Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins
Abstract
:1. Introduction
2. Results
2.1. Dogs’ Characteristics
2.2. Prevalence of Faecal Carriage and Characterization of ESCR-E Isolated from Dogs before Antibiotic Therapy
2.3. Effect of Prophylactic Antibiotic Treatment
3. Discussion
4. Materials and Methods
4.1. Comparison of Prevalence of Dogs Carrying ESCR-E before Antibiotic Therapy
4.2. Faecal Prevalence of ESCR-E During and After Antibiotic Therapy With Third-Generation Cephalosporins in Dogs Suspected of CPV and CDV Infections
4.3. Microbiology Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, B.; Greko, C. Antibiotic Resistance—Consequences for Animal Health, Welfare, and Food Production. Ups. J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis—Part 1. P T 2015, 40, 277–283. [Google Scholar] [PubMed]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Rocha-Gracia, R.C.; Cortés-Cortés, G.; Lozano-Zarain, P.; Bello, F.; Martínez-Laguna, Y.; Torres, C. Faecal Escherichia Coli Isolates from Healthy Dogs Harbour CTX-M-15 and CMY-2 β-Lactamases. Vet. J. 2015, 203, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paredes, D.; Haro, M.; Leoro-Garzón, P.; Barba, P.; Loaiza, K.; Mora, F.; Fors, M.; Vinueza-Burgos, C.; Fernández-Moreira, E. Multidrug-Resistant Escherichia Coli Isolated from Canine Faeces in a Public Park in Quito, Ecuador. J. Glob. Antimicrob. Resist. 2019, 18, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Dupouy, V.; Abdelli, M.; Moyano, G.; Arpaillange, N.; Bibbal, D.; Cadiergues, M.-C.; Lopez-Pulin, D.; Sayah-Jeanne, S.; de Gunzburg, J.; Saint-Lu, N.; et al. Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae from Dogs in France and Spain—Characterization of ESBL/PAmpC Isolates, Genes, and Conjugative Plasmids. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Khan, I.; Mohsin, M.; Sajjad-ur-Rahman, S.-R.; Younas, T.; Ali, S. High Rates of CTX-M Group-1 Extended-Spectrum Beta-Lactamases Producing Escherichia Coli from Pets and Their Owners in Faisalabad, Pakistan. IDR 2019, 12, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Albrechtova, K.; Kubelova, M.; Mazancova, J.; Dolejska, M.; Literak, I.; Cizek, A. High Prevalence and Variability of CTX-M-15-Producing and Fluoroquinolone-Resistant Escherichia Coli Observed in Stray Dogs in Rural Angola. Microb. Drug Resist. 2014, 20, 372–375. [Google Scholar] [CrossRef]
- Loayza, F.; Graham, J.P.; Trueba, G. Factors Obscuring the Role of E. Coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. Int J. Environ. Res. Public Health 2020, 17, 3061. [Google Scholar] [CrossRef]
- Van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal Carriage, Risk Factors, Acquisition and Persistence of ESBL-Producing Enterobacteriaceae in Dogs and Cats and Co-Carriage with Humans Belonging to the Same Household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of Antimicrobial Resistant Escherichia Coli in Dogs: Prevalence, Associated Risk Factors and Molecular Characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.M.; Pinchbeck, G.; McIntyre, K.M.; Nuttall, T.; McEwan, N.; Dawson, S.; Williams, N.J. Routine Antibiotic Therapy in Dogs Increases the Detection of Antimicrobial-Resistant Faecal Escherichia Coli. J. Antimicrob. Chemother. 2018, 73, 3305–3316. [Google Scholar] [CrossRef] [PubMed]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th Revision. Available online: http://www.who.int/foodsafety/publications/antimicrobials-sixth/en/ (accessed on 23 November 2020).
