Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens
Abstract
:1. Introduction
2. Results
2.1. Foodborne Pathogens
2.2. Mastitic Pathogens
2.3. Opportunistic Commensal Bacteria
2.4. Minimum Inhibitory Concentrations of Antibiotics and Sorghum Phenolic Compounds
3. Discussion
4. Materials and Methods
4.1. Sorghum Plant Material
4.2. Total Phenolic Compounds Extraction and Quantification
4.3. Antimicrobial Susceptibility Testing of Sorghum Phenolic Extract
4.3.1. Preparation of Bacterial Inocula
4.3.2. Agar-Well Diffusion Assay
4.4. Antibiotic Susceptibility Determinations
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer Statement
References
- Aidara-Kane, A.; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control. 2018, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Veterinary Feed Directive. In Administration FaD; Food and Drug Administration: Silver Spring, MD, USA, 2015; pp. 31707–31735. [Google Scholar]
- Torio, H.; Padilla, M. Multiple resistance to medically important antimicrobials of commensal Escherichia coli isolated from dressed broiler chickens in Calabarzon, Philippines. Philipp. J. Vet. Med. 2018, 55, 95–106. [Google Scholar]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- CDC. One Health; Department of Health & Human Services: Athens, GA, USA, 2021.
- Brown, A.C.; Grass, J.E.; Richardson, L.C.; Nisler, A.L.; Bicknese, A.S.; Gould, L.H. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003–2012. Epidemiol. Infect. 2017, 145, 766–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Yu, H.; Elbediwi, M.; Zhou, X.; Shuai, H.; Lou, X.; Wang, H.; Li, Y.; Yue, M. Epidemiological and Genomic Characterization of Campylobacter jejuni Isolates from a Foodborne Outbreak at Hangzhou, China. Int. J. Mol. Sci. 2020, 21, 3001. [Google Scholar] [CrossRef]
- Roels, T.H.; Wickus, B.; Bostrom, H.H.; Kazmierczak, J.J.; Nicholson, M.A.; Kurzynski, T.A.; Davis, J.P. A foodborne outbreak of Campylobacter jejuni (O [ratio] 33) infection associated with tuna salad: A rare strain in an unusual vehicle. Epidemiol. Infect. 1998, 121, 281–287. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks, United States, 2017; Annual Report; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Launders, N.; Byrne, L.; Jenkins, C.; Harker, K.; Charlett, A.; Adak, G.K. Disease severity of Shiga toxin-producing Escherichia coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: A retrospective cohort study, 2009–2012. BMJ Open 2016, 6, e009933. [Google Scholar] [CrossRef] [Green Version]
- Haus-Cheymol, R.; Espie, E.; Che, D.; Vaillant, V.; De Valk, H.; Desenclos, J.C. Association between indicators of cattle density and incidence of paediatric haemolytic—Uraemic syndrome (HUS) in children under 15 years of age in France between 1996 and 2001: An ecological study. Epidemiol. Infect. 2005, 134, 712–718. [Google Scholar] [CrossRef]
- Alpers, K.; Werber, D.; Frank, C.; Koch, J.; Friedrich, A.W.; Karch, H.; Der Heiden, M.A.; Prager, R.; Fruth, A.; Bielaszewska, M.; et al. Sorbitol-fermenting enterohaemorrhagic Escherichia coli O157: H−causes another outbreak of haemolytic uraemic syndrome in children. Epidemiol. Infect. 2008, 137, 389–395. [Google Scholar] [CrossRef] [Green Version]
