Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Dalbavancin in Prosthetic Joint Infections
3.1. DAL Pharmacokinetics
3.2. DAL Pharmacodynamics
3.2.1. Mechanism of Action and Determination of In Vitro Activity of Dalbavancin
3.2.2. In Vitro Activity of Dalbavancin against Planktonic Gram-Positive Microorganisms
3.2.3. Activity of DAL against Biofilms of Gram-Positive Microorganisms: In Vitro Experience
3.2.4. Activity of DAL against Biofilm of Gram-Positive Microorganisms: Experimental In Vivo Experience
3.2.5. Clinical Experience with DAL for Treating Prosthetic Joint Infections
3.3. DAL as a Cost-Saving Strategy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Ser. A 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 2012, 27, 61–65. [Google Scholar] [CrossRef]
- Beam, E.; Osmon, D. Prosthetic joint infection update. Infect. Dis. Clin. 2018, 32, 843–859. [Google Scholar] [CrossRef]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [Green Version]
- Dunne, M.W.; Puttagunta, S.; Giordano, P.; Krievins, D.; Zelasky, M.; Baldassarre, J. A randomized clinical trial of single-dose versus weekly dalbavancin for treatment of acute bacterial skin and skin structure infection. Clin. Infect. Dis. 2016, 62, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauregui, L.E.; Babazadeh, S.; Seltzer, E.; Goldberg, L.; Krievins, D.; Frederick, M.; Krause, D.; Satilovs, I.; Endzinas, Z.; Breaux, J.; et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin. Infect. Dis. 2005, 41, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med. 2014, 370, 2169–2179. [Google Scholar] [CrossRef]
- Leighton, A.; Gottlieb, A.B.; Dorr, M.B.; Jabes, D.; Mosconi, G.; VanSaders, C.; Mroszczak, E.J.; Campbell, K.C.M.; Kelly, E. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob. Agents Chemother. 2004, 48, 1043–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, M.W.; Puttagunta, S.; Sprenger, C.R.; Rubino, C.; Van Wart, S.; Baldassarre, J. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob. Agents Chemother. 2015, 59, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Dávila, P.M.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortés, L.E.; Fariñas, M.C.; Fernández-Roldan, C.; et al. DALBACEN cohort: Dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitzenbichler, F.; Mohr, A.; Camboni, D.; Simon, M.; Salzberger, B.; Hanses, F. Dalbavancin as long-term suppressive therapy for patients with Gram-positive bacteremia due to an intravascular source—A series of four cases. Infection 2021, 49, 181–186. [Google Scholar] [CrossRef]
- Andes, D.; Craig, W.A. In Vivo Pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob. Agents Chemother. 2007, 51, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Monogue, M.; Nicolau, D.P. Kucers the Use of Antibiotics; CRC Press: Boca Raton, FL, USA, 2018; pp. 917–929. [Google Scholar]
- Dorr, M.B.; Jabes, D.; Cavaleri, M.; Dowell, J.; Mosconi, G.; Malabarba, A.; White, R.J.; Henkel, T.J. Human pharmacokinetics and rationale for once-weekly dosing of dalbavacin, a semi-synthetic glycopeptide. J. Antimicrob. Chemother. 2005, 55 (Suppl. S2), ii25–ii30. [Google Scholar] [CrossRef] [Green Version]
- Solon, E.G.; Dowell, J.A.; Lee, J.; King, S.P.; Damle, B.D. Distribution of radioactivity in bone and related structures following administration of [14C]Dalbavancin to New Zealand white rabbits. Antimicrob. Agents Chemother. 2007, 51, 3008–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murillo, O.; Pachón, M.E.; Euba, G.; Verdaguer, R.; Carreras, M.; Cabellos, C.; Cabo, J.; Gudiol, F.; Ariza, J. Intracellular antimicrobial activity appearing as a relevant factor in antibiotic efficacy against an experimental foreign-body infection caused by Staphylococcus aureus. J. Antimicrob. Chemother. 2009, 64, 1062–1066. [Google Scholar] [CrossRef]
