Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Microorganisms
2.1.1. Isolation and Identification of Potential Probiotics
2.1.2. Isolation and Identification of Candida Isolates
2.1.3. Screening for Anti-Candida Activity
2.2. Preparation of BLISs
2.3. Physicochemical Characterization of BLISs
- (1)
- Effect of heating: BLISs were incubated in a water bath at 60 °C, 80 °C, and 100 °C for 10, 30, 60 min and at 121 °C for 10, 15, and 20 min, and then cooled on ice.
- (2)
- Effect of pH: Catalase-treated BLISs were adjusted to pH 3.0, 5.0, 7.0, and 10.0 by hydrochloric acid and sodium hydroxide, and allowed to stand at room temperature for 2 h.
- (3)
- The sensitivity of BLISs to proteases (pepsin and trypsin), in addition to α-amylase (Sigma-Aldrich, St. Louis, MO, USA), was assessed (final concentration of 1 mg/mL). Samples with and without enzymes were incubated for 3 h at 30 °C.
- (4)
- Effect of organic solvents: Chloroform, ethanol, and n-hexane at concentrations of 10, 15, 20, and 30% (v/v) were determined. Samples with and without solvents, as well as solvents only, were incubated at 30 °C for 1, 4, 6, and 24 h.
- (5)
- The effect of surfactants (Tween-20 and Tween-80) at concentrations of 0.1%, 1%, 2%, and 5.0% (v/v) was determined. Surfactants were added to BLISs at a 0.1 mL concentration of surfactant/mL of bacteriocin solutions. Samples, with and without surfactants, as well as surfactants only, were incubated at 30 °C for 2 h.
2.4. Protein Purification and Separation from BLIS
2.5. In Vitro Anti-biofilm Activity of BLIS
2.6. G. mellonella Survival Assay for BLIS Activity Against Candida Isolates (In Vivo Model)
2.7. Polymerase Chain Reaction (PCR) Amplification and Identification of Lactobacilli by Partial Sequencing of the 16S rRNA Gene
2.8. Statistical Analysis
3. Results
3.1. Isolation of Active Lactobacilli and Streptococci and Screening for BLIS Antagonistic Activity
3.2. BLIS Characterization
3.3. Effect of BLIS on Candida Biofilm Formation In Vitro
3.4. BLIS Prolongs the Survival of Candida-Infected G. mellonella Larvae
3.5. Identification of Lactobacilli by Partial Sequencing of the 16S rRNA Gene Sequences
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ono, F.; Yasumoto, S. [Genital candidiasis]. Nihon rinsho. Jpn. J. Clin. Med. 2009, 67, 157–161. [Google Scholar]
- Panizo, M.M.; Reviákina, V.; Dolande, M.; Selgrad, S. Candida spp. in vitro susceptibility profile to four antifungal agents. Resistance surveillance study in Venezuelan strains. Med. Mycol. 2009, 47, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Betsi, G.I.; Athanasiou, S. Probiotics for prevention of recurrent vulvovaginal candidiasis: A review. J. Antimicrob. Chemother. 2006, 58, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, J.; Scorzoni, L. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Chaim, W. Vaginal microbiology of women with acute recurrent vulvovaginal candidiasis. J. Clin. Microbiol. 1996, 34, 2497–2499. [Google Scholar] [CrossRef] [Green Version]
- Ljungh, Å.; Wadström, T. Lactobacillus Molecular Biology: From Genomics to Probiotics; Horizon Scientific Press: Poole, UK, 2009. [Google Scholar]
- Martinez, R.C.R.; Franceschini, S.A.; Patta, M.C.; Quintana, S.M.; Nunes, A.C.; Moreira, J.L.S.; Anukam, K.C.; Reid, G.; De Martinis, E.C.P. Analysis of Vaginal Lactobacilli from Healthy and Infected Brazilian Women. Appl. Environ. Microbiol. 2008, 74, 4539–4542. [Google Scholar] [CrossRef] [Green Version]
