Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020
Abstract
:1. Introduction
2. Results
2.1. Serotyping Results
2.2. Age, Sex and Type of Sample
2.3. Antimicrobial resistance profile (AMR)
3. Discussion
4. Materials and Methods
4.1. Human Isolates
4.2. Strain Characterization of Clinical Isolates and Data Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Chen, R.; Qi, Y.; Salazar, J.K.; Zhang, S.; Tortorello, M.L.; Deng, X.; Zhang, W. Survival and transcriptomic response of Salmonella enterica on fresh-cut fruits. Int. J. Food Microbiol. 2021, 348, 109201. [Google Scholar] [CrossRef]
- Cretu, C.; Horhogea, C.; Rîmbu, C.; Ionel, B. The Assessment of the Microbial Contamination of Chilled Poultry Meat from the Commercial Network. 2018. Available online: https://www.researchgate.net/publication/323991178_the_assessment_of_the_microbial_contamination_of_chilled_poultry_meat_from_the_commercial_network (accessed on 8 August 2021). [CrossRef]
- Pui, C.F.; Wong, W.C.; Chai, L.C.; Robin, T.; Ponniah, J.; Hidayah, M.S.; Anyi, U.; Farinazleen, M.G.; Cheah, Y.K.; Son, R. Review Article Salmonella: A foodborne pathogen. Int. Food Res. J. 2011, 18, 465–473. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- WHO. Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf?sequence=1 (accessed on 8 August 2021).
- WHO. List of Critically Important Antimicrobials for Human Medicine 3rd Revision. Available online: https://apps.who.int/iris/bitstream/handle/10665/77376/9789241504485_eng.pdf?sequence=1 (accessed on 8 August 2021).
- National Public Health Organization. Epidemiological Data for Salmonellosis (Non Typhoid/Paratyphoid) in Greece, 2004–2019; 2020. Available online: https://eody.gov.gr/wp-content/uploads/2020/05/Epidemiological-data-for-typhoid-paratyphoid-fever-Greece-2004-2019.pdf (accessed on 8 August 2021).
- Mellou, K.; Sideroglou, T.; Kallimani, A.; Potamiti-Komi, M.; Pervanidou, D.; Lillakou, E.; Georgakopoulou, T.; Mandilara, G.; Lambiri, M.; Vatopoulos, A.; et al. Evaluation of underreporting of salmonellosis and shigellosis hospitalised cases in Greece, 2011: Results of a capture-recapture study and a hospital registry review. BMC Public Health 2013, 13, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurosurveillance Editorial Team. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. Eurosurveillance 2012, 17, 2597. [Google Scholar] [CrossRef]
- Tzani, M.; Mandilara, G.; Dias, J.G.; Sideroglou, T.; Chrysostomou, A.; Mellou, K. Impact of Salmonella Control Programmes in Poultry on Human Salmonellosis Burden in Greece. Antibiotics 2021, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, e05077. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef] [Green Version]
- Cretu, C.; Ionel, B.; Mihai, O.; Mihai, C.-C. Determining Pathogenicity Strains of Salmonella spp. Isolated from the Carcasses of Poultry. 2018. Available online: https://www.researchgate.net/publication/323998291_determining_pathogenicity_strains_of_salmonella_spp_isolated_from_the_carcasses_of_poultry (accessed on 8 August 2021). [CrossRef]
- Cogan, T.A.; Humphrey, T.J. The rise and fall of Salmonella Enteritidis in the UK. J. Appl. Microbiol. 2003, 94, 114S–119S. [Google Scholar] [CrossRef] [PubMed]
- Mandilara, G.; Lambiri, M.; Polemis, M.; Passiotou, M.; Vatopoulos, A. Phenotypic and molecular characterisation of multiresistant monophasic Salmonella Typhimurium (1,4,[5],12:i:-) in Greece, 2006 to 2011. Eurosurveillance 2013, 18, 20496. [Google Scholar] [CrossRef] [PubMed]
- Mandilara, G.; Sideroglou, T.; Chrysostomou, A.; Rentifis, I.; Papadopoulos, T.; Polemis, M.; Tzani, M.; Tryfinopoulou, K.; Mellou, K. The Rising Burden of Salmonellosis Caused by Monophasic Salmonella Typhimurium (1,4,[5],12:i:-) in Greece and New Food Vehicles. Antibiotics 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Tennant, S.M.; Diallo, S.; Levy, H.; Livio, S.; Sow, S.O.; Tapia, M.; Fields, P.I.; Mikoleit, M.; Tamboura, B.; Kotloff, K.L.; et al. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl. Trop. Dis. 2010, 4, e621. [Google Scholar] [CrossRef] [Green Version]
