Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification of Uropathogens
4.2. Antimicrobial Susceptibility Testing
4.3. Data Analyses
4.4. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bischoff, S.; Walter, T.; Gerigk, M.; Ebert, M.; Vogelmann, R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect. Dis. 2018, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Zowawi, H.M.; Harris, P.N.A.; Roberts, M.J.; Tambyah, P.A.; Schembri, M.A.; Pezzani, M.D.; Williamson, D.A.; Paterson, D.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 2015, 12, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Brumbaugh, A.R.; Smith, S.N.; Mobley, H.L.T.; Chilton, P.M.; Hadel, D.M.; To, T.T.; Mitchell, T.C.; Darveau, R.P.; Morrison, R.P. Immunization with the Yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect. Immun. 2013, 81, 3309–3316. [Google Scholar] [CrossRef] [Green Version]
- Micali, S.; Isgro, G.; Bianchi, G.; Miceli, N.; Calapai, G.; Navarra, M. Cranberry and recurrent cystitis: More than marketing? Crit. Rev. Food Sci. Nutr. 2014, 54, 1063–1075. [Google Scholar] [CrossRef]
- Karam, M.R.A.; Habibi, M.; Bouzari, S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against uropathogenic Escherichia coli. Mol. Immunol. 2019, 108, 56–67. [Google Scholar] [CrossRef]
- Kot, B. Antibiotic resistance among uropathogenic Escherichia coli. Pol. J. Microbiol. 2019, 68, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Semwal, A.C.; Mathuria, Y.P.; Saklani, P. Study of antibiotic resistance pattern in uropathogens at a tertiary care hospital. Ann. Int. Med. Dent. Res. 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Mann, R.; Mediati, D.G.; Duggin, I.G.; Harry, E.J.; Bottomley, A.L. Metabolic adaptations of uropathogenic E. coli in the urinary tract. Front. Cell. Infect. Microbiol. 2017, 7, 241. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, C.; Kazemier, B.M.; Geerlings, S.E. Asymptomatic bacteriuria and urinary tract infections in special patient groups: Women with diabetes mellitus and pregnant women. Curr. Opin. Infect. Dis. 2014, 27, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Kot, B.; Wicha, J.; Gruzewska, A.; Piechota, M.; Wolska, K.; Obrebska, M. Virulence factors, biofilm-forming ability, and antimicrobial resistance of urinary Escherichia coli strains isolated from hospitalized patients. Turk. J. Med. Sci. 2016, 46, 1908–1914. [Google Scholar] [CrossRef]
- Bartoletti, R.; Cai, T.; Wagenlehner, F.M.; Naberd, K.; Johansene, T.E.B. Treatment of urinary tract infections and antibiotic stewardship. Eur. Urol. Suppl. 2016, 15, 81–87. [Google Scholar] [CrossRef]
- Bonkat, G.; Pickard, R.; Bartoletti, R.; Bruyère, F.; Geerlings, S.E.; Wagenlehner, F.; Wullt, B. Guidelines on Urological Infections. European Association of Urology. 2017. Available online: https://uroweb.org/wp-content/uploads/Urological-Infections-2017-pocket.pdf (accessed on 17 March 2017).