- McCrackin, M.; Helke, K.L.; Galloway, A.M.; Poole, A.Z.; Salgado, C.D.; Marriott, B.P. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 2115–2132. [Google Scholar] [CrossRef]
- Chigor, V.N.; Umoh, V.J.; Smith, S.I.; Igbinosa, E.O.; Okoh, A.I. Multidrug Resistance and Plasmid Patterns of Escherichia coli O157 and Other E. coli Isolated from Diarrhoeal Stools and Surface Waters from Some Selected Sources in Zaria, Nigeria. Int. J. Environ. Res. Public Health 2010, 7, 3831–3841. [Google Scholar] [CrossRef] [Green Version]
- DeGraves, F.J.; Fetrow, J. Economics of Mastitis and Mastitis Control. Vet. Clin. N. Am. Food Anim. Pract. 1993, 9, 421–434. [Google Scholar] [CrossRef]
- Hortet, P.; Seegers, H. Loss in milk yield and related composition changes resulting from clinical mastitis in dairy cows. Prev. Vet. Med. 1998, 37, 1–20. [Google Scholar] [CrossRef]
- Gröhn, Y.; Wilson, D.; González, R.; Hertl, J.; Schulte, H.; Bennett, G.; Schukken, Y. Effect of Pathogen-Specific Clinical Mastitis on Milk Yield in Dairy Cows. J. Dairy Sci. 2004, 87, 3358–3374. [Google Scholar] [CrossRef]
- Park, H.R.; Hong, M.K.; Hwang, S.Y.; Park, Y.K.; Kwon, K.H.; Yoon, J.W.; Shin, S.; Kim, J.H. Characterisation of Pseudomonas aeruginosa related to bovine mastitis. Acta Vet. Hung. 2014, 62, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohnishi, M.; Sawada, T.; Hirose, K.; Sato, R.; Hayashimoto, M.; Hata, E.; Yonezawa, C.; Kato, H. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from Mastitis. Vet. Microbiol. 2011, 154, 202–207. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [Green Version]
- Saleh, Z.F.; Mohamed, B.J.; Jawad, M.S. Isolation of Pseudomonas aeruginosa and molecular detection of bla-OXA gene of the bacteria from milk of mastitis cattle and from the wounds of the udder. Al-Qadisiyah J. Vet. Med. Sci. 2016, 15, 29–33. [Google Scholar]
- Tomlinson, M.S.; Crilly, J.P.; Corbishley, A.; Hopker, A. Successful treatment of a multidrug resistant Pseudomonas aeruginosa infection following a digit amputation in a Belgian Blue calf. Vet. Rec. Case Rep. 2016, 4, e000324. [Google Scholar] [CrossRef] [Green Version]
- Tenhagen, B.-A.; Vossenkuhl, B.; Käsbohrer, A.; Alt, K.; Kraushaar, B.; Guerra, B.; Schroeter, A.; Fetsch, A. Methicillin-resistant Staphylococcus aureus in cattle food chains—Prevalence, diversity, and antimicrobial resistance in Germany. J. Anim. Sci. 2014, 92, 2741–2751. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Zhao, F.; Fan, X.; Zhong, W.; Qiao, D.; Cao, Y. Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. Southeast Asian J. Trop. Med. Public Heal. 2013, 44, 988. [Google Scholar]
- Hoelzer, K.; Bielke, L.; Blake, D.P.; Cox, E.; Cutting, S.M.; Devriendt, B.; Erlacher-Vindel, E.; Goossens, E.; Karaca, K.; Lemiere, S.; et al. Vaccines as alternatives to antibiotics for food producing animals. Part 1: Challenges and needs. Vet. Res. 2018, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Baskaran, S.A.; Upadhyay, A.; Kollanoor-Johny, A.; Upadhyaya, I.; Mooyottu, S.; Amalaradjou, M.A.R.; Schreiber, D.; Venkitanarayanan, K. Efficacy of Plant-Derived Antimicrobials as Antimicrobial Wash Treatments for Reducing Enterohemorrhagic Escherichia Coli O157: H7 on Apples. J. Food Sci. 2013, 78, M1399–M1404. [Google Scholar] [CrossRef]
- Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Kalra, S.J.S. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech 2013, 4, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Anastasaki, E.; Zoumpopoulou, G.; Astraka, K.; Kampoli, E.; Skoumpi, G.; Papadimitriou, K.; Tsakalidou, E.; Polissiou, M. Phytochemical analysis and evaluation of the antioxidant and antimicrobial properties of selected herbs cultivated in Greece. Ind. Crop. Prod. 2017, 108, 616–628. [Google Scholar] [CrossRef]
- Kil, H.Y.; Seong, E.S.; Ghimire, B.K.; Chung, I.-M.; Kwon, S.S.; Goh, E.J.; Heo, K.; Kim, M.J.; Lim, J.D.; Lee, D.; et al. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem. 2009, 115, 1234–1239. [Google Scholar] [CrossRef]
- Villalobos, M.D.C.; Serradilla, M.J.; Martín, A.; Ordiales, E.; Ruiz-Moyano, S.; Córdoba, M.D.G. Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. J. Sci. Food Agric. 2015, 96, 2116–2124. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251. [Google Scholar] [CrossRef]
- Herald, T.J.; Gadgil, P.; Tilley, M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W.; Waniska, R.D.; Rooney, W.L. Phenolic Compounds and Antioxidant Activity of Sorghum Grains of Varying Genotypes. J. Agric. Food Chem. 2005, 53, 6813–6818. [Google Scholar] [CrossRef]
- Guajardo-Flores, S. Evaluation of Anticancer Potential of Sorghums with Different Genetic Characteristics and Levels of Phenolic Compounds; ProQuest Dissertations Publishing: College Station, TX, USA, 2008. [Google Scholar]
- Gilchrist, A.K.; Smolensky, D.; Ngwaga, T.; Chauhan, D.; Cox, S.; Perumal, R.; E Noronha, L.; Shames, S.R. High-polyphenol extracts from Sorghum bicolor attenuate replication of Legionella pneumophila within RAW 264.7 macrophages. FEMS Microbiol. Lett. 2020, 367. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Meadows, S.; Meyers, R.; Parmley, E.J.; Fazil, A. Seasonality and zoonotic foodborne pathogens in Canada: Relationships between climate and Campylobacter, Escherichia Coli and Salmonella in meat products. Epidemiol. Infect. 2019, 147, e190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaheen, S.; Kim, S.W.; Cao, H.; Wolfgang, D.R.; Hovingh, E.; Karns, J.S.; Haley, B.J.; Van Kessel, J.A.S. Antimicrobial Resistance Among Escherichia coli Isolated from Veal Calf Operations in Pennsylvania. Foodborne Pathog. Dis. 2019, 16, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Vygen-Bonnet, S.; Rosner, B.; Wilking, H.; Fruth, A.; Prager, R.; Kossow, A.; Lang, C.; Simon, S.; Seidel, J.; Faber, M.; et al. Ongoing haemolytic uraemic syndrome (HUS) outbreak caused by sorbitol-fermenting (SF) Shiga toxin-producing Escherichia coli (STEC) O157, Germany, December 2016 to May 2017. Eurosurveillance 2017, 22, 30541. [Google Scholar] [CrossRef]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet Quart. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Duarte, A.; Luís, Â.; Oleastro, M.; Domingues, F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control 2016, 61, 115–122. [Google Scholar] [CrossRef]