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics Used Most Commonly to Treat Animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between Veterinary Antimicrobial Use and Antimicrobial Resistance in Food-Producing Animals: A Report on Seven Countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mylonakis, M.E.; Kalli, I.; Rallis, T.S. Canine Parvoviral Enteritis: An Update on the Clinical Diagnosis, Treatment, and Prevention. Vet. Med. 2016, 7, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Li, M.; Luo, J.; Wang, S.; Liu, S.; Wang, S.; Lyu, W.; Chen, L.; Su, W.; Ding, H.; et al. Impacts of Canine Distemper Virus Infection on the Giant Panda Population from the Perspective of Gut Microbiota. Sci. Rep. 2017, 7, 39954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilian, E.; Suchodolski, J.S.; Hartmann, K.; Mueller, R.S.; Wess, G.; Unterer, S. Long-Term Effects of Canine Parvovirus Infection in Dogs. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Mangia, S.; Paes, A. Cinomose. In Doenças Infecciosas em Animais de Produção e de Companhia, 1st ed.; Megid, J., Ribeiro, M.G., Paes, A.C., Eds.; Roca: Rio de Janeiro, Brazil, 2016; pp. 560–579. [Google Scholar]
- Paes, A. Parvovirose Canina. In Doenças Infecciosas em Animais de Produção e de Companhia, 1st ed.; Megid, J., Ribeiro, M.G., Paes, A.C., Eds.; Roca: Rio de Janeiro, Brazil, 2016; pp. 768–785. [Google Scholar]
- Sunghan, J.; Akatvipat, A.; Granick, J.; Chuammitri, P.; Boonyayatra, S. Clinical Factors Associated with Death during Hospitalization in Parvovirus Infection Dogs. Vet. Integr. Sci. 2019, 17, 171–180. [Google Scholar]
- Sunghan, J.; Pichpol, D.; Chuammitri, P.; Akatvipat, A. Bacteremia and Multidrug Resistance in Naturally Parvovirus Infection Dogs. Thai J. Vet. Med. 2019, 49, 193–196. [Google Scholar]
- Burdet, C.; Grall, N.; Linard, M.; Bridier-Nahmias, A.; Benhayoun, M.; Bourabha, K.; Magnan, M.; Clermont, O.; d’Humières, C.; Tenaillon, O.; et al. Ceftriaxone and Cefotaxime Have Similar Effects on the Intestinal Microbiota in Human Volunteers Treated by Standard-Dose Regimens. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- DiGangi, B.A.; Dingman, P.A.; Grijalva, C.J.; Belyeu, M.; Tucker, S.; Isaza, R. Prevalence and Risk Factors for the Presence of Serum Antibodies against Canine Distemper, Canine Parvovirus, and Canine Adenovirus in Communities in Mainland Ecuador. Vet. Immunol. Immunopathol. 2019, 218, 109933. [Google Scholar] [CrossRef]
- Kelman, M.; Ward, M.P.; Barrs, V.R.; Norris, J.M. The Geographic Distribution and Financial Impact of Canine Parvovirus in Australia. Transbound. Emerg. Dis. 2019, 66, 299–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.B.; Deshpande, A.R.; Gaikwad, S.S.; Majee, S.B.; Suryawanshi, P.R.; Awandkar, S.P. Molecular Epidemiology of Canine Parvovirus Shows CPV-2a Genotype Circulating in Dogs from Western India. Infect. Genet. Evol. 2019, 75, 103987. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, V.G.; Saivish, M.V.; Rodrigues, R.L.; de Lima Silva, R.F.; Moreli, M.L.; Krüger, R.H. Molecular and Serological Surveys of Canine Distemper Virus: A Meta-Analysis of Cross-Sectional Studies. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litster, A.; Nichols, J.; Volpe, A. Prevalence of Positive Antibody Test Results for Canine Parvovirus (CPV) and Canine Distemper Virus (CDV) and Response to Modified Live Vaccination against CPV and CDV in Dogs Entering Animal Shelters. Vet. Microbiol. 2012, 157, 86–90. [Google Scholar] [CrossRef]