- Cavaleri, M.; Riva, S.; Valagussa, A.; Guanci, M.; Colombo, L.; Dowell, J.; Stogniew, M. Pharmacokinetics and excretion of dalbavancin in the rat. J. Antimicrob. Chemother. 2005, 55, ii31–ii35. [Google Scholar] [CrossRef] [PubMed]
- Marbury, T.; Dowell, J.A.; Seltzer, E.; Buckwalter, M. Pharmacokinetics of dalbavancin in patients with renal or hepatic impairment. J. Clin. Pharmacol. 2009, 49, 465–476. [Google Scholar] [CrossRef]
- Malabarba, A.; Goldstein, B.P. Origin, structure, and activity in vitro and in vivo of dalbavancin. J. Antimicrob. Chemother. 2005, 55, ii15–ii20. [Google Scholar] [CrossRef]
- McCurdy, S.P.; Jones, R.N.; Mendes, R.; Puttagunta, S.; Dunne, M.W. In vitro activity of dalbavancin against drug-resistant Staphylococcus aureus Isolates from a global surveillance program. Antimicrob. Agents Chemother. 2015, 59, 5007–5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsche, T.R.; Rennie, R.P.; Goldstein, B.P.; Jones, R.N. Comparison of dalbavancin MIC values determined by Etest (AB BIODISK) and reference dilution methods using Gram-positive organisms. J. Clin. Microbiol. 2006, 44, 2988–2990. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Streit, J.M.; Mendes, R.E. Update on the in vitro activity of dalbavancin against indicated species (Staphylococcus aureus, Enterococcus faecalis, β-hemolytic streptococci, and Streptococcus anginosus group) collected from United States hospitals in 2017–2019. Diagn. Microbiol. Infect. Dis. 2021, 99, 115195. [Google Scholar] [CrossRef] [PubMed]
- Cercenado, E. Espectro antimicrobiano de dalbavancina. Mecanismo de acción y actividad in vitro frente a microorganismos Gram positivos. Enferm. Infecc. Microbiol. Clin. 2017, 35, 9–14. [Google Scholar] [CrossRef]
- Biedenbach, D.J.; Bell, J.M.; Sader, H.S.; Turnidge, J.D.; Jones, R.N. Activities of dalbavancin against a worldwide collection of 81,673 Gram-positive bacterial isolates. Antimicrob. Agents Chemother. 2009, 53, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.N.; Flamm, R.K.; Sader, H.S. Surveillance of dalbavancin potency and spectrum in the United States (2012). Diagn. Microbiol. Infect. Dis. 2013, 76, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Bongiorno, D.; Lazzaro, L.M.; Stefani, S.; Campanile, F. In vitro activity of dalbavancin against refractory multidrug-resistant (MDR) Staphylococcus aureus isolates. Antibiotics 2020, 9, 865. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.; Duncan, L.R.; Pfaller, M.; Flamm, R.K. Antimicrobial activity of dalbavancin against Staphylococcus aureus with decreased susceptibility to glycopeptides, daptomycin, and/or linezolid from U.S. medical centers. Antimicrob. Agents Chemother. 2017, 62. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.N.; Sader, H.S.; Flamm, R.K. Update of dalbavancin spectrum and potency in the USA: Report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn. Microbiol. Infect. Dis. 2013, 75, 304–307. [Google Scholar] [CrossRef]
- Streit, J.M.; Fritsche, T.R.; Sader, H.S.; Jones, R.N. Worldwide assessment of dalbavancin activity and spectrum against over 6000 clinical isolates. Diagn. Microbiol. Infect. Dis. 2004, 48, 137–143. [Google Scholar] [CrossRef]