- Chew, S.Y.; Cheah, Y.K.; Seow, H.F.; Sandai, D.; Than, L.T.L. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J. Appl. Microbiol. 2015, 118, 1180–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nes, I.F.; Diep, D.B.; Holo, H. Bacteriocin Diversity in Streptococcus and Enterococcus. J. Bacteriol. 2006, 189, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and Genetic Characterization of a Novel Nisin Variant Produced by Streptococcus uberis. Appl. Environ. Microbiol. 2006, 72, 1148–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalié, D.; Deschamps, A.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Fan, L.; Song, J. Antimicrobial microbes-bacteriocin producing lactic acid bacteria. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 899–909. [Google Scholar]
- Field, D.; Cotter, P.; Hill, C.; Ross, R.P. Bacteriocin Biosynthesis, Structure, and Function. Research and Applications in Bacteriocins; Riley, M.A., Gillor, O., Eds.; Horizon Bioscience: Norfolk, UK, 2007; pp. 5–41. [Google Scholar]
- Prasad, S.; Morris, P.C.; Hansen, R.; Meaden, P.G.; Austin, B. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology 2005, 151, 3051–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darrene, L.-N.; Cecile, B. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature. BioMed Res. Int. 2016, 2016, 7461047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzny, C.A.; Schwebke, J.R. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. Clin. Infect. Dis. 2015, 61, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cools, F.; Torfs, E.; Aizawa, J.; Vanhoutte, B.; Maes, L.; Caljon, G.; Delputte, P.; Cappoen, D.; Cos, P. Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Front. Microbiol. 2019, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Korte, F.; Kneist, S.; El-Sayed, K.F.; Paris, S.; Dörfer, C.E. Inhibition of Streptococcus mutans Growth and Biofilm Formation by Probiotics in vitro. Caries Res. 2017, 51, 87–95. [Google Scholar] [CrossRef]
- Rossoni, R.D.; De Barros, P.P.; De Alvarenga, J.A.; Ribeiro, F.D.C.; Velloso, M.D.S.; Fuchs, B.B.; Mylonakis, E.; Jorge, A.O.C.; Junqueira, J.C. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: Identification of potential probiotic candidates to prevent oral candidiasis. Biofouling 2018, 34, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.C.; de Barros, P.P.; Rossoni, R.D.; Junqueira, J.C.; Jorge, A.O. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J. Appl. Microbiol. 2017, 122, 201–211. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L.; Van Sinderen, D. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 2004, 96, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Bettache, G.; Fatma, A.; Miloud, H.; Mebrouk, K. Isolation and Identification of Lactic Acid Bacteria from Dhan, a Traditional Butter and Their Major Technological Traits. World Appl. Sci. J. 2012, 17, 480–488. [Google Scholar]
- Murray, C.K.; Beckius, M.L.; Green, J.A.; Hospenthal, D.R. Use of chromogenic medium in the isolation of yeasts from clinical specimens. J. Med. Microbiol. 2005, 54, 981–985. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.E.; Gibbons, W.R. Improved method for quantification of the bacteriocin nisin. J. Appl. Bacteriol. 1996, 80, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.; Fevereiro, P.; Delgado, A.; Peres, C.; Marques, J.F. Antimicrobial activity of L. plantarum, isolated from a traditional lactic acid fermentation of table olives. Lait 2001, 81, 203–215. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Taff, H.T.; Nett, J.E.; Andes, D.R. Comparative analysis of Candida biofilm quantitation assays. Med. Mycol. 2012, 50, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Cowen, L.; Singh, S.D.; Kohler, J.R.; Collins, C.; Zaas, A.K.; Schell, W.A.; Aziz, H.; Mylonakis, E.; Perfect, J.R.; Whitesell, L.; et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. USA 2009, 106, 2818–2823. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.; Fan, L.; Jiang, Y.; Doucette, C.; Fillmore, S. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2012, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, D. Biopreservation of Fresh-Cut Salads Using Bacteriocinogenic Lactic Acid Bacteria Isolated from Commercial Produce. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2009; pp. 1–6. [Google Scholar]
- Sezer, G.; Güven, A. Investigation of bacteriocin production capability of lactic acid bacteria isolated from foods. Kafkas Univ. Vet. Fak. Derg. 2009, 15, 45–50. [Google Scholar]
- Okkers, D.J.; Dicks, L.M.T.; Silvester, M.; Joubert, J.J.; Odendaal, H.J. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol. 1999, 87, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, G.; Jass, J.; Sebulsky, M.T.; McCormick, J.K. Potential Uses of Probiotics in Clinical Practice. Clin. Microbiol. Rev. 2003, 16, 658–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, C.; Malacrino, C.; Mastromarino, P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J. Physiol. Pharmacol. 2009, 60, 19–26. [Google Scholar]
- Mastromarino, P.; Di Pietro, M.; Schiavoni, G.; Nardis, C.; Gentile, M.; Sessa, R. Effects of vaginal lactobacilli in Chlamydia trachomatis infection. Int. J. Med. Microbiol. 2014, 304, 654–661. [Google Scholar] [CrossRef]
- Pascual, L.M.; Daniele, M.B.; Pájaro, C.; Barberis, L. Lactobacillus species isolated from the vagina: Identification, hydrogen peroxide production and nonoxynol-9 resistance. Contraception 2006, 73, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Chassot, F.; Camacho, D.P.; Patussi, E.V.; Donatti, L.; Svidzinski, T.I.; Consolaro, M.E. Can Lactobacillus acidophilus influence the adhesion capacity of Candida albicans on the combined contraceptive vaginal ring? Contraception 2010, 81, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Ogunshe, A.A.; Omotoso, M.; Bello, V.B. The In Vitro Antimicrobial Activities of Metabolites from Lactobacillus Strains on Candida Species Implicated in Candida Vaginitis. Malays. J. Med. Sci. 2011, 18, 13–25. [Google Scholar]
- Cherif, A.; Ouzari, H.; Daffonchio, D.; Cherif, H.; Ben Slama, K.; Hassen, A.; Jaoua, S.; Boudabous, A. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 2001, 32, 243–247. [Google Scholar] [CrossRef]
- Abdel-Mohsein, H.; Yamamoto, N.; Otawa, K.; Tada, C.; Nakai, Y. Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 2010, 56, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Ogunbanwo, S.; Sanni, A.; Onilude, A.A. Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. Afr. J. Biotechnol. 2003, 2, 219–227. [Google Scholar]
- Fatima, D.; Mebrouk, K. Characterization and determination of the factors affecting anti-listerial bacteriocins from Lactobacillus plantarum and Pediococcus pentosaceus isolated from dairy milk products. Afr. J. Food Sci. 2013, 7, 35–44. [Google Scholar] [CrossRef]