- Decaro, N.; Buonavoglia, C.; Barrs, V.R. Canine Parvovirus Vaccination and Immunisation Failures: Are We Far from Disease Eradication? Vet. Microbiol. 2020, 247, 108760. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, M.; Mairi, A.; Touati, A.; Hassissene, L.; Brasme, L.; Guillard, T.; De Champs, C. Extended Spectrum β-Lactamase and Plasmid Mediated Quinolone Resistance in Escherichia Coli Fecal Isolates from Healthy Companion Animals in Algeria. J. Infect. Chemother. 2016, 22, 431–435. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global Epidemiology of CTX-M β-Lactamases: Temporal and Geographical Shifts in Genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. AAC 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.; Yossapol, M.; Shibata, S.; Asai, T. Selection of Broad-Spectrum Cephalosporin-Resistant Escherichia Coli in the Feces of Healthy Dogs after Administration of First-Generation Cephalosporins: Cephalosporin-Resistant E. Coli in Dog Feces. Microbiol. Immunol. 2017, 61, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Rendon-Marin, S.; da Fontoura Budaszewski, R.; Canal, C.W.; Ruiz-Saenz, J. Tropism and Molecular Pathogenesis of Canine Distemper Virus. Virol. J. 2019, 16, 30. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Das, M.; Senapati, S.; Patra, R.; Behera, P.; Sathapathy, S. Effect of Therapeutic Regimen on the Survivility and Mortality Rates in Canine Parvovirus Infection. J. Entomol. Zool. Stud. 2020, 8, 392–395. [Google Scholar]
- Eregowda, C.G.; De, U.K.; Singh, M.; Prasad, H.; Akhilesh; Sarma, K.; Roychoudhury, P.; Rajesh, J.B.; Patra, M.K.; Behera, S.K. Assessment of Certain Biomarkers for Predicting Survival in Response to Treatment in Dogs Naturally Infected with Canine Parvovirus. Microb. Pathog. 2020, 149, 104485. [Google Scholar] [CrossRef]
- Kataria, D.; Agnihotri, D.; Jain, V.; Charaya, G.; Singh, Y. Molecular Occurrence and Therapeutic Management of Canine Parvovirus Infection in Dogs. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1770–1779. [Google Scholar] [CrossRef]
- Hornish, R.; Katarski, S. Cephalosporins in Veterinary Medicine—Ceftiofur Use in Food Animals. CTMC 2002, 2, 717–731. [Google Scholar] [CrossRef]
- Bush, K. The ABCD’s of β-Lactamase Nomenclature. J. Infect. Chemother. 2013, 19, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Buckland, E.L.; O’Neill, D.; Summers, J.; Mateus, A.; Church, D.; Redmond, L.; Brodbelt, D. Characterisation of Antimicrobial Usage in Cats and Dogs Attending UK Primary Care Companion Animal Veterinary Practices. Vet. Rec. 2016, 179, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burow, E.; Simoneit, C.; Tenhagen, B.-A.; Käsbohrer, A. Oral Antimicrobials Increase Antimicrobial Resistance in Porcine E. Coli—A Systematic Review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-K.; Lo, D.-Y.; Wei, H.-W.; Kuo, H.-C. Antimicrobial Resistance of Escherichia Coli Isolates from Canine Urinary Tract Infections. J. Vet. Med. Sci. 2015, 77, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Okpara, E.O.; Ojo, O.E.; Awoyomi, O.J.; Dipeolu, M.A.; Oyekunle, M.A.; Schwarz, S. Antimicrobial Usage and Presence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Animal-Rearing Households of Selected Rural and Peri-Urban Communities. Vet. Microbiol. 2018, 218, 31–39. [Google Scholar] [CrossRef]
- Gibson, J.S.; Morton, J.M.; Cobbold, R.N.; Filippich, L.J.; Trott, D.J. Risk Factors for Dogs Becoming Rectal Carriers of Multidrug-Resistant Escherichia Coli during Hospitalization. Epidemiol. Infect. 2011, 139, 1511–1521. [Google Scholar] [CrossRef]
- Hamilton, E.; Kruger, J.M.; Schall, W.; Beal, M.; Manning, S.D.; Kaneene, J.B. Acquisition and Persistence of Antimicrobial-Resistant Bacteria Isolated from Dogs and Cats Admitted to a Veterinary Teaching Hospital. J. Am. Vet. Med. Assoc. 2013, 243, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grönthal, T.; Moodley, A.; Nykäsenoja, S.; Junnila, J.; Guardabassi, L.; Thomson, K.; Rantala, M. Large Outbreak Caused by Methicillin Resistant Staphylococcus Pseudintermedius ST71 in a Finnish Veterinary Teaching Hospital—From Outbreak Control to Outbreak Prevention. PLoS ONE 2014, 9, e110084. [Google Scholar] [CrossRef] [PubMed]