- Arguello, H.; Sorensen, G.; Carvajal, A.; Baggesen, D.L.; Rubio, P.; Pedersen, K. Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production. Res. Vet. Sci. 2013, 95, 334–342. [Google Scholar] [CrossRef]
- Babu, U.S.; Proszkowiec-Weglarz, M.; Sharma, G.M.; Pereira, M.; Balan, K.V. In vivo and in vitro evaluation of tissue colonization and survival capacity of Salmonella Oranienburg in laying hens. Poult. Sci. 2018, 97, 3230–3235. [Google Scholar] [CrossRef] [PubMed]
- Brandwagt, D.; van den Wijngaard, C.; Tulen, A.D.; Mulder, A.C.; Hofhuis, A.; Jacobs, R.; Heck, M.; Verbruggen, A.; van den Kerkhof, H.; Slegers-Fitz-James, I.; et al. Outbreak of Salmonella Bovismorbificans associated with the consumption of uncooked ham products, the Netherlands, 2016 to 2017. Eurosurveillance 2018, 23, 17-00335. [Google Scholar] [CrossRef] [Green Version]
- Knoblauch, A.M.; Bratschi, M.W.; Zuske, M.K.; Althaus, D.; Stephan, R.; Hachler, H.; Baumgartner, A.; Prager, R.; Rabsch, W.; Altpeter, E.; et al. Cross-border outbreak of Salmonella enterica ssp. enterica serovar Bovismorbificans: Multiple approaches for an outbreak investigation in Germany and Switzerland. Swiss Med. Wkly. 2015, 145, w14182. [Google Scholar] [CrossRef] [Green Version]
- Werber, D.; Dreesman, J.; Feil, F.; van Treeck, U.; Fell, G.; Ethelberg, S.; Hauri, A.M.; Roggentin, P.; Prager, R.; Fisher, I.S.; et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Salmonellosis. In ECDC. Annual Epidemiological Report for 2017. Stockholm: ECDC. 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/salmonellosis-annual-epidemiological-report-2017.pdf (accessed on 8 August 2021).
- Sockett, P.N.; Rodgers, F.G. Enteric and foodborne disease in children: A review of the influence of food- and environment-related risk factors. Paediatr. Child Health 2001, 6, 203–209. [Google Scholar] [CrossRef]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef] [PubMed]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.A.; Wiedmann, M. The Cytolethal Distending Toxin Produced by Nontyphoidal Salmonella Serotypes Javiana, Montevideo, Oranienburg, and Mississippi Induces DNA Damage in a Manner Similar to That of Serotype Typhi. MBio 2016, 7, e02109-16. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rivera, L.D.; Bowen, B.M.; den Bakker, H.C.; Duhamel, G.E.; Wiedmann, M. Characterization of the cytolethal distending toxin (typhoid toxin) in non-typhoidal Salmonella serovars. Gut Pathog. 2015, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Parisi, A.; Crump, J.A.; Glass, K.; Howden, B.P.; Furuya-Kanamori, L.; Vilkins, S.; Gray, D.J.; Kirk, M.D. Health Outcomes from Multidrug-Resistant Salmonella Infections in High-Income Countries: A Systematic Review and Meta-Analysis. Foodborne Pathog. Dis. 2018, 15, 428–436. [Google Scholar] [CrossRef]
- Bertrand, S.; Weill, F.X.; Cloeckaert, A.; Vrints, M.; Mairiaux, E.; Praud, K.; Dierick, K.; Wildemauve, C.; Godard, C.; Butaye, P.; et al. Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)-producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J. Clin. Microbiol. 2006, 44, 2897–2903. [Google Scholar] [CrossRef] [Green Version]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48–54. [Google Scholar] [CrossRef]
- Michael, G.B.; Schwarz, S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: An alarming trend? Clin. Microbiol. Infect. 2016, 22, 968–974. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar] [CrossRef]
- Skov, R.; Matuschek, E.; Sjolund-Karlsson, M.; Ahman, J.; Petersen, A.; Stegger, M.; Torpdahl, M.; Kahlmeter, G. Development of a Pefloxacin Disk Diffusion Method for Detection of Fluoroquinolone-Resistant Salmonella enterica. J. Clin. Microbiol. 2015, 53, 3411–3417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella and Institut Pasteur: Paris, France, 2007. [Google Scholar]
- CDC-Performance Standards for Antimicrobial Susceptibility Testing. Available online: https://clsi.org/standards/products/microbiology/ (accessed on 8 August 2021).