- Cheung, A.; Karmali, G.; Noble, S.; Song, H. Antimicrobial stewardship initiative in treatment of urinary tract infections at a rehabilitation and complex continuing care hospital. Can. J. Hosp. Pharm. 2017, 70, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.; Lyman, A.; Gupta, K.; Mahoney, M.V.; Snyder, G.M.; Hirsch, E.B. Clinical management of an increasing threat: Outpatient urinary tract infections due to multidrug resistant uropathogens. Clin. Infect. Dis. 2016, 63, 960–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenney, J.; Hudson, N.; Alnifaidy, H.; Li, J.T.C.; Fung, K.H. Risk factors for aquiring multidrug-resistant organisms in urinary tract infections: A systematic literature review. Saudi Pharm. J. 2018, 26, 678–684. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Shariq, A.; AlSalloom, A.A.; Babikir, I.H.; Alhomoud, B.N. Uropathogens and their antimicrobial resistance patterns: Relationship with urinary tract infections. Int. J. Health Sci. 2019, 13, 48–55. [Google Scholar]
- Demir, M.; Kazanasmaz, H. Uropathogens and antibiotic resistance in the community and hospital-induced urinary tract infected children. J. Glob. Antimicrob. Resist. 2020, 20, 68–73. [Google Scholar] [CrossRef]
- August, S.L.; De Rosa, M.J. Evaluation of the prevalence of urinary tract infection in rural panamanian women. PLoS ONE 2012, 7, e47752. [Google Scholar] [CrossRef]
- Woldemariam, H.K.; Geleta, D.A.; Tulu, K.D.; Aber, N.A.; Legese, M.H.; Fenta, G.M.; Ali, I. Common uropathogens and their antibiotic susceptibility pattern among diabetic patients. BMC Infect. Dis. 2019, 19, 43. [Google Scholar] [CrossRef]
- Mahony, M.; McMullan, B.; Brown, J.; Kennedy, S.E. Multidrug-resistant organisms in urinary tract infections in children. Pediatr. Nephrol. 2020, 35, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Beksac, A.T.; Orgul, G.; Tanacan, A.; Uckan, H.; Sancak, B.; Portakal, O.; Beksac, M.S. Uropathogens and gestational outcomes of urinary tract infections in pregnancies that necessitate hospitalization. Curr. Urol. 2019, 13, 70–73. [Google Scholar] [CrossRef]
- Tan, M.; Mannath, K.; Ng, L.; Hu, P.; Moey, K.; Tan, K.; Koong, Y.; Tan, T.; Wong, C.; Tan, N. Uropathogens and antimicrobial susceptibility patterns in urinary tract infections diagnosed in the primary care setting in Singapore. Int. J. Infect. Dis. 2016, 53, 53. [Google Scholar] [CrossRef] [Green Version]
- Hrbacek, J.; Cermak, P.; Zachoval, R. Current antibiotic resistance trends of uropathogens in Central Europe: Survey from a tertiary hospital urology department 2011–2019. Antibiotics 2020, 9, 630. [Google Scholar] [CrossRef] [PubMed]
- Ndzime, Y.M.; Onanga, R.; Kassa, R.F.K.; Bignoumba, M.; Nguema, P.P.M.; Gafou, A.; Lendamba, R.W.; Moghoa, K.M.; Bisseye, C. Epidemiology of community origin Escherichia coli and Klebsiella pneumoniae uropathogenic strains resistant to antibiotics in Franceville, Gabon. Infect. Drug Resist. 2021, 14, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Gołębiewska, J.E.; Krawczyk, B.; Wysocka, M.; Ewiak, A.; Komarnicka, J.; Bronk, M.; Rutkowski, B.; Dębska-Ślizień, A. Host and pathogen factors in Klebsiella pneumoniae upper urinary tract infections in renal transplant patients. J. Med. Microbiol. 2019, 68, 382–394. [Google Scholar] [CrossRef] [PubMed]