- Keck, N.; Dunie-merigot, A.; Dazas, M.; Hirchaud, E.; Laurence, S.; Gervais, B.; Madec, J.-Y.; Haenni, M. Long-Lasting Nosocomial Persistence of Chlorhexidine-Resistant Serratia Marcescens in a Veterinary Hospital. Vet. Microbiol. 2020, 245, 108686. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Schouten, J.; Beovic, B.; Tabah, A.; Leone, M. Antimicrobial De-Escalation as Part of Antimicrobial Stewardship in Intensive Care: No Simple Answers to Simple Questions—A Viewpoint of Experts. Intensive Care Med. 2020, 46, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F. Resistance Patterns, ESBL Genes, and Genetic Relatedness of Escherichia Coli from Dogs and Owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Aslantaş, Ö.; Yilmaz, E.Ş. Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase (ESBL) and Plasmidic AmpC β-Lactamase (PAmpC) Producing Escherichia Coli in Dogs. J. Vet. Med. Sci. 2017, 79, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Melo, L.C.; Oresco, C.; Leigue, L.; Netto, H.M.; Melville, P.A.; Benites, N.R.; Saras, E.; Haenni, M.; Lincopan, N.; Madec, J.-Y. Prevalence and Molecular Features of ESBL/PAmpC-Producing Enterobacteriaceae in Healthy and Diseased Companion Animals in Brazil. Vet. Microbiol. 2018, 221, 59–66. [Google Scholar] [CrossRef]
- Moreno, A.; Bello, H.; Guggiana, D.; Domínguez, M.; González, G. Extended-Spectrum β-Lactamases Belonging to CTX-M Group Produced by Escherichia Coli Strains Isolated from Companion Animals Treated with Enrofloxacin. Vet. Microbiol. 2008, 129, 203–208. [Google Scholar] [CrossRef]
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The Ecology of Extended-Spectrum β-Lactamases (ESBLs) in the Developed World. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- Baudry, P.J.; Nichol, K.; DeCorby, M.; Mataseje, L.; Mulvey, M.R.; Hoban, D.J.; Zhanel, G.G. Comparison of Antimicrobial Resistance Profiles among Extended-Spectrum-β-Lactamase-Producing and Acquired AmpC β-Lactamase-Producing Escherichia Coli Isolates from Canadian Intensive Care Units. Antimicrob. Agents Chemother. 2008, 52, 1846–1849. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Bae, I.K.; Lee, Y.-N.; Lee, C.-H.; Lee, S.H.; Jeong, S.H. Detection of Extended-Spectrum β-Lactamases by Using Boronic Acid as an AmpC β-Lactamase Inhibitor in Clinical Isolates of Klebsiella Spp. and Escherichia Coli. J. Clin. Microbiol. 2007, 45, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Baede, V.O.; Wagenaar, J.A.; Broens, E.M.; Duim, B.; Dohmen, W.; Nijsse, R.; Timmerman, A.J.; Hordijk, J. Longitudinal Study of Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacteriaceae in Household Dogs. Antimicrob. Agents Chemother. 2015, 59, 3117–3124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.D.B.T.; Granados, O.F.O.; Budaszewski, R.D.F.; Streck, A.F.; Weber, M.N.; Cibulski, S.P.; Pinto, L.D.; Ikuta, N.; Canal, C.W.; Alves, C.D.B.T.; et al. Identification of Enteric Viruses Circulating in a Dog Population with Low Vaccine Coverage. Braz. J. Microbiol. 2018, 49, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Budaszewski, R.D.F.; Pinto, L.D.; Weber, M.N.; Caldart, E.T.; Alves, C.D.B.T.; Martella, V.; Ikuta, N.; Lunge, V.R.; Canal, C.W. Genotyping of Canine Distemper Virus Strains Circulating in Brazil from 2008 to 2012. Virus Res. 2014, 180, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Wang, X.-L. Species Diversity of Fecal Microbial Flora in Canis Lupus Familiaris Infected with Canine Parvovirus. Vet. Microbiol. 2019, 237, 108390. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hao, X.; Lin, X.; Zheng, Q.; Zhang, W.; Zhou, P.; Li, S. Bacterial Diversity in the Feces of Dogs with CPV Infection. Microb. Pathog. 2018, 121, 70–76. [Google Scholar] [CrossRef]
- Willing, B.P.; Gill, N.; Finlay, B.B. The Role of the Immune System in Regulating the Microbiota. Gut Microbes 2010, 1, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Tourret, J.; Willing, B.P.; Dion, S.; MacPherson, J.; Denamur, E.; Finlay, B.B. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia Coli. Transplantation 2017, 101, 74–82. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Epi InfoTM. Available online: https://www.cdc.gov/epiinfo/support/downloads.html (accessed on 18 June 2020).