- Ge, J.; Sun, Y.; Xin, X.; Wang, Y.; Ping, W. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice. Sci. Rep. 2016, 6, 19366. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Bar, N.; Harris, N.D.; Rill, R.L. Purification and Properties of an Antimicrobial Substance Produced by Lactobacillus bulgaricus. J. Food Sci. 1987, 52, 411–415. [Google Scholar] [CrossRef]
- Khalil, R.; Elbahloul, Y.; Djadouni, F.; Omar, S. Isolation and Partial Characterization of a Bacteriocin Produced by a Newly Isolated Bacillus megaterium 19 Strain. Pak. J. Nutr. 2009, 8, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Muriana, P.M.; Klaenhammer, T.R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbiol. 1991, 57, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Ishijima, S.A.; Hayama, K.; Burton, J.P.; Reid, G.; Okada, M.; Matsushita, Y.; Abe, S. Effect of Streptococcus salivarius K12 on the In Vitro Growth of Candida albicans and Its Protective Effect in an Oral Candidiasis Model. Appl. Environ. Microbiol. 2012, 78, 2190–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirawan, R.E.; Swanson, K.M.; Kleffmann, T.; Jack, R.W.; Tagg, J.R. Uberolysin: A novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 2007, 153, 1619–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, N.C.; Burtenshaw, G.A.; Jack, R.W.; Tagg, J.R. Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl. Environ. Microbiol. 2007, 73, 7763–7766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Fiori, B.; Trecarichi, E.M.; Posteraro, P.; Losito, A.R.; De Luca, A.; Sanguinetti, M.; Fadda, G.; Cauda, R.; Posteraro, B. Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital. PLoS ONE 2012, 7, e33705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilela, S.F.; Barbosa, J.O.; Rossoni, R.D.; Santos, J.D.; Prata, M.C.; Anbinder, A.L.; Jorge, A.O.; Junqueira, J.C. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 2015, 6, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Mei, H.C.; Buijssen, K.J.D.A.; Van Der Laan, B.F.A.M.; Ovchinnikova, E.; Geertsema-Doornbusch, G.I.; Atema-Smit, J.; Van De Belt-Gritter, B.; Busscher, H.J. Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber. PLoS ONE 2014, 9, e104508. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, V.H.; Wang, Y.; Bandara, H.M.H.N.; Mayer, M.P.A.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016, 100, 6415–6426. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Ishikawa, K.H.; Nakamae, A.E.M. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis. 2012, 18, 260–264. [Google Scholar] [CrossRef]
- Song, Y.-G.; Lee, S.-H. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Arch. Oral Biol. 2017, 76, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Parolin, C.; Marangoni, A.; Laghi, L.; Foschi, C.; Palomino, R.A.Ñ.; Calonghi, N.; Cevenini, R.; Vitali, B. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity. PLoS ONE 2015, 10, e0131220. [Google Scholar] [CrossRef] [PubMed]
Candida albicans Isolates (n = 25) | Non-Candida albicans Isolates (n = 20) | All Candida Isolates (n = 45) | p Value | |||
---|---|---|---|---|---|---|
Probiotic Isolates (as Sources of BLISs) | Positive Number (%) | Negative Number (%) | Positive Number (%) | Negative Number (%) | Positive Number (%) | |
Lactobacillus pentosus | 15 (60) | 10 (40) | 18 (90) | 2 (10) | 33 (73.3) | 0.024 * |
Lactobacillus plantarum I | 12 (48) | 13 (52) | 13 (65) | 7 (35) | 25 (55.6) | 0.254 |
Streptococcus uberis I | 13 (52) | 12 (48) | 10 (50) | 10 (50) | 23 (51.1) | 0.894 |
Lactobacillus rhamnosus I | 17 (68) | 8 (32) | 13 (65) | 7 (35) | 30 (66.7) | 0.832 |
