Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified?
Abstract
:1. Introduction
2. Short History of Rifampin Use in Patients with Implant-Associated Staphylococcal Infection
3. Evidence for the Efficacy of Rifampin in Animal Studies
4. Role of Rifampin in Clinical Studies Involving Orthopedic Implant-Associated Infections
5. Critical Appraisal of a Randomized Controlled Trial (RCT) Showing no Effect of Rifampin
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mandell, G.L.; Vest, T.K. Killing of intraleukocytie Staphylococcus aureus by rifampin: In-vitro and in-vivo studies. J. Infect. Dis. 1972, 125, 486–490. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, J.; Peng, L.; Gao, Y.; Zhang, G.; Luo, Z. Adjunctive rifampin for the treatment of Staphylococcus aureus bacteremia with deep infections: A meta-analysis. PLoS ONE 2020, 15, e0230383. [Google Scholar] [CrossRef] [Green Version]
- Thwaites, G.E.; Scarborough, M.; Szubert, A.; Nsutebu, E.; Tilley, R.; Greig, J.; Wyllie, S.A.; Wilson, P.; Auckland, C.; Cairns, J.; et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Rieg, S.; Joost, I.; Weiß, V.; Peyerl-Hoffmann, G.; Schneider, C.; Hellmich, M.; Seifert, H.; Kern, W.V.; Kaasch, A. Combination antimicrobial therapy in patients with Staphylococcus aureus bacteraemia—A post hoc analysis in 964 prospectively evaluated patients. Clin. Microbiol. Infect. 2017, 23, 406.e1–406.e8. [Google Scholar] [CrossRef] [Green Version]
- Riedel, D.J.; Weekes, E.; Forrest, G.N. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2463–2467. [Google Scholar] [CrossRef] [Green Version]
- Zimmerli, W.; Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Zimmerli, W.; Widmer, A.F.; Blatter, M.; Frei, R.; Ochsner, P.E.; For the Foreign-Body Infection (FBI) Study Group. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: A randomized controlled trial. JAMA 1998, 279, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, Ø.E.; Borgen, P.; Bragnes, B.; Figved, W.; Grøgaard, B.; Rydinge, J.; Sandberg, L.; Snorrason, F.; Wangen, H.; Witsøe, E.; et al. Rifampin combination therapy in staphylococcal prosthetic joint infections: A randomized controlled trial. J. Orthop. Surg. Res. 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Sande, M.A. The use of rifampin in the treatment of nontuberculous infections: An overview. Rev. Infect. Dis. 1983, 5 (Suppl. S3), S399–S401. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, D.M. Rifamycins, Alone and in Combination. Cold Spring Harb. Perspect. Med. 2016, 6, a027011. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.L.; Hung, Y.L.; Lin, S.H.; Lee, P.I.; Hsueh, P.R. Fatal bacteraemia and infective endocarditis due to meticillin-resistant Staphylococcus aureus (MRSA) with rapid emergence of rifampicin resistance during vancomycin/rifampicin combination treatment. Int. J. Antimicrob. Agents 2010, 35, 615–616. [Google Scholar] [CrossRef]
- Lai, C.C.; Tan, C.K.; Lin, S.H.; Liao, C.H.; Huang, Y.T.; Hsueh, P.R. Emergence of rifampicin resistance during rifampicin-containing treatment in elderly patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. J. Am. Geriatr. Soc. 2010, 58, 1001–1003. [Google Scholar] [CrossRef]
- Archer, G.L.; Tenenbaum, M.J.; Haywood, H.B., III. Rifampin therapy of Staphylococcus epidermidis. Use in infections from indwelling artificial devices. JAMA 1978, 240, 751–753. [Google Scholar] [CrossRef]
- Karchmer, A.W.; Archer, G.L.; Dismukes, W.E. Rifampin treatment of prosthetic valve endocarditis due to Staphylococcus epidermidis. Rev. Infect. Dis. 1983, 5 (Suppl. S3), S543–S548. [Google Scholar] [CrossRef]
- Tshefu, K.; Zimmerli, W.; Waldvogel, F.A. Short-term administration of rifampin in the prevention or eradication of infection due to foreign bodies. Rev. Infect. Dis. 1983, 5 (Suppl. S3), S474–S480. [Google Scholar] [CrossRef] [PubMed]