- Instituto Pasteur Campanhas de Vacinação—Secretaria Da Saúde—Governo Do Estado de São Paulo. Available online: http://www.saude.sp.gov.br/instituto-pasteur/paginas-internas/vacinacao/campanhas-de-vacinacao (accessed on 18 June 2020).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-56238-838-6. [Google Scholar]
- Taşli, H.; Bahar, I.H. Molecular Characterization of TEM- and SHV-Derived Extended-Spectrum Beta-Lactamases in Hospital-Based Enterobacteriaceae in Turkey. Jpn. J. Infect. Dis. 2005, 58, 162–167. [Google Scholar]
- Jena, J.; Sahoo, R.K.; Debata, N.K.; Subudhi, E. Prevalence of TEM, SHV, and CTX-M Genes of Extended-Spectrum β-Lactamase-Producing Escherichia Coli Strains Isolated from Urinary Tract Infections in Adults. 3 Biotech. 2017, 7, 244. [Google Scholar] [CrossRef]
- R. Core Team. R: A Language and Evironmetnt for Stastical Computing; R Foundation for Stastical Computing: Vienna, Austria, 2015. [Google Scholar]
Variable | CPV-Suspected Dogs | CDV-Suspected Dogs | Noninfected Dogs |
---|---|---|---|
Main clinical signs | Haemorrhagic diarrhoea Vomiting Intense dehydration | Nonhaemorrhagic diarrhoea Respiratory disorders Neurological signs | Signs of noninfectious diseases |
Prevalence BEFORE treatment | 36.5% (19/52) 1 (95% CI: 25–50%) | 15% (6/40) (95% CI: 7–29%) | 9.2% (12/130) (95% CI: 5–16%) |
AMR profiles BEFORE treatment | E. coli CroCpdCtx (n = 5) 2 CroCpdCtxAtm (n = 12) CroCpdCtxCazAtm (n = 1) CroCpdCtxCazFox (n = 2) CroCpdCtxCazFoxAtm (n = 4) K. pneumoniae CroCpdCtxAtm (n = 1) CroCpdCtxCazAtm (n = 2) | E. coli CroCpdCtx (n = 3) CroCpdCtxAtm (n = 1) CroCpdCtxCazAtm (n = 1) CroCpdCtxCazFox (n = 1) CroCpdCtxCazFoxAtm (n = 1) | E. coli CroCpdCtx (n = 8) CroCpdCtxAtm (n = 8) CroCpdCtxCazAtm (n = 2) |
Prevalence DURING treatment | 84.6% (11/13) (95% CI: 56–97%) | 57.1% (4/7) (95% CI: 25–84%) | N/A |
AMR profiles DURING treatment | E. coli CroCpdCtx (n = 2) CroCpdCtxAtm (n = 7) CroCpdCtxCazAtm (n = 2) K. pneumoniae CroCpdCtx (n = 1) CroCpdCtxCazAtm (n = 2) | E. coli CroCpdCtx (n = 1) CroCpdCtxAtm (n = 2) CroCpdCtxCazAtm (n = 1) CroCpdCtxCazFox (n = 1) CroCpdCtxCazFoxAtm (n = 1) | N/A |
Prevalence 1–4 WEEKS after treatment | 88.5% (23/26) (95% CI: 70–97%) | 60% (6/10) (95% CI: 31–83%) | N/A |
AMR profiles 1–4 WEEKS after treatment | E. coli CroCpdCtx (n = 17) CroCpdCtxAtm (n = 18) CroCpdCtxCazAtm (n = 5) CroCpdCtxCazFox (n = 5) CroCpdCtxCazFoxAtm (n = 4) CroCpdCtxFox (n = 2) * K. pneumoniae CroCpdCtx (n = 3) CroCpdCtxAtm (n = 2) CroCpdCtxCazAtm (n = 2) CroCpdCtxCazFoxAtm (n = 1) | E. coli CroCpdCtx (n = 2) CroCpdCtxAtm (n = 4) CroCpdCtxCazAtm (n = 2) CroCpdCtxCazFoxAtm (n = 1) | N/A |