- SPILF. Diagnostic et Antibiothérapie des Infections Urinaires Bactériennes Communautaires de L’Adulte; SPILF: Paris, France, 2015; pp. 1–43. [Google Scholar]
- Abernethy, J.; Guy, R.; Sheridan, E.; Hopkins, S.; Kiernan, M.; Wilcox, M.; Johnson, A.; Hope, R.; Sen, R.; Mifsud, A.; et al. Epidemiology of Escherichia coli bacteraemia in England: Results of an enhanced sentinel surveillance programme. J. Hosp. Infect. 2017, 95, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parajuli, N.P.; Maharjan, P.; Parajuli, H.; Joshi, G.; Paudel, D.; Sayami, S.; Khanal, P.R. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal. Antimicrob. Resist. Infect. Control 2017, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Shakhatreh, M.A.K.; Swedan, S.F.; Al-Odat, M.A.; Khabour, O.F. Uropathogenic Escherichia coli (UPEC) in Jordan: Prevalence of urovirulence genes and antibiotic resistance. J. King Saud Univ. Sci. 2019, 31, 648–652. [Google Scholar] [CrossRef]
- Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc. 2011, 86, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Bora, A.; Sanjana, R.; Jha, B.K.; Mahaseth, S.N.; Pokharel, K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res. Notes 2014, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Michno, M.; Sydor, A.; Wałaszek, M.; Sułowicz, W. Microbiology and drug resistance of pathogens in patients hospitalized at the nephrology department in the South of Poland. Pol. J. Microbiol. 2018, 67, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciontea, A.S.; Cristea, D.; Andrei, M.M.; Popa, A.; Usein, C.R. In vitro antimicrobial resistance of urinary Escherichia coli isolates from outpatients collected in a laboratory during two years, 2015–2017. Roum. Arch. Microbiol. Immunol. 2018, 77, 28–32. [Google Scholar]
- Lavigne, J.-P.; Bruyère, F.; Bernard, L.; Combescure, C.; Ronco, E.; Lanotte, P.; Coloby, P.; Thibault, M.; Cariou, G.; Desplaces, N.; et al. Resistance and virulence potential of uropathogenic Escherichia coli strains isolated from patients hospitalized in urology departments: A French prospective multicentre study. J. Med. Microbiol. 2016, 65, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Abduzaimovic, A.; Aljicevic, M.; Rebic, V.; Vranic, S.M.; Abduzaimovic, K.; Sestic, S. Antibiotic resistance in urinary isolates of Escherichia coli. Mater. Socio-Med. 2016, 28, 416–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buultjens, A.H.; Lam, M.M.; Ballard, S.; Monk, I.R.; Mahony, A.A.; Grabsch, E.A.; Grayson, M.L.; Pang, S.; Coombs, G.W.; Robinson, J.O.; et al. Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium. PeerJ 2017, 5, e2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieńko, A.; Czaban, S.; Ojdana, D.; Majewski, P.; Wieczorek, A.; Sacha, P.; Tryniszewska, E.A.; Wieczorek, P. Comparison of antibiotic resistance and virulence in vancomycin-susceptible and vancomycin-resistant Enterococcus faecium strains. J. Med. Sci. 2018, 87, 195–203. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Donk, C.F.M.; van de Bovenkamp, J.H.B.; De Brauwer, E.I.; De Mol, P.; Feldhoff, K.H.; Kalka-Moll, W.M.; Nys, S.; Thoelen, I.; Trienekens, T.A.; Stobberingh, E.E. Antimicrobial resistance and spread of multi drug resistant Escherichia coli isolates collected from nine urology services in the Euregion Meuse-Rhine. PLoS ONE 2012, 7, e47707. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Salazar, E.; Cordero, V.; Castro, A.; Villanueva, A.; Rodulfo, H.; De Donato, M. Multidrug resistance and risk factors associated with community-acquired urinary tract infections caused by Escherichia coli in Venezuela. Biomédica 2019, 39, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-González, F.J.; Márquez-Díaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [Google Scholar] [CrossRef]
- Faghri, J.; Dehbanipour, R.; Rastaghi, S.; Sedighi, M.; Maleki, N. High prevalence of multidrug-resistance uropathogenic Escherichia coli strains, Isfahan, Iran. J. Nat. Sci. Biol. Med. 2016, 7, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.K.; Mukherjee, M. Characterization and bio-typing of multidrug resistance plasmids from uropathogenic Escherichia coli isolated from clinical setting. Front. Microbiol. 2019, 10, 2913. [Google Scholar] [CrossRef] [Green Version]
- Kot, B.; Wicha, J.; Żak-Puławska, Z. Susceptibility of Escherichia coli strains isolated from persons with urinary tract infections to antimicrobial agents in 2007–2008. Przegl. Epidemiol. 2010, 64, 307–312. [Google Scholar] [PubMed]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Mendes, R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS ONE 2019, 14, e0220265. [Google Scholar] [CrossRef] [PubMed]
- Toner, L.; Papa, N.; Aliyu, S.H.; Dev, H.; Lawrentschuk, N.; Al-Hayek, S. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in hospital urinary tract infections: Incidence and antibiotic susceptibility profile over 9 years. World J. Urol. 2016, 34, 1031–1037. [Google Scholar] [CrossRef]
- Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 2013, 1277, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Yong, D.; Lee, K.; Yum, J.H.; Shin, H.B.; Rossolini, G.M.; Chong, Y. Imipenem-EDTA disk method for differentiation of metal-lo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2002, 40, 3798–3801. [Google Scholar] [CrossRef] [Green Version]
Characteristics | n | % |
---|---|---|
Hospital Ward | ||
Nephrology | 52 | 32.3 |
Neurological | 40 | 24.8 |
Pediatric | 25 | 15.5 |
Internal | 25 | 15.5 |
Intensive care | 5 | 3.1 |
Orthopedics | 5 | 3.1 |
Gynecology | 4 | 2.5 |
Surgery | 3 | 1.9 |
Dialysis station | 2 | 1.2 |
Age | ||
0–18 | 25 | 15.5 |
19–39 | 9 | 5.6 |
40–60 | 9 | 5.6 |
>60 | 118 | 73.3 |
Gender | ||
Female | 116 | 72.0 |
Male | 45 | 28.0 |
Microorganisms | n | % |
---|---|---|
Escherichia coli | 84 | 52.2 |
Klebsiella pneumoniae | 22 | 13.7 |
Enterococcus faecalis | 15 | 9.3 |
Enterococcus faecium | 10 | 6.2 |
Proteus mirabilis | 7 | 4.3 |
Candida albicans | 6 | 3.7 |
Enterobacter cloacae | 3 | 1.9 |
Streptococcus agalactiae | 2 | 1.2 |
Pseudomonas aeruginosa | 2 | 1.2 |
Staphylococcus haemolyticus | 2 | 1.2 |