- Widmer, A.F.; Frei, R.; Rajacic, Z.; Zimmerli, W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J. Infect. Dis. 1990, 162, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Widmer, A.F.; Gaechter, A.; Ochsner, P.E.; Zimmerli, W. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin. Infect. Dis. 1992, 14, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Giulieri, S.G.; Graber, P.; Ochsner, P.E.; Zimmerli, W. Management of infection associated with total hip arthroplasty according to a treatment algorithm. Infection 2004, 32, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Laffer, R.R.; Graber, P.; Ochsner, P.E.; Zimmerli, W. Outcome of prosthetic knee-associated infection: Evaluation of 40 consecutive episodes at a single centre. Clin. Microbiol. Infect. 2006, 12, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef]
- Khanlari, B.; Elzi, L.; Estermann, L.; Weisser, M.; Brett, W.; Grapow, M.; Battegay, M.; Widmer, A.F.; Flückiger, U. A rifampicin-containing antibiotic treatment improves outcome of staphylococcal deep sternal wound infections. J. Antimicrob. Chemother. 2010, 65, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Erb, S.; Sidler, J.A.; Elzi, L.; Gurke, L.; Battegay, M.; Widmer, A.F.; Weisser, M. Surgical and antimicrobial treatment of prosthetic vascular graft infections at different surgical sites: A retrospective study of treatment outcomes. PLoS ONE 2014, 9, e112947. [Google Scholar] [CrossRef]
- Legout, L.; Delia, P.; Sarraz-Bournet, B.; Rouyer, C.; Massongo, M.; Valette, M.; Leroy, O.; Haulon, S.; Senneville, E. Factors predictive of treatment failure in staphylococcal prosthetic vascular graft infections: A prospective observational cohort study: Impact of rifampin. BMC Infect. Dis. 2014, 14, 228. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.S. Antimicrobial Tolerance in Biofilms. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerli, W.; Frei, R.; Widmer, A.F.; Rajacic, Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J. Antimicrob. Chemother. 1994, 33, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trampuz, A.; Murphy, C.K.; Rothstein, D.M.; Widmer, A.F.; Landmann, R.; Zimmerli, W. Efficacy of a novel rifamycin derivative, ABI-0043, against Staphylococcus aureus in an experimental model of foreign-body infection. Antimicrob. Agents Chemother. 2007, 51, 2540–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldoni, D.; Haschke, M.; Rajacic, Z.; Zimmerli, W.; Trampuz, A. Linezolid alone or combined with rifampin against methicillin-resistant Staphylococcus aureus in experimental foreign-body infection. Antimicrob. Agents Chemother. 2009, 53, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, A.K.; Baldoni, D.; Haschke, M.; Rentsch, K.; Schaerli, P.; Zimmerli, W.; Trampuz, A. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: Importance of combination with rifampin. Antimicrob. Agents Chemother. 2009, 53, 2719–2724. [Google Scholar] [CrossRef] [Green Version]
- Baldoni, D.; Tafin, U.F.; Aeppli, S.; Angevaare, E.; Oliva, A.; Haschke, M.; Zimmerli, W.; Trampuz, A. Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int. J. Antimicrob. Agents 2013, 42, 220–225. [Google Scholar] [CrossRef]
- Mihailescu, R.; Tafin, U.F.; Corvec, S.; Oliva, A.; Betrisey, B.; Borens, O.; Trampuz, A. High activity of Fosfomycin and Rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2014, 58, 2547–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, C.M.; Sistrunk, W.W.; Duffy, M.C.; Hanssen, A.D.; Steckelberg, J.M.; Ilstrup, D.M.; Osmon, D.R. Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin. Infect. Dis. 1997, 24, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Deirmengian, C.; Greenbaum, J.; Lotke, P.A.; Booth, R.E., Jr.; Lonner, J.H. Limited success with open debridement and retention of components in the treatment of acute Staphylococcus aureus infections after total knee arthroplasty. J. Arthroplast. 2003, 18, 22–26. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, A.; Thórhallsdóttir, V.G.; Robertsson, O.; W-Dahl, A.; Stefánsdóttir, A. 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections. Acta Orthop. 2015, 86, 457–462. [Google Scholar] [CrossRef] [PubMed]
- El Helou, O.C.; Berbari, E.F.; Lahr, B.D.; Eckel-Passow, J.E.; Razonable, R.R.; Sia, I.G.; Virk, A.; Walker, R.C.; Steckelberg, J.M.; Wilson, W.R.; et al. Efficacy and safety of rifampin containing regimen for staphylococcal prosthetic joint infections treated with debridement and retention. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 961–967. [Google Scholar] [CrossRef]