- Goldstein, E.J.C.; Citron, D.M.; Warren, Y.A.; Tyrrell, K.L.; Merriam, C.V.; Fernandez, H.T. In vitro activities of dalbavancin and 12 other agents against 329 aerobic and anaerobic Gram-positive isolates recovered from diabetic foot infections. Antimicrob. Agents Chemother. 2006, 50, 2875–2879. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, E.J.C.; Citron, D.M.; Merriam, C.V.; Warren, Y.; Tyrrell, K.; Fernandez, H.T. In vitro activities of dalbavancin and nine comparator agents against anaerobic Gram-positive species and corynebacteria. Antimicrob. Agents Chemother. 2003, 47, 1968–1971. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Greenwood-Quaintance, K.E.; Patel, R. In vitro activity of dalbavancin against biofilms of staphylococci isolated from prosthetic joint infections. Diagn. Microbiol. Infect. Dis. 2016, 85, 449–451. [Google Scholar] [CrossRef]
- Neudorfer, K.; Schmidt-Malan, S.M.; Patel, R. Dalbavancin is active in vitro against biofilms formed by dalbavancin-susceptible enterococci. Diagn. Microbiol. Infect. Dis. 2018, 90, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Malan, S.M.; Quaintance, K.E.G.; Karau, M.J.; Patel, R. In vitro activity of tedizolid against staphylococci isolated from prosthetic joint infections. Diagn. Microbiol. Infect. Dis. 2016, 85, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Di Pilato, V.; Ceccherini, F.; Sennati, S.; D’Agostino, F.; Arena, F.; D’Atanasio, N.; Di Giorgio, F.P.; Tongiani, S.; Pallecchi, L.; Rossolini, G.M. In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times. Diagn. Microbiol. Infect. Dis. 2020, 96, 114901. [Google Scholar] [CrossRef] [PubMed]
- Knafl, D.; Tobudic, S.; Cheng, S.C.; Bellamy, D.R.; Thalhammer, F. Dalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Žiemytė, M.; Rodríguez-Díaz, J.C.; Ventero, M.P.; Mira, A.; Ferrer, M.D. Effect of dalbavancin on staphylococcal biofilms when administered alone or in combination with biofilm-detaching compounds. Front. Microbiol. 2020, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Darouiche, R.; Mansouri, M. Dalbavancin compared with vancomycin for prevention of Staphylococcus aureus colonization of devices in vivo. J. Infect. 2005, 50, 206–209. [Google Scholar] [CrossRef]
- Baldoni, D.; Tafin, U.F.; Aeppli, S.; Angevaare, E.; Oliva, A.; Haschke, M.; Zimmerli, W.; Trampuz, A. Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int. J. Antimicrob. Agents 2013, 42, 220–225. [Google Scholar] [CrossRef]
- Barnea, Y.; Lerner, A.; Aizic, A.; Navon-Venezia, S.; Rachi, E.; Dunne, M.W.; Puttagunta, S.; Carmeli, Y. Efficacy of dalbavancin in the treatment of MRSA rat sternal osteomyelitis with mediastinitis. J. Antimicrob. Chemother. 2015, 71, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Nicolau, D.P.; Sun, H.K.; Seltzer, E.; Buckwalter, M.; Dowell, J.A. Pharmacokinetics of dalbavancin in plasma and skin blister fluir. J. Antimicrob. Chemother. 2007, 60, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.; Rodriguez, J.; Álvarez, L.; Artacho, A.; Royo, G.; Mira, A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J. Appl. Microbiol. 2017, 122, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Lampejo, T. Dalbavancin and telavancin in the treatment of infective endocarditis: A literature review. Int. J. Antimicrob. Agents 2020, 56, 106072. [Google Scholar] [CrossRef] [PubMed]