Lactobacillus delbrueckii subsp. bulgaricus | 13 (52) | 12 (48) | 14 (70) | 6 (30) | 27 (60) | 0.221 |
Lactobacillus paracasei subsp. paracasei I | 14 (56) | 11 (44) | 11 (55) | 9 (45) | 25 (55.6) | 0.947 |
Lactobacillus plantarum II | 13 (52) | 12 (48) | 13 (65) | 7 (35) | 26 (57.8) | 0.380 |
Lactobacillus paracasei subsp. paracasei II | 15 (60) | 10 (40) | 16 (80) | 4 (20) | 31 (68.9) | 0.150 |
Lactobacillus rhamnosus II | 14 (56) | 11 (44) | 12 (60) | 8 (40) | 26 (57.8) | 0.787 |
Lactobacillus delbrueckii subsp. lactis I | 17 (68) | 8 (32) | 13 (65) | 7 (35) | 30 (66.7) | 0.832 |
Lactobacillus delbrueckii subsp. lactis II | 15 (60) | 10 (40) | 14 (70) | 6 (30) | 29 (64.4) | 0.486 |
Streptococcus agalactiae | 17 (68) | 8 (32) | 12 (60) | 8 (40) | 29 (64.4) | 0.577 |
Streptococcus uberis II | 17 (68) | 8 (32) | 13 (65) | 7 (35) | 30 (66.7) | 0.832 |
Treatment | Probiotic Isolates (as Sources of BLISs) | ||||||
---|---|---|---|---|---|---|---|
Lactobacillus pentosus | Lactobacillus rhamnosus I | Lactobacillus paracasei subsp. paracasei II | Lactobacillus delbrueckii subsp. lactis I | Streptococcus uberis II | |||
Effect of Heat | 121 °C | 15 min | + | + | + | − | − |
100 °C | 30 min | + | + | + | + | − | |
60 min | + | + | + | − | − | ||
80 °C | 30 min | + | + | + | + | − | |
40 °C | 30 min | + | + | + | + | + | |
Effect of Enzymes | Pepsin | S | S | S | S | S | |
Trypsin | S | S | S | S | S | ||
α-amylase | R | R | R | R | R | ||
Effect of pH | pH 3 | + | + | + | + | + | |
pH 5 | + | + | + | + | + | ||
pH 7 | ++ | ++ | ++ | ++ | ++ | ||
pH 10 | + | + | + | + | + |
Surfactant | Concentration | Probiotic Isolates (as Sources of BLISs) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lactobacillus pentosus | Lactobacillus rhamnosus I | Lactobacillus paracasei subsp. paracasei II | Lactobacillus delbrueckii subsp. lactis I | Streptococcus uberis II | |||||||
Candida albicans | Candida glabrata | Candida albicans | Candida glabrata | Candida albicans | Candida glabrata | Candida albicans | Candida glabrata | Candida albicans | Candida glabrata | ||
Tween 20 | 0.1% | 101.7% | 70.7% | 81.3% | 96.4% | 91.1% | 79.3% | 100.0% | 88.6% | 100.0% | 75.3% |
1.0% | 100.0% | 70.7% | 81.3% | 94.9% | 86.7% | 77.9% | 100.0% | 75.9% | 111.8% | 78.2% | |
2% | 90.0% | 67.3% | 81.3% | 91.4% | 86.7% | 80.6% | 100.0% | 75.9% | 94.1% | 102.9% | |
5% | 86.7% | 70.7% | 81.3% | 91.4% | 86.7% | 74.9% | 100.0% | 63.3% | 80.4% | 69.9% | |
Tween 80 | 0.1% | 100.0% | 91.9% | 75.0% | 91.4% | 113.3% | 80.6% | 95.8% | 88.6% | 100.0% | 102.9% |
1.0% | 100.0% | 93.3% | 75.0% | 96.4% | 106.7% | 85.0% | 91.7% | 84.4% | 105.9% | 62.9% | |
2% | 90.0% | 81.8% | 68.8% | 100.0% | 106.7% | 88.1% | 95.8% | 84.4% | 100.0% | 69.9% | |
5% | 90.0% | 77.4% | 68.8% | 108.1% | 106.7% | 74.9% | 95.8% | 84.4% | 94.1% | 61.7% |
Candida albicans Clinical Isolate (CA 1) | Candida glabrata Clinical Isolate (NCAC 1) | Candida albicans (ATCC 90028) | |||||||
---|---|---|---|---|---|---|---|---|---|
Group | Mean ± SD | Percentage Reduction | p-Value | Mean ± SD | Percentage Reduction | p-Value | Mean ± SD | Percentage Reduction | p-Value |
No Lactobacilli | 6.182 ± 0.181 | - | - | 3.062 ± 0.110 | - | - | 21.744 ± 0.164 | - | - |
Lactobacillus pentosus | 1.667 ± 0.055 | 73.0% | <0.0001 * | 0.891 ± 0.055 | 70.9% | <0.0001 * | 6.395 ± 0.055 | 70.6% | <0.0001 * |
Lactobacillus rhamnosus I | 2.733 ± 0.060 | 55.8% | <0.0001 * | 1.403 ± 0.044 | 54.2% | <0.0001 * | 10.977 ± 0.428 | 49.5% | <0.0001 * |