Candida glabrata | 1 | 0.6 |
Morganella morganii | 1 | 0.6 |
Staphylococcus aureus | 1 | 0.6 |
Acinetobacter baumanii | 1 | 0.6 |
Providencia stuarti | 1 | 0.6 |
Klebsiella oxytoca | 1 | 0.6 |
Cupriavidus pauculus | 1 | 0.6 |
Streptococcus spp. | 1 | 0.6 |
Uropathogens | Female (n = 116) | Male (n = 45) | |
---|---|---|---|
Occurrence of Uropathogens | |||
n (%) | n (%) | p-Value | |
E. coli | 68 (58.6) | 16 (35.5) | 0.0089 ** |
K. pneumoniae | 11 (9.5) | 11 (24.4) | 0.0119 * |
P. mirabilis | 5 (4.3) | 2 (4.4) | - |
E. faecalis | 11 (9.5) | 4 (8.8) | - |
E. faecium | 6 (5.2) | 4 (8.8) | 0.3434 |
Age Groups | p-Value | ||||||
---|---|---|---|---|---|---|---|
Uropathogens | 0–18 A (n = 25) | 19–39 B (n = 9) | 40–60 C (n = 9) | >60 D (n = 118) | Comparison of: | ||
Occurrence of Uropathogenes, n (%) | A and B | A and C | A and D | ||||
E. coli | 23 (92.0) | 5 (55.5) | 3 (33.3) | 53 (44.9) | 0.0164 * | 0.0004 ** | <0.0001 ** |
K. pneumoniae | 0 | 1 (11.1) | 2 (22.2) | 18 (15.2) | 0.0973 | 0.0173 * | 0.0393 * |
P. mirabilis | 0 | 0 | 0 | 7 (5.9) | - | - | 0.2106 |
E. faecalis | 0 | 2 (22.2) | 2 (22.2) | 11 (9.3) | 0.0173 * | 0.0173 * | 0.1203 |
E. faecium | 1 (4.2) | 1 (11.1) | 1 (11.1) | 7 (5.9) | 0.4498 | 0.4498 | 0.6950 |
Uropathogens | Hospital Ward | ||||
---|---|---|---|---|---|
Nephrology (n = 52) | Pediatric (n = 25) | Neurological (n = 40) | Internal (n = 25) | Orthopedics (n = 5) | |
Occurrence of Uropathogenes, n (%) | |||||
E. coli | 21 (40.4) | 23 (92.0) | 21 (52.5) | 12 (48.0) | 3 (60.0) |
K. pneumoniae | 14 (26.9) | 0 | 3 (7.5) | 4 (16.0) | 0 |
P. mirabilis | 2 (3.8) | 0 | 2 (5.0) | 1 (4.0) | 0 |
E. faecalis | 7 (13.5) | 0 | 3 (7.5) | 3 (12.0) | 1 (20.0) |
E. faecium | 3 (5.7) | 1 (4.0) | 3 (7.5) | 3 (12.0) | 0 |
Antimicrobial Group | Antimicrobials | E. coli | K. pneumoniae | P. mirabilis |
---|---|---|---|---|
% Resistant Isolates | ||||
Penicillins | Ampicillin | 53.4 | 100 | 83.3 |
AMC | 34.3 | 75.0 | 60.0 | |
TZP | 13.2 | 76.2 | 33.3 | |
Cephalosporins 2nd G | Cefuroxime | 32.9 | 81.0 | 16.7 |
Cephalosporins 3rd G | Cefotaxime | 31.5 | 76.2 | 16.7 |
Carbapenems | Ertapenemem | 0.0 | 13.6 | 0.0 |
Imipenem | 0.0 | 13.6 | 0.0 | |
Meropenemem | 0.0 | 13.6 | 0.0 | |
Fluoroquinolones | Ciprofloxacin | 28.6 | 81.0 | 83.3 |
Aminoglycosides | Amikacin | 9.7 | 19.0 | 33.3 |
Gentamicin | 24.6 | 19.0 | 40.0 | |
Sulfonamides | SXT | 30.1 | 81.0 | 66.7 |
Nitrofurans | Nitrofurantoin | 7.8 | - | - |
Antimicrobial Group | Antimicrobials | E. faecalis | E. faecium |
---|---|---|---|
% Resistant Isolates | |||
Penicillins | Ampicillin | 7.7 | 100 |
Carbapenems | Imipenem | 0.0 | 100 |
Fluoroquinolones | Ciprofloxacin | 36.4 | 100 |
Aminoglycosides | Gentamicin | 38.5 | 40 |
Glycopeptides | Vancomycin | 0.0 | 40 |
Sulfonamides | SXT | 46.2 | 100 |
Uropathogens (n) | No. (%) of ESBL-Positive Isolates | Hospital Wards (n, %) |
---|---|---|
E. coli (84) | 22 (26.2) | Nephrology (8, 30.1), neurological (5, 23.8), internal (4, 33.3), pediatric (4, 17.4), orthopedics (1, 33.3) |
K. pneumoniae (22) | 14 (63.6) | Nephrology (12, 85.7), internal (1, 25.0), dialysis station (1, 100) |