- Ajaka, L.; Heil, E.; Schmalzle, S. Dalbavancin in the treatment of bacteremia and endocarditis in people with barriers to standard care. Antibiotics 2020, 9, 700. [Google Scholar] [CrossRef]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Dalbavancin as primary and sequential treatment for Gram-positive infective endocarditis: 2-year experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Rappo, U.; Puttagunta, S.; Shevchenko, V.; Shevchenko, A.; Jandourek, A.; Gonzalez, P.L.; Suen, A.; Casullo, V.M.; Melnick, D.; Miceli, R.; et al. Dalbavancin for the treatment of osteomyelitis in adult patients: A randomized clinical trial of efficacy and safety. Open Forum Infect. Dis. 2019, 6, ofy331. [Google Scholar] [CrossRef]
- Ramírez Hidalgo, M.; Jover-Sáenz, A.; García-González, M.; Barcenilla-Gaite, F. Dalbavancin treatment of prosthetic knee infection due to oxacillin-resistant Staphylococcus epidermidis. Enferm. Infecc. Microbiol. Clin. 2018, 36, 142–143. [Google Scholar] [CrossRef]
- Martín, L.B.; Fernández, M.M.; Ruiz, J.M.; Lafont, M.O.; Paredes, L.Á.; Rodríguez, M.Á.; Regueras, M.F.; Morón, M.Á.; Lobón, G.M. Dalbavancin for treating prosthetic joint infections caused by Gram-positive bacteria: A proposal for a low dose strategy. A retrospective cohort study. Rev. Esp. Quimioter. 2019, 32, 532–538. [Google Scholar]
- Wunsch, S.; Krause, R.; Valentin, T.; Prattes, J.; Janata, O.; Lenger, A.; Bellmann-Weiler, R.; Weiss, G.; Zollner-Schwetz, I. Multicenter clinical experience of real life dalbavancin use in gram-positive infections. Int. J. Infect. Dis. 2019, 81, 210–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morata, L.; Cobo, J.; Fernández-Sampedro, M.; Vasco, P.G.; Ruano, E.; Lora-Tamayo, J.; Somolinos, M.S.; Ruano, P.G.; Nieto, A.R.; Arnaiz, A.; et al. Safety and efficacy of prolonged use of dalbavancin in bone and joint infections. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Bouza, E.; Valerio, M.; Soriano, A.; Morata, L.; Carus, E.G.; Rodríguez-González, M.C.; Hidalgo-Tenorio, C.; Plata, A.; Muñoz, P.; Vena, A.; et al. Dalbavancin in the treatment of different gram-positive infections: A real-life experience. Int. J. Antimicrob. Agents 2018, 51, 571–577. [Google Scholar] [CrossRef]
- Dinh, A.; Duran, C.; Pavese, P.; Khatchatourian, L.; Monnin, B.; Bleibtreu, A.; Denis, E.; Etienne, C.; Rouanes, N.; Mahieu, R.; et al. French national cohort of first use of dalbavancin: A high proportion of off-label use. Int. J. Antimicrob. Agents 2019, 54, 668–672. [Google Scholar] [CrossRef]
- Ariza, J.; Cobo, J.; Baraia-Etxaburu, J.; de Benito, N.; Bori, G.; Cabo, J.; Corona, P.; Esteban, J.; Horcajada, J.P.; Lora-Tamayo, J.; et al. Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm. Infecc. Microbiol. Clin. 2017, 35, 189–195. [Google Scholar] [CrossRef]
- Barbero Allende, J.M.; García Sánchez, M.; Culebras López, A.M.; Agudo Alonso, R. Suppressive antibiotic treatment with dalbavancin. A case report. Rev. Esp. Quimioter. 2021, 34, 151–153. [Google Scholar] [CrossRef]
- Streifel, A.C.; Sikka, M.K.; Bowen, C.D.; Lewis, J.S. Dalbavancin use in an academic medical centre and associated cost savings. Int. J. Antimicrob. Agents 2019, 54, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, A.G.; Murray, E.Y.; Wagner, J.L.; Gaul, D.A.; Bland, C.M.; Jones, B.M. Financial analysis of dalbavancin for acute bacterial skin and skin structure infections for self-pay patients. Infect. Dis. Ther. 2020, 9, 1043–1053. [Google Scholar] [CrossRef]
- Gonzalez, J.; Andrade, D.C.; Niu, J. Cost-consequence analysis of single-dose dalbavancin versus standard of care for the treatment of acute bacterial skin and skin structure infections in a multi-site healthcare system. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bookstaver, P.B.; Milgrom, A. Stewarding the costly antibiotic: Considerations for dalbavancin. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