- Lu, X.; Rasco, B.A.; Jabal, J.M.F.; Aston, D.E.; Lin, M.; Konkel, M.E. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy. Appl. Environ. Microbiol. 2011, 77, 5257–5269. [Google Scholar] [CrossRef] [Green Version]
- Akogou, F.U.G.; den Besten, H.M.W.; Kayodé, A.P.P.; Fogliano, V.; Linnemann, A.R. Antimicrobial evaluation of red, phytoalexin-rich sorghum food biocolorant. PLoS ONE 2018, 13, e0194657. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.G.; Mamidyala, S.K.; Reddy, M.N.; Reddy, B.V. Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent. Process. Biochem. 2012, 47, 1488–1495. [Google Scholar] [CrossRef]
- Halder, T.; Upadhyaya, G.; Roy, S.; Biswas, R.; Das, A.; Bagchi, A.; Agarwal, T.; Ray, S. Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. Plant Mol. Biol. 2019, 101, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, D.; Rhodes, D.; McVey, D.S.; Fawver, Z.; Perumal, R.; Herald, T.; Noronha, L. High-Polyphenol Sorghum Bran Extract Inhibits Cancer Cell Growth Through ROS Induction, Cell Cycle Arrest, and Apoptosis. J. Med. Food 2018, 21, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standard for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Clinical and Laboratory Standard Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
- Rammelsberg, M.; Radler, F. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol. 1990, 69, 177–184. [Google Scholar] [CrossRef]
Sorghum Phenolic Extract Concentration (µg/mL) | p-Value | ||||||
---|---|---|---|---|---|---|---|
0 | 100 | 200 | 500 | 1000 | 4000 | ||
Bacterial Species and Strain Number | ZOI a | ZOI a | ZOI a | ZOI a | ZOI a | ZOI a | |
Escherichia coli O157 2017-5-590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - |
Escherichia coli O157 2017-5-493 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - |
Escherichia coli O157 380-94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - |
Campylobacter jejuni 2016-12-17A | 0.0 | 0.0 | 0.0 | 4.1 | 5.8 | 11.1 | 0.0002 |
Campylobacter coli 2016-12-82A | 0.0 | 1.4 | 3.2 | 3.8 | 7.0 | 12.7 | 0.0016 |
Campylobacter coli 2016-12-80A | 0.0 | 0.0 | 0.8 | 3.8 | 5.8 | 11.7 | <0.0001 |
Campylobacter coli 2016-12-181A | 0.0 | 2.3 | 3.3 | 4.8 | 7.7 | 14.7 | 0.0004 |
Salmonella Typhimurium ATCC 14028 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - |
Staphylococcus aureus VDL3-SA-2017 | 0.0 | 2.8 | 3.4 | 4.1 | 5.2 | 7.7 | 0.0001 |
Pseudomonas aeruginosa VDL4-PA-2017 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | - |
Klebsiella pneumoniae VDL1-KP-2017 | 0 | 1.3 | 1.3 | 0.9 | 0.0 | 0.8 | 0.8887 |
Klebsiella oxytoca VDL2-KO-2017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 2.4 | - |
Enterococcus faecalis ATCC 29212 | 0.0 | 1.7 | 2.3 | 3.0 | 4.3 | 8.2 | 0.0003 |
Sorghum Phenolic Extract Concentration (µg/mL) | Mean Differences with the p-Values | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 500 | 1000 | 4000 | 100.vs. 200 | 100.vs. 500 | 100.vs. 1000 | 100.vs. 4000 | 200.vs. 500 | 200.vs. 1000 | 200.vs. 4000 | 500.vs. 1000 | 500.vs. 4000 | 1000.vs. 4000 | |||||||||||