Lactobacillus paracasei subsp. paracasei II | 2.143 ± 0.071 | 65.3% | <0.0001 * | 1.143 ± 0.082 | 62.7% | <0.0001 * | 7.981 ± 0.115 | 63.3% | <0.0001 * |
Lactobacillus delbrueckii subsp. lactis I | 1.919 ± 0.027 | 69.0% | <0.0001 * | 0.911 ± 0.005 | 70.3% | <0.0001 * | 6.973 ± 0.115 | 67.9% | <0.0001 * |
Streptococcus uberis II | 3.671 ± 0.005 | 40.6% | <0.0001 * | 1.450 ± 0.044 | 52.7% | <0.0001 * | 12.682 ± 0.504 | 41.7% | <0.0001 * |
Candida albicans Clinical Isolate (CA 1) | First Day Survival | Second Day Survival | Seventh Day Survival | ||||
---|---|---|---|---|---|---|---|
Number (%) | p-Value # | Number (%) | p-Value # | Number (%) | p-Value # | ||
No BLIS (Candida only) | 2 (12.5) | - | 1 (6.3) | - | 0 (0.0) | - | |
Probiotic Isolates (as sources of BLISs) | Lactobacillus pentosus | 9 (56.3) | 0.009 * | 8 (50.0) | 0.006 * | 7 (43.8) | 0.003 * |
Lactobacillus rhamnosus I | 7 (43.8) | 0.049 | 5 (31.3) | 0.070 | 3 (18.8) | 0.068 | |
Lactobacillus paracasei subsp. paracasei II | 13 (81.3) | <0.0001 * | 12 (75.0) | <0.0001 * | 8 (50.0) | 0.001 * | |
Lactobacillus delbrueckii subsp. lactis I | 12 (75.0) | <0.0001 * | 10 (62.5) | <0.0001 * | 8 (50.0) | 0.001 * | |
Streptococcus uberis II | 5 (31.3) | 0.199 | 4 (25.0) | 0.146 | 1 (6.3) | 0.308 | |
Candida glabrataclinical isolate (NCAC 1) | |||||||
No BLIS (Candida only) | 3 (18.8) | - | 2 (12.5) | - | 0 (0.0) | - | |
Probiotic Isolates (as sources of BLISs) | Lactobacillus pentosus | 13 (81.3) | <0.0001 * | 13 (81.3) | <0.0001 * | 8 (50.0) | 0.001 * |
Lactobacillus rhamnosus I | 9 (56.3) | 0.029 | 7 (43.8) | 0.049 | 4 (25.0) | 0.033 | |
Lactobacillus paracasei subsp. paracasei II | 12 (75.0) | 0.001 * | 11 (68.8) | 0.001 * | 9 (56.3) | <0.0001 * | |
Lactobacillus delbrueckii subsp. lactis I | 12 (75.0) | 0.001 * | 11 (68.8) | 0.001 * | 10 (62.5) | <0.0001 * | |
Streptococcus uberis II | 6 (37.5) | 0.239 | 4 (37.5) | 0.103 | 3 (35.4) | 0.009 * | |
Candida albicans ATCC 90028 | |||||||
No BLIS (Candida only) | 3 (18.8) | - | 3 (18.8) | - | 0 (0.0) | - | |
Probiotic Isolates (as sources of BLISs) | Lactobacillus pentosus | 9 (56.3) | 0.029 | 8 (50.0) | 0.063 | 6 (37.5) | 0.007 * |
Lactobacillus rhamnosus I | 6 (37.5) | 0.239 | 5 (31.3) | 0.415 | 4 (25.0) | 0.033 | |
Lactobacillus paracasei subsp. paracasei II | 11 (68.8) | 0.004 * | 11 (68.8) | 0.004 * | 9 (56.3) | <0.0001 * | |
Lactobacillus delbrueckii subsp. lactis I | 12 (75.0) | 0.001 * | 12 (75.0) | 0.001 * | 8 (50.0) | 0.001 * | |
Streptococcus uberis II | 5 (31.3) | 0.415 | 4 (25.0) | 0.672 | 2 (12.5) | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hefzy, E.M.; Khalil, M.A.F.; Amin, A.A.I.; Ashour, H.M.; Abdelaliem, Y.F. Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis. Antibiotics 2021, 10, 306. https://doi.org/10.3390/antibiotics10030306
Hefzy EM, Khalil MAF, Amin AAI, Ashour HM, Abdelaliem YF. Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis. Antibiotics. 2021; 10(3):306. https://doi.org/10.3390/antibiotics10030306
Chicago/Turabian StyleHefzy, Enas Mamdouh, Mahmoud A. F. Khalil, Amal A. Ibrahim Amin, Hossam M. Ashour, and Yasser Fathy Abdelaliem. 2021. "Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis" Antibiotics 10, no. 3: 306. https://doi.org/10.3390/antibiotics10030306
APA StyleHefzy, E. M., Khalil, M. A. F., Amin, A. A. I., Ashour, H. M., & Abdelaliem, Y. F. (2021). Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida Vulvovaginitis. Antibiotics, 10(3), 306. https://doi.org/10.3390/antibiotics10030306