- Lora-Tamayo, J.; Murillo, O.; Iribarren, J.A.; Soriano, A.; Sanchez-Somolinos, M.; Baraia-Etxaburu, J.M.; Rico, A.; Palomino, J.; Rodriguez-Pardo, D.; Horcajada, J.P.; et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin. Infect. Dis. 2013, 56, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Lora-Tamayo, J.; Euba, G.; Cobo, J.; Horcajada, J.P.; Soriano, A.; Sandoval, E.; Pigrau, C.; Benito, N.; Falgueras, L.; Palomino, J.; et al. Short- versus long-duration levofloxacin plus rifampicin for acute staphylococcal prosthetic joint infection managed with implant retention: A randomised clinical trial. Int. J. Antimicrob. Agents 2016, 48, 310–316. [Google Scholar] [CrossRef]
- Sendi, P.; Lötscher, P.O.; Kessler, B.; Graber, P.; Zimmerli, W.; Clauss, M. Debridement and implant retention in the management of hip periprosthetic joint infection: Outcomes following guided and rapid treatment at a single centre. Bone Jt. J. 2017, 99-B, 330–336. [Google Scholar] [CrossRef]
- Berdal, J.E.; Skråmm, I.; Mowinckel, P.; Gulbrandsen, P.; Bjørnholt, J.V. Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. Clin. Microbiol. Infect. 2005, 11, 843–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puhto, A.P.; Puhto, T.; Syrjala, H. Short-course antibiotics for prosthetic joint infections treated with prosthesis retention. Clin. Microbiol. Infect. 2012, 18, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschudin-Sutter, S.; Frei, R.; Dangel, M.; Jakob, M.; Balmelli, C.; Schaefer, D.J.; Weisser, M.; Elzi, L.; Battegay, M.; Widmer, A.F. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention—Results from a prospective observational cohort study. Clin. Microbiol. Infect. 2016, 22, 457.e1–457.e9. [Google Scholar] [CrossRef]
- Senneville, E.; Joulie, D.; Legout, L.; Valette, M.; Dezeque, H.; Beltrand, E.; Rosele, B.; d’Escrivan, T.; Loiez, C.; Caillaux, M.; et al. Outcome and Predictors of Treatment Failure in Total Hip/Knee Prosthetic Joint Infections Due to Staphylococcus aureus. Clin. Infect. Dis. 2011, 53, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Lesens, O.; Ferry, T.; Forestier, E.; Botelho-Nevers, E.; Pavese, P.; Piet, E.; Pereira, B.; Montbarbon, E.; Boyer, B.; Lustig, S.; et al. Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1949–1956. [Google Scholar] [CrossRef]
- Puhto, A.P.; Puhto, T.; Niinimäki, T.; Ohtonen, P.; Leppilahti, J.; Syrjälä, H. Predictors of treatment outcome in prosthetic joint infections treated with prosthesis retention. Int. Orthop. 2015, 39, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, A.; Uçkay, I.; Lustig, S.; Boibieux, A.; Lew, D.; Hoffmeyer, P.; Neyret, P.; Chidiac, C.; Ferry, T. Non-compliance with IDSA guidelines for patients presenting with methicillin-susceptible Staphylococcus aureus prosthetic joint infection is a risk factor for treatment failure. Med. Mal. Infect. 2018, 48, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morata, L.; Senneville, E.; Bernard, L.; Nguyen, S.; Buzelé, R.; Druon, J.; Tornero, E.; Mensa, J.; Soriano, A. A Retrospective Review of the Clinical Experience of Linezolid with or Without Rifampicin in Prosthetic Joint Infections Treated with Debridement and Implant Retention. Infect. Dis. Ther. 2014, 3, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Perlroth, J.; Kuo, M.; Tan, J.; Bayer, A.S.; Miller, L.G. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: A systematic review of the literature. Arch. Intern. Med. 2008, 168, 805–819. [Google Scholar] [CrossRef]
- Albano, M.; Karau, M.J.; Greenwood-Quaintance, K.E.; Osmon, D.R.; Oravec, C.P.; Berry, D.J.; Abdel, M.P.; Patel, R. In Vitro Activity of Rifampin, Rifabutin, Rifapentine, and Rifaximin against Planktonic and Biofilm States of Staphylococci Isolated from Periprosthetic Joint Infection. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Fisher, C.R.; Schmidt-Malan, S.M.; Ma, Z.; Yuan, Y.; He, S.; Patel, R. In vitro activity of TNP-2092 against periprosthetic joint infection-associated staphylococci. Diagn. Microbiol. Infect. Dis. 2020, 97, 115040. [Google Scholar] [CrossRef]