Prevalence 5-8 WEEKS after treatment | 15.4% (2/13) (95% CI: 3–43.5%) | N/A | N/A |
AMR profiles 5-8 WEEKS after treatment | E. coli CroCpdCtx (n = 1) CroCpdCtxAtm (n = 1) | N/A | |
Prevalence over 9 WEEKS after treatment | 0% (0/10) | N/A | N/A |
Dog ID | Bacteria Species | Strain | AMR Profile | CTX-M 1 | SHV | TEM |
---|---|---|---|---|---|---|
CPV-2 | E. coli | MS1_001 | CroCpdCtxCazFox | - | - | + |
CPV-3 | E. coli | MS1_018 | CroCpdCtxCazFox | - | - | + |
CPV-4 | E. coli | MS1_022 | CroCpdCtxCazFoxAtm | - | - | + |
CPV-5 | E. coli | MS1_034 | CroCpdCtxCazFoxAtm | - | - | - |
CPV-5 | E. coli | MS1_035 | CroCpdCtx | - | - | - |
CPV-5 | K. pneumoniae | MS1_036 | CroCpdCtxCazAtm | + | + | + |
CPV-5 | K. pneumoniae | MS1_038 | CroCpdCtxAtm | + | + | + |
CPV-6 | E. coli | MS1_052 | CroCpdCtx | - | - | + |
CPV-6 | E. coli | MS1_053 | CroCpdCtxCazFoxAtm | - | - | - |
CPV-6 | E. coli | MS1_054 | CroCpdCtxAtm | - | - | - |
CPV-7 | E. coli | MS1_067 | CroCpdCtx | - | - | + |
CPV-7 | E. coli | MS1_069 | CroCpdCtxAtm | - | - | - |
CPV-8 | E. coli | MS1_083 | CroCpdCtxCazFoxAtm | - | - | - |
CPV-13 | E. coli | MS1_111 | CroCpdCtxAtm | + | - | - |
CPV-14 | E. coli | MS1_120 | CroCpdCtxAtm | + | - | - |
CPV-15 | E. coli | MS1_123 | CroCpdCtxAtm | + | - | - |
CPV-16 | E. coli | MS1_129 | CroCpdCtxAtm | + | - | - |
CPV-26 | E. coli | MS1_152 | CroCpdCtxAtm | + | - | - |
CPV-41 | E. coli | MS1_186 | CroCpdCtx | + | - | - |
CPV-42 | E. coli | MS1_192 | CroCpdCtxAtm | + | - | - |
CPV-42 | E. coli | MS1_194 | CroCpdCtx | + | - | - |
CPV-43 | E. coli | MS1_198 | CroCpdCtxCazAtm | + | - | - |
CPV-43 | E. coli | MS1_199 | CroCpdCtxAtm | + | - | - |
CPV-44 | E. coli | MS1_204 | CroCpdCtxAtm | + | - | - |
CPV-45 | K. pneumoniae | MS1_210 | CroCpdCtxCazAtm | + | + | + |
CPV-46 | E. coli | MS1_213 | CroCpdCtxAtm | + | - | - |
CPV-50 | E. coli | MS1_223 | CroCpdCtxAtm | + | - | - |
CDV-7 | E. coli | MS1_234 | CroCpdCtx | + | - | - |
CDV-21 | E. coli | MS1_249 | CroCpdCtx | - | - | - |
CDV-27 | E. coli | MS1_252 | CroCpdCtx | - | - | - |
CDV-28 | E. coli | MS1_258 | CroCpdCtxAtm | + | - | - |
CDV-29 | E. coli | MS1_261 | CroCpdCtxCazFox | - | - | - |
CDV-29 | E. coli | MS1_262 | CroCpdCtxCazFoxAtm | - | - | - |
CDV-37 | E. coli | MS1_267 | CroCpdCtxCazAtm | + | - | - |
NI-11 | E. coli | MS1_270 | CroCpdCtxAtm | - | - | - |