Reference | Microorganisms | Design | Results |
---|---|---|---|
Fernández et al., 2016 [32] & Schmidt-Malan et al., 2016 [34] | 171 staphylococcal clinical isolates from prosthetic joint infections | Adapted Calgary-device 1. Biofilms were 6 h mature before confronting antibiotics during 20 h. Comparators: DAL, VAN and TDZ, at increasing concentrations. | DAL: MBIC90 0.12–0.50 µg/mL, MBBC90 2–4 µg/mL VAN: MBIC90 2–4 µg/mL, MBBC90 >128 µg/mL TDZ: MBIC90 2–4 µg/mL, MBBC90 >32 µg/mL |
Knafl et al., 2017 [36] | 10 MRSA plus 10 MRSE clinical strains | 96-well microtiter plate with a 24 h biofilm, exposed during 24 h to increasing concentrations of DAL. Measure of remaining biofilm was made by CV dying 2. No comparators. | MRSA: MIC range 0.031–0.064 µg/mL; MBC 1–4 µg/mL MRSE: MIC range 0.023–0.625 µg/mL; MBC 2–16 µg/mL |
Neudorfer et al., 2018 [33] | Clinical isolates 58 E. faecalis 25 E. faecium | Adapted Calgary-device 1. Biofilms were 6 h mature before confronting antibiotics during 20 h. Comparators: DAP and VAN | DAL: for VSE: MBIC90 0.25 µg/mL, MBBC90 1 µg/mL for VRE: MBIC90 > 16 µg/mL, MBBC90 >16 µg/mL VAN: for VSE: MBIC90 2 µg/mL, MBBC90 >128 µg/mL for VRE: MBIC90 > 128 µg/mL, MBBC90 > 128 µg/mL DAP: for VSE: MBIC90 4 µg/mL, MBBC90 128 µg/mL for VRE: MBIC90 4 µg/mL, MBBC90 128 µg/mL |
Di Pilato et al., 2020 [35] | 9 clinical isolates plus 3 referral isolates (3 MSSA, 3 MRSA, 2 MSSE, 4 MRSE) | Model 1. Adapted Calgary device. Biofilms were 7-days mature before confronting antibiotics during other 7 d. Model 2. Ti and Cr-Co disks cultured during 48 h and then confronted to antibiotics during 7 d. Both experiments used DAL and VAN at doses of 1, 4, and 16 µg/mL | Model 1. Heterogeneous response to antibiotics. Overall, DAL showed a higher and faster reduction of biofilm-embedded bacteria over time as compared with VAN, both at lower and higher dosages. Model 2. Similar effect against biofilm formed over Ti and Cr-Co disks, except for medium dosages (4 µg/mL), where DAL showed higher reductions of biofilm-embedded bacteria |
Žiemytė et al., 2020 [37] | Clinical isolates of MSSA, MRSA and MRSE | Experiments of biofilm inhibition and treatment (6–9 h-old biofilms). Measurement of biofilm growing over 20 h by electrical impedance. Treatment with increasing concentrations of DAL, CLX, VAN, LNZ, and RIF | 1. Biofilm inhibition. MBIC of DAL ranged 0.5–2 µg/mL. RIF and DAL showed the highest inhibitory efficacy as compared with CLX, VAN and LNZ. 2. Biofilm treatment. DAL stopped or reduced biofilm at 8–32 µg/mL. Comparators had no effect for S. aureus biofilm. For S. epidermidis biofilm, RIF and CLX were more effective than DAL at lower concentrations. |
Darouiche et al., 2005 [38] | S. aureus (MIC 0.06 µg/mL) | Rabbit model of infection with catheter tips implanted in subcutaneous pockets. Treatments are administered pre-operatively so to avoid the infection of the foreign material. DAL is given at 10 mg/kg, and VAN at 20 mg/kg (and then again 24 h after surgery) | In animals treated with placebo, only 47% of catheter tips were infected. The rate of infection in the DAL group was 28% (p = 0.2 when compared to placebo), and 53% in the VAN group (p = 0.8). Serum Cmax of DAL was 80.3 µg/mL, and at day 3 it was 1.3 µg/mL. At day 7 it was only detectable in two rabbits of four (0.4 and 0.6 µg/mL). |