- Doub, J.B.; Heil, E.L.; Ntem-Mensah, A.; Neeley, R.; Ching, P.R. Rifabutin Use in Staphylococcus Biofilm Infections: A Case Series. Antibiotics 2020, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Wouthuyzen-Bakker, M.; Sebillotte, M.; Huotari, K.; Sánchez, R.E.; Benavent, E.; Parvizi, J.; Fernandez-Sampedro, M.; Barbero-Allende, J.M.; Garcia-Cañete, J.; Trebse, R.; et al. Lower Success Rate of Débridement and Implant Retention in Late Acute versus Early Acute Periprosthetic Joint Infection Caused by Staphylococcus spp. Results from a Matched Cohort Study. Clin. Orthop. Relat. Res. 2020, 478, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.R.; von Knoch, F.; Zurakowski, D.; Nelson, S.B.; Malchau, H. Can implant retention be recommended for treatment of infected TKA? Clin. Orthop. Relat. Res. 2011, 469, 961–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Yan, C.H.; Chan, P.K.; Ng, F.Y.; Chiu, K.Y. Polyethylene Insert Exchange Is Crucial in Debridement for Acute Periprosthetic Infections following Total Knee Arthroplasty. J. Knee Surg. 2017, 30, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Hirsiger, S.; Betz, M.; Stafylakis, D.; Götschi, T.; Lew, D.; Uçkay, I. The Benefice of Mobile Parts’ Exchange in the Management of Infected Total Joint Arthroplasties with Prosthesis Retention (DAIR Procedure). J. Clin. Med. 2019, 8, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauta, E.H.; Mattie, H. Dicloxacillin and cloxacillin: Pharmacokinetics in healthy and hemodialysis subjects. Clin. Pharmacol. Ther. 1976, 20, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, D.; Winkler, T.; Renz, N.; Trampuz, A.; Lieb, E.; Perka, C.; Muller, M. A standardized interdisciplinary algorithm for the treatment of prosthetic joint infections. Bone Jt. J. 2019, 101-B, 132–139. [Google Scholar] [CrossRef]
- Vasoo, S.; Chan, M.; Sendi, P.; Berbari, E. The Value of Ortho-ID Teams in Treating Bone and Joint Infections. J. Bone Jt. Infect. 2019, 4, 295–299. [Google Scholar] [CrossRef]
- Zeller, V.; Kerroumi, Y.; Meyssonnier, V.; Heym, B.; Metten, M.A.; Desplaces, N.; Marmor, S. Analysis of postoperative and hematogenous prosthetic joint-infection microbiological patterns in a large cohort. J. Infect. 2018, 76, 328–334. [Google Scholar] [CrossRef]
- Wouthuyzen-Bakker, M.; Sebillotte, M.; Lomas, J.; Taylor, A.; Palomares, E.B.; Murillo, O.; Parvizi, J.; Shohat, N.; Reinoso, J.C.; Sánchez, R.E.; et al. Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. J. Infect. 2019, 78, 40–47. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Antibiotic Regime | Cure Rate | p a | Reference | ||
---|---|---|---|---|---|---|
S. epidermidis B3972 (clinical strain) | Ciprofloxacin Ciprofloxacin + Rifampin | 0% 100% | <0.01 | Widmer et al. 1990 [16] | ||
S. aureus ATCC 29,213 (MSSA) | Vancomycin Vancomycin + Rifampin | 0% 75% | <0.01 | Zimmerli et al. 1994 [25] | ||
Ciprofloxacin Ciprofloxacin + Rifampin | 17% 92% | <0.001 | ||||
S. aureus ATCC 29,213 (MSSA) | Levofloxacin Levofloxacin + Rifampin | 0% 88% | <0.001 | Trampuz et al. 2007 [26] | ||
Levofloxacin + ABI-0043 b | 92% | |||||
S. aureus ATCC 43,300 (MRSA) | Linezolid Linezolid + Rifampin | 0% 60% | <0.001 | Baldoni et al. 2009 [27] | ||
Levofloxacin + Rifampin | 91% | |||||
S. aureus ATCC 43,300 (MRSA) | Daptomycin Daptomycin + Rifampin | 0% 67% | <0.001 | John et al. 2009 [28] | ||
S. aureus ATCC 43,300 (MRSA) | Dalbavancin Dalbavancin + Rifampin | 0% 36% | <0.001 | Baldoni et al. 2013 [29] | ||
S. aureus ATCC 43,300 (MRSA) | Fosfomycin Fosfomycin + Rifampin | 0% 83% | <0.001 | Mihailescu et al. 2014 [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renz, N.; Trampuz, A.; Zimmerli, W. Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified? Antibiotics 2021, 10, 165. https://doi.org/10.3390/antibiotics10020165
Renz N, Trampuz A, Zimmerli W. Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified? Antibiotics. 2021; 10(2):165. https://doi.org/10.3390/antibiotics10020165
Chicago/Turabian StyleRenz, Nora, Andrej Trampuz, and Werner Zimmerli. 2021. "Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified?" Antibiotics 10, no. 2: 165. https://doi.org/10.3390/antibiotics10020165
APA StyleRenz, N., Trampuz, A., & Zimmerli, W. (2021). Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified? Antibiotics, 10(2), 165. https://doi.org/10.3390/antibiotics10020165