Bacteria | ZOI a | ZOI a | ZOI a | ZOI a | ZOI a | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p |
E. coli O157 2017-5-590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
E. coli O157 2017-5-493 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
E.coli O157 380-94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
C. jejuni 2016-12-17A | 0.0 | 0.0 | 4.1 | 5.8 | 11.1 | 0 | 1.00 | −4.08 | <0.0001 | −5.75 | <0.0001 | −11.08 | <0.0001 | −4.08 | <0.0001 | −5.75 | <0.0001 | −11.08 | <0.0001 | −1.67 | <0.0001 | −7.00 | <0.0001 | −5.33 | <0.0001 |
C. coli 2016-12-82A | 1.4 | 3.2 | 3.8 | 7.0 | 12.7 | −1.75 | 0.0001 | −2.33 | <0.0001 | −5.58 | <0.0001 | −11.25 | <0.0001 | −0.58 | 0.1226 | −3.83 | <0.0001 | −9.50 | <0.0001 | −3.25 | <0.0001 | −8.92 | <0.0001 | −5.67 | <0.0001 |
C. coli 2016-12-80A | 0.0 | 0.8 | 3.8 | 5.8 | 11.7 | −0.75 | 0.0255 | −3.75 | <0.0001 | −5.75 | <0.0001 | −11.67 | <0.0001 | −3.00 | <0.0001 | −5.00 | <0.0001 | −10.92 | <0.0001 | −2.00 | <0.0001 | −7.92 | <0.0001 | −5.92 | <0.0001 |
C. coli 2016-12-181A | 2.3 | 3.3 | 4.8 | 7.7 | 14.7 | −1.083 | 0.1650 | −2.50 | 0.0036 | −5.42 | <0.0001 | −12.42 | <0.0001 | −1.42 | 0.0746 | −4.33 | <0.0001 | −11.33 | <0.0001 | −2.92 | 0.0011 | −9.92 | <0.0001 | −7.00 | <0.0001 |
S. Typhimurium ATCC 14028 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.89 × 10−31 | 1.00 | −7.89 × 10−31 | 1.00 | 0.00 | 1.00 | 2.31× 10 −15 | 1.00 | −1.58 × 10−30 | 1.00 | −7.89 × 10−31 | 1.00 | 2.31 × 10−15 | 1.00 | 7.89 × 10−31 | 1.00 | 2.31 × 10−15 | 1.00 | 2.31 × 10−15 | 1.00 |
S. aureus VDL3-SA-2017 | 2.8 | 3.4 | 4.1 | 5.2 | 7.7 | −0.63 | 0.0007 | −1.29 | <0.0001 | −2.38 | <0.0001 | −4.88 | <0.0001 | −0.67 | 0.0004 | −1.75 | <0.0001 | −4.25 | <0.0001 | −1.08 | <0.0001 | −3.58 | <0.0001 | −2.50 | <0.0001 |
P. aeruginosa VDL4-PA-2017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.11 × 10−16 | 1.00 | 2.22 × 10−16 | 1.00 | 1.67 × 10−16 | 1.00 | −0.33 | <0.0001 | 1.11 × 10−16 | 1.00 | 1.11 × 10−16 | 1.00 | −0.33 | <0.0001 | 5.55 × 10−17 | 1.00 | −0.33 | <0.0001 | −0.33 | <0.0001 |
K. pneumoniae VDL1-KP-2017 | 1.3 | 1.3 | 0.9 | 0.0 | 0.8 | −0.083 | 0.6079 | 0.33 | 0.0512 | 1.25 | <0.0001 | 0.42 | 0.0177 | 0.42 | 0.0177 | 1.33 | <0.0001 | 0.50 | 0.0057 | 0.92 | <0.0001 | 0.083 | 0.6079 | −0.83 | <0.0001 |
K. oxytoca VDL2-KO-2017 | 0.0 | 0.0 | 0.0 | 0.8 | 2.4 | −4.44 × 10−16 | 1.00 | 4.44 × 10−16 | 1.00 | −0.83 | 0.4575 | −2.38 | 0.0441 | 8.88 × 10−16 | 1.00 | −0.83 | 0.4575 | −2.38 | 0.0441 | −0.83 | 0.4575 | −2.38 | 0.0441 | −1.54 | 0.1771 |
E. faecalis ATCC 29212 | 1.7 | 2.3 | 3.0 | 3.4 | 6.5 | −0.67 | 0.5496 | −1.29 | 0.2527 | −1.75 | 0.1268 | −4.83 | 0.0003 | −0.63 | 0.5746 | −1.08 | 0.3348 | −4.17 | 0.0013 | −0.46 | 0.6800 | −3.54 | 0.0045 | −3.08 | 0.0113 |
Sorghum Phenolic Extract Concentration (µg/mL) | Mean Differences with the p-Values | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 500 | 1000 | 4000 | 0.vs. 100 | 0.vs. 200 | 0.vs. 500 | 0.vs. 1000 | 0.vs. 4000 | ||||||
Bacteria | ZOI a | ZOI a | ZOI a | ZOI a | ZOI a | ZOI a | SEM b | p | SEM b | p | SEM b | p | SEM b | p | SEM b | p |