Baldoni et al., 2013 [39] | MRSA ATCC 43300 MIC 0.078 µg/mL | Tissue-cage infection model in guinea-pigs. Treatment starts 3 days after inoculation. Three regimes of DAL: 40 mg/kg—Cmax 44.6 µg/mL, AUC0–7d 3393 µg·h/mL 60 mg/kg—Cmax 55.6 µg/mL, AUC0–7d 4298 µg·h/mL 80 mg/kg—Cmax 68.8 µg/mL, AUC0–7d 4464 µg·h/mL 3 T½ 35.8 to 45.4 h. Other regimes: DAL + RIF, RIF | DAL monotherapies had a discreet killing (inferior to RIF alone) with an infection eradication rate of 0%. The combination of RIF + DAL achieved an eradication rate similar to RIF alone (25–36%). Only high doses of DAL (80 mg/kg) avoided the emergence of rifampin resistance. |
Barnea et al., 2016 [40] | MRSA (Clinical strain). MIC 0.06 µg/mL | Rat animal infection model of wound infection and sternal osteomyelitis. Treatment started 24 h after inoculation. DAL was given as an initial bolus of 20 mg/kg followed by 10 mg/kg/d for 7 or 14 days. VAN was given at 50 mg/kg/12 h for 7 or 14 days. | DAL was similar to VAN and better than the absence of treatment. Administration of DAL and VAN avoided systemic dissemination of staphylococcal infection. Concentration of DAL in bone tissue at 4, 6 and 10 days was 9.5 µg/g, 9.2 µg/g, and 10.7 µg/g, respectively |
Reference | n | Bone & Joint Infection (Other than PJI) | Episodes of PJI | PJI Outcome (Success, %) |
---|---|---|---|---|
Bouza et al., 2017 [51] | 69 | 13 | 20 | 80% |
Morata et al., 2019 [50] | 64 | NP | 26 | NP |
Tobudic et al., 2019 [45] | 72 | 20 | 8 | 75% |
Wunsch et al., 2019 [49] | 101 | 30 | 32 | 94% |
Martín et al., 2019 [48] | 16 | 0 | 16 | 88% |
Dinh et al., 2019 [52] | 75 | 48 | NP | NP |
DAIR (n = 2) | Prosthesis Removal (n = 27) | Implant Retention and Suppressive Treatment (n = 7) | All Patients (n = 36) | |
---|---|---|---|---|
Sex (female) | 1 (50%) | 11 (40.7%) | 3 (42%) | 15 (43%) |
Age *,1 (years) | 69 (67–71) | 69 (18–87) | 62 (15–92) | 67 (15–92) |
Number of surgeries before DAL | 1 | 2 (1–4) | 2.5 (1–3) | 1.8 (1–4) |
Treatments | ||||
DAL alone | 2 (100%) | 11 (40.7%) | 5 (71%) | 18 (50%) |
DAL + rifampin | 0 | 7 (26%) | 2 | 9 (25%) |
DAL + other treatments | 0 | 9 (30%) | 0 | 9 (25%) |
Etiology | ||||
S. aureus2 | 0 | 5 (18.5%) | 1 (14%) | 6 (17%) |
CoN staphylococci | 2 (100%) | 6 (22.2%) | 2 (29%) | 10 (28%) |
Enterococcus spp 3 | 0 | 4 (14.8%) | 1 (14%) | 5 (14%) |
Anaerobic GP | 0 | 1 (3.7%) | 0 | 1 (3%) |
Other GP | 0 | 2 (29%) | 2 (6%) | |
Mixed GP | 0 | 10 (37%) | 10 (28%) | |
Unknown etiology | 0 | 1 (14%) | 1 (3%) | |
Outcome (Success) | 1 (50%) | 25 (93%) | 4 (57%) 4 | 29 (81%) |
Follow up (months) *,1 | 4 (2–6) | 16 (3–40) | 6 (3–14) | 14 (2–40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzón-Martín, L.; Zollner-Schwetz, I.; Tobudic, S.; Cercenado, E.; Lora-Tamayo, J. Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review. Antibiotics 2021, 10, 656. https://doi.org/10.3390/antibiotics10060656
Buzón-Martín L, Zollner-Schwetz I, Tobudic S, Cercenado E, Lora-Tamayo J. Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review. Antibiotics. 2021; 10(6):656. https://doi.org/10.3390/antibiotics10060656
Chicago/Turabian StyleBuzón-Martín, Luis, Ines Zollner-Schwetz, Selma Tobudic, Emilia Cercenado, and Jaime Lora-Tamayo. 2021. "Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review" Antibiotics 10, no. 6: 656. https://doi.org/10.3390/antibiotics10060656
APA StyleBuzón-Martín, L., Zollner-Schwetz, I., Tobudic, S., Cercenado, E., & Lora-Tamayo, J. (2021). Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review. Antibiotics, 10(6), 656. https://doi.org/10.3390/antibiotics10060656