- EUCAST—European Committee on Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/ (accessed on 8 August 2021).
- ECDC. EU Protocol for Harmonised Monitoring of Antimicrobial Resistance in Human Salmonella and Campylobacter Isolates. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/antimicrobial-resistance-Salmonella-Campylobacter-harmonised-monitoring.pdf (accessed on 8 August 2021).
Serotype * | Ν | % | Serotype | Ν | % |
---|---|---|---|---|---|
S. Enteritidis | 5466 | 52.8% | S. Glostrup | 35 | 0.3% |
S. Typhimurium | 1188 | 11.5% | S. Bispebjerg | 33 | 0.3% |
Monophasic S. Typhimurium | 441 | 4.3% | S. Halle | 32 | 0.3% |
S. Bovismorbificans | 350 | 3.4% | S. Mbandaka | 31 | 0.3% |
S. enterica subsp. salamae (II) | 252 | 2.4% | S. Richmond | 31 | 0.3% |
S. Oranienburg | 247 | 2.4% | S. Livingstone | 28 | 0.3% |
S. Kottbus | 141 | 1.4% | S. Agona | 27 | 0.3% |
S. Blockley | 140 | 1.4% | S. Derby | 27 | 0.3% |
S. Infantis | 107 | 1.0% | S. Heidelberg | 25 | 0.2% |
S. Newport | 106 | 1.0% | S. Montevideo | 25 | 0.2% |
S. Hadar | 102 | 1.0% | S. Vari | 25 | 0.2% |
S. Muenchen | 96 | 0.9% | S. Anatum | 24 | 0.2% |
S. Muenster | 82 | 0.8% | S. Stanley | 23 | 0.2% |
S. Thompson | 82 | 0.8% | S. Brandenburg | 21 | 0.2% |
S. Abony | 77 | 0.7% | S. Coeln | 21 | 0.2% |
S. Kambole | 63 | 0.6% | S. Miami | 21 | 0.2% |
S. Stanleyville | 62 | 0.6% | S. Saintpaul | 20 | 0.2% |
S. Braenderup | 54 | 0.5% | S. Cerro | 19 | 0.2% |
S. Senftenberg | 47 | 0.5% | S. Give | 19 | 0.2% |
S. Virchow | 47 | 0.5% | S. Chester | 17 | 0.2% |
S. Bredeney | 45 | 0.4% | S. Szentes | 17 | 0.2% |
S. Corvallis | 42 | 0.4% | S. Umbilo | 17 | 0.2% |
S. enterica subsp. diarizonae (IIIb) | 39 | 0.4% | S. Meleagridis | 16 | 0.2% |
S. Bardo | 36 | 0.3% |
Age Group | S. Enteritidis | S. Typhimurium | Monophasic S. Typhimurium | S. Bovismorbificans | S. Oranienburg | (S. II) 1,4,[5],12,[27]:b:- | Other Serotypes | Total (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | N | % | ||
0–11 months | 167 | 27.5 | 74 | 12.2 | 16 | 2.6 | 43 | 7.0 | 28 | 4.6 | 26 | 4.4 | 254 | 41.8 | 608 (8.6%) |
1–5 years | 1324 | 55.7 | 336 | 14.1 | 132 | 5.5 | 56 | 2.4 | 60 | 2.5 | 46 | 1.9 | 427 | 17.9 | 2381 (33.8%) |