P. mirabilis (7) | 1 (14.3) | Nephrology (1, 50.0) |
Combination of Drugs (No. of Antimicrobial Agents Classes) | No. of Isolates | Resistance Mechanism (n) | Hospital Wards (n) |
---|---|---|---|
E. coli | |||
AMP, AMC, GM, SXT (3) | 1 | - | Neurological |
AMP, CXM, CTX, F, GM (3) | 1 | ESBL | Neurological |
AMP, CXM, CTX, AMC, CIP, SXT (3) | 2 | ESBL (2) | Internal, nephrology |
AMP, CXM, CTX, TZP, AMC, GM, CIP (3) | 1 | ESBL | Internal |
AMP, CXM, CTX, AMC, F, SXT (3) | 1 | ESBL | Pediatric |
AMP, CXM, CTX, CIP, SXT (3) | 1 | ESBL | Internal |
AMP, CXM, CTX, TZP, AMC, AK, GM, CIP (3) | 1 | ESBL | Nephrology |
AMP, CXM, CTX, TZP, AMC, AK, GM, SXT (3) | 1 | ESBL | Neurological |
GM, CIP, SXT (3) | 1 | - | Nephrology |
AMP, CXM, TZP, AMC, F, GM, SXT (4) | 1 | - | Nephrology |
AMP, CXM, CTX, AMC, GM, CIP, SXT (4) | 3 | ESBL (3) | Nephrology (2), pediatric |
AMP, CXM, CTX, TZP, AMC, GM, CIP, SXT (4) | 2 | ESBL (2) | Nephrology, neurological |
AMP, CXM, CTX, GM, CIP, SXT (4) | 1 | ESBL | Pediatric |
AMP, CXM, CTX, AMC, F, GM, CIP, SXT (5) | 1 | ESBL | Internal |
AMP, CXM, CTX, TZP, AMC, F, AK, GM, CIP, SXT (5) | 1 | ESBL | Internal |
K. pnemoniae | |||
AMP, CIP, SXT (3) | 1 | - | Internal |
AMP, CXM, CTX, CIP, SXT (3) | 1 | - | Neurological |
AMP, CXM, CTX, TZP, AMC, CIP, SXT (3) | 8 | ESBL | Nephrology (7), dialysis station (1) |
AMP, CXM, CTX, IMP, MEM, ETP, TZP, AMC, CIP, SXT (3) | 1 | MBL | Nephrology |
AMP, CXM, CTX, TZP, AMC, AK, CIP, SXT (4) | 2 | ESBL | Nephrology |
AMP, CXM, CTX, TZP, AMC, GM, CIP, SXT (4) | 3 | ESBL | Nephrology (2), internal (1) |
AMP, CXM, CTX, IMP, MEM, ETP, TZP, AMC, AK, CIP, SXT(4) | 1 | MBL | Internal |
AMP, CXM, CTX, IMP, MEM, ETP, TZP, AMC, AK, GM, CIP, SXT (4) | 1 | MBL | Internal |
Combination of Antibiotics (No. of Antimicrobial Agent Classes) | No. of Isolates | Resistance Mechanism | Hospital Wards (n) |
---|---|---|---|
E. faecium | |||
AMP, IMP, CIP, SXT (3) | 2 | - | Neurological |
AMP, IMP, CIP, VA, SXT (4) | 2 | VRE | Nephrology, neurological |
AMP, IMP, CIP, GM, SXT (4) | 4 | - | Internal (2), nephrology, pediatric |
AMP, IMP, CIP, F, VA, SXT (5) | 1 | VRE | Internal |
AMP, IMP, CIP, GM, VA, SXT (5) | 1 | VRE | Nephrology |
E. faecalis | |||
GM, CIP, SXT (3) | 4 | - | Nephrology (2), internal (1), orthopedics (1) |
AMP, GM, CIP, SXT (4) | 1 | - | Internal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, B.; Grużewska, A.; Szweda, P.; Wicha, J.; Parulska, U. Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics 2021, 10, 447. https://doi.org/10.3390/antibiotics10040447
Kot B, Grużewska A, Szweda P, Wicha J, Parulska U. Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics. 2021; 10(4):447. https://doi.org/10.3390/antibiotics10040447
Chicago/Turabian StyleKot, Barbara, Agata Grużewska, Piotr Szweda, Jolanta Wicha, and Urszula Parulska. 2021. "Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020" Antibiotics 10, no. 4: 447. https://doi.org/10.3390/antibiotics10040447
APA StyleKot, B., Grużewska, A., Szweda, P., Wicha, J., & Parulska, U. (2021). Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics, 10(4), 447. https://doi.org/10.3390/antibiotics10040447