NI-11 | E. coli | MS1_271 | CroCpdCtx | - | - | - |
NI-19 | E. coli | MS1_273 | CroCpdCtx | - | - | - |
NI-29 | E. coli | MS1_276 | CroCpdCtxAtm | + | - | + |
NI-29 | E. coli | MS1_278 | CroCpdCtxCazAtm | + | - | + |
NI-43 | E. coli | MS1_279 | CroCpdCtx | - | - | - |
NI-44 | E. coli | MS1_282 | CroCpdCtx | - | - | - |
NI-44 | E. coli | MS1_283 | CroCpdCtxAtm | + | - | - |
NI-59 | E. coli | MS1_285 | CroCpdCtxAtm | + | - | - |
NI-72 | E. coli | MS1_287 | CroCpdCtx | + | - | - |
NI-78 | E. coli | MS1_290 | CroCpdCtx | + | - | - |
NI-78 | E. coli | MS1_291 | CroCpdCtxAtm | + | - | - |
NI-93 | E. coli | MS1_293 | CroCpdCtxAtm | + | - | - |
NI-94 | E. coli | MS1_296 | CroCpdCtxAtm | + | - | - |
NI-94 | E. coli | MS1_298 | CroCpdCtx | + | - | + |
NI-97 | E. coli | MS1_299 | CroCpdCtx | - | - | - |
NI-106 | E. coli | MS1_302 | CroCpdCtxAtm | + | - | - |
NI-106 | E. coli | MS1_303 | CroCpdCtxCazAtm | + | - | - |
Number of Dogs/Sampling Period | Before | During | 1–4 Weeks after Treatment | 5–8 Weeks after Treatment | Over 9 Weeks after Treatment |
---|---|---|---|---|---|
Number of CDV-suspected dogs | 40 | 7 | 10 | – | – |
Number of CPV-suspected dogs | 52 | 13 | 26 | 13 | 10 |
Median of sampling day resulting in ESCR-E isolates | – | 4 | 14 | 50 | – |
Number of deaths | – | 22 | 31 | 48 | 48 |
Number of dogs that were not accessed for sampling | – | 49 | 21 | 22 | 3 |
Number of dogs sold | – | 1 | 4 | 4 | 6 |
Number of dogs with subsequent negative results | – | – | – | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Caxito, M.; Moreno-Switt, A.I.; Paes, A.C.; Shiva, C.; Munita, J.M.; Rivas, L.; Benavides, J.A. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics 2021, 10, 122. https://doi.org/10.3390/antibiotics10020122
Salgado-Caxito M, Moreno-Switt AI, Paes AC, Shiva C, Munita JM, Rivas L, Benavides JA. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics. 2021; 10(2):122. https://doi.org/10.3390/antibiotics10020122
Chicago/Turabian StyleSalgado-Caxito, Marília, Andrea I. Moreno-Switt, Antonio Carlos Paes, Carlos Shiva, Jose M. Munita, Lina Rivas, and Julio A. Benavides. 2021. "Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins" Antibiotics 10, no. 2: 122. https://doi.org/10.3390/antibiotics10020122
APA StyleSalgado-Caxito, M., Moreno-Switt, A. I., Paes, A. C., Shiva, C., Munita, J. M., Rivas, L., & Benavides, J. A. (2021). Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics, 10(2), 122. https://doi.org/10.3390/antibiotics10020122