 f | 0.004 f | 0.005 f | 2.38 f | [99,102] | |
48 | 415 e, 442 g | 500 e, 523 g | 0.46 e, 0.348 g | 0.00117 g | 3.33 e, 0.315 g | [92,95] |
50 | 430,442 g | 505 e, 526 g | 0.22 e, 0.225 g | 0.0005 g | 3.77 e, 3.77 g | [92,93,95] |
51 | 430 g | 505 g | 0.38 g | 0.002 g | 2.89 g | [92,95] |
52 | 430 g | 503 g | 0.22 g | 0.001 g | 3.2 g | [92,95] |
53 | 412 g | 518 g | 0.04 g | 0.001 g | 0.55 g | [92,95] |
54 | 413 g | 515 g | 0.05 g | 0.0005 g | 0.55 g | [92,95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Molina, S.; Galiana-Roselló, C.; Galiana, C.; Gil-Martínez, A.; Bandeira, S.; González-García, J. Alkaloids as Photosensitisers for the Inactivation of Bacteria. Antibiotics 2021, 10, 1505. https://doi.org/10.3390/antibiotics10121505
López-Molina S, Galiana-Roselló C, Galiana C, Gil-Martínez A, Bandeira S, González-García J. Alkaloids as Photosensitisers for the Inactivation of Bacteria. Antibiotics. 2021; 10(12):1505. https://doi.org/10.3390/antibiotics10121505
Chicago/Turabian StyleLópez-Molina, Sònia, Cristina Galiana-Roselló, Carolina Galiana, Ariadna Gil-Martínez, Stephane Bandeira, and Jorge González-García. 2021. "Alkaloids as Photosensitisers for the Inactivation of Bacteria" Antibiotics 10, no. 12: 1505. https://doi.org/10.3390/antibiotics10121505
APA StyleLópez-Molina, S., Galiana-Roselló, C., Galiana, C., Gil-Martínez, A., Bandeira, S., & González-García, J. (2021). Alkaloids as Photosensitisers for the Inactivation of Bacteria. Antibiotics, 10(12), 1505. https://doi.org/10.3390/antibiotics10121505