E. coli O157 2017-5-590 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - |
E. coli O157 2017-5-493 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - |
E.coli O157 380-94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | - | - | - | - |
C. jejuni 2016-12-17A | 0.0 e,f,g | 0.0 | 0.0 | 4.1 e | 5.8 f | 11.1 g | 0 | 1.0000 | 0 | 1.0000 | −4.08 | <0.0001 | −5.75 | <0.0001 | −11.08 | <0.0001 |
C. coli 2016-12-82A | 0.0 h | 1.4 c | 3.2 d | 3.8 e | 7.0 f | 12.7 g | −1.42 | 0.0010 | −3.17 | <0.0001 | −3.75 | <0.0001 | −7.00 | <0.0001 | −12.67 | <0.0001 |
C. coli 2016-12-80A | 0.0 d,e,f,g | 0.0 | 0.8 d | 3.8 e | 5.8 f | 11.7 g | −178 × 10−17 | 1.0000 | −0.75 | 0.0255 | −3.75 | <0.0001 | −5.75 | <0.0001 | −11.67 | <0.0001 |
C. coli 2016-12-181A | 0.0 h | 2.3 c | 3.3 d | 4.8 e | 7.7 f | 14.7 g | −2.25 | 0.0076 | −3.33 | 0.0003 | −4.75 | <0.0001 | −7.67 | <0.0001 | −14.67 | <0.0001 |
S. Typhimurium ATCC 14028 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.73 | 0.1004 | 1.73 | 0.1004 | 1.73 | 0.1004 | 1.73 | 0.1004 | 1.73 | 0.1004 |
S. aureus VDL3-SA-2017 | 0.0 h | 2.8 c | 3.4 d | 4.1 e | 5.2 f | 7.7 g | −0.63 | 0.0007 | −1.29 | <0.0001 | −2.38 | <0.0001 | −4.88 | <0.0001 | −0.67 | 0.0004 |
P. aeruginosa VDL4-PA-2017 | 0.0 h | 0.0 c | 0.0 d | 0.0 e | 0.0 f | 0.3 g | 1.083 | <0.0001 | 1.083 | <0.0001 | 1.083 | <0.0001 | 1.083 | <0.0001 | 0.75 | <0.0001 |
K. pneumoniae VDL1-KP-2017 | 0.0 f | 1.3 | 1.3 | 0.9 | 0.0 f | 0.8 | −0.1667 | 0.3101 | −0.25 | 0.1346 | 0.17 | 0.3101 | 1.083 | <0.0001 | 0.25 | 0.1346 |
K. oxytoca VDL2-KO-2017 | 0.0 g | 0.0 | 0.0 | 0.0 | 0.8 | 2.4 g | 1.78 × 10−15 | 1.0000 | 1.33 × 10−15 | 1.000 | 2.22 × 10−15 | 1.0000 | −0.83 | 0.4575 | −2.38 | 0.0441 |
E. faecalis ATCC 29212 | 0.0 d,e,f,g | 1.7 | 2.3 d | 3.0 e | 3.4 f | 6.5 g | −1.52 | 0.1447 | −2.13 | 0.0468 | −2.71 | 0.0145 | −3.13 | 0.0058 | −5.95 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnur, S.E.; Amachawadi, R.G.; Baca, G.; Sexton-Bowser, S.; Rhodes, D.H.; Smolensky, D.; Herald, T.J.; Perumal, R.; Thomson, D.U.; Nagaraja, T.G. Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens. Antibiotics 2021, 10, 594. https://doi.org/10.3390/antibiotics10050594
Schnur SE, Amachawadi RG, Baca G, Sexton-Bowser S, Rhodes DH, Smolensky D, Herald TJ, Perumal R, Thomson DU, Nagaraja TG. Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens. Antibiotics. 2021; 10(5):594. https://doi.org/10.3390/antibiotics10050594
Chicago/Turabian StyleSchnur, Sydney E., Raghavendra G. Amachawadi, Giovanna Baca, Sarah Sexton-Bowser, Davina H. Rhodes, Dmitriy Smolensky, Thomas J. Herald, Ramasamy Perumal, Daniel U. Thomson, and Tiruvoor G. Nagaraja. 2021. "Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens" Antibiotics 10, no. 5: 594. https://doi.org/10.3390/antibiotics10050594
APA StyleSchnur, S. E., Amachawadi, R. G., Baca, G., Sexton-Bowser, S., Rhodes, D. H., Smolensky, D., Herald, T. J., Perumal, R., Thomson, D. U., & Nagaraja, T. G. (2021). Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens. Antibiotics, 10(5), 594. https://doi.org/10.3390/antibiotics10050594