6–14 years | 903 | 64.4 | 148 | 10.6 | 86 | 6.1 | 24 | 1.7 | 20 | 1.3 | 11 | 0.8 | 211 | 15.0 | 1403 (19.9%) |
15–64 years | 1121 | 58.0 | 176 | 9.1 | 63 | 3.3 | 71 | 3.7 | 42 | 2.1 | 14 | 0.7 | 445 | 23.0 | 1932 (27.5%) |
>= 65 years | 326 | 45.8 | 74 | 10.4 | 17 | 2.4 | 41 | 5.8 | 26 | 3.7 | 5 | 0.8 | 223 | 36.7 | 712 (10.1%) |
Specimen | S. Bovismorbificans | S. Enteritidis | Monophasic S. Typhimurium | S. Oranienburg | S. Typhimurium | Salmonella enterica subsp. salamae | Other Serotypes | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | |
Blood | 16 | 4.8 | 204 | 3.8 | 7 | 1.7 | 28 | 12.5 | 56 | 4.9 | 6 | 2.8 | 112 | 5.4 | 429 | 4.4% |
Cerebrospinal fluid | 0 | 0.0 | 1 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 0.1 | 3 | 0.0% |
Stool | 305 | 92.4 | 5,040 | 95.1 | 411 | 97.4 | 191 | 85.3 | 1059 | 93.5 | 197 | 92.9 | 1881 | 91.0 | 9084 | 93.8% |
Urine | 6 | 1.8 | 29 | 0.5 | 3 | 0.7 | 2 | 0.9 | 7 | 0.6 | 8 | 3.8 | 48 | 2.3 | 103 | 1.1% |
Pus | 0 | 0.0 | 7 | 0.1 | 0 | 0.0 | 0 | 0.0 | 7 | 0.6 | 0 | 0.0 | 5 | 0.2 | 19 | 0.2% |
Other | 3 | 0.9 | 18 | 0.3 | 1 | 0.2 | 3 | 1.3 | 4 | 0.4 | 1 | 0.5 | 19 | 0.9 | 49 | 0.5% |
Total | 330 | 100.0 | 5299 | 100.0 | 422 | 100.0 | 224 | 100.0 | 1133 | 100.0 | 212 | 100.0 | 2067 | 100.0 | 9687 | 100.0% |
Number of Isolates Tested for AMR | Penicillins | Cephalosporins | Carbapenems | Fluoroquinolones | Aminoglycosides | Macrolides | Tetracyclines | Miscellaneous Agents * | |
---|---|---|---|---|---|---|---|---|---|
S. Bovismorbificans | 279 | 6 | 2 | 2 | 31 | 2 | 41 | ||
% | 2.2% | 0.7% | 0.00% | 0.7% | 11.1% | 0.00% | 0.7% | 14.7% | |
S. Enteritidis | 4720 | 131 | 62 | 845 | 64 | 1 | 49 | 200 | |
% | 2.8% | 1.3% | 0.00% | 17.9% | 1.4% | 0.02% | 1.0% | 4.4% | |
Monophasic S. Typhimurium | 419 | 336 | 6 | 14 | 336 | 358 | 283 | ||
% | 80.2% | 1.4% | 0.00% | 3.4% | 80.2% | 0.00% | 85.4% | 67.5% | |
S. Oranienburg | 179 | 3 | 3 | 9 | 1 | 3 | 10 | ||
% | 1.7% | 1.7% | 0.00% | 0.0% | 5.0% | 0.56% | 1.7% | 5.6% | |
S. enterica subsp. salamae | 204 | 8 | 9 | 50 | 5 | 17 | |||
% | 3.9% | 4.4% | 0.00% | 0.0% | 24.5% | 0.00% | 2.5% | 8.3% | |
S. Typhimurium | 976 | 259 | 20 | 66 | 345 | 1 | 363 | 267 | |
% | 26.5% | 2.0% | 0.00% | 6.7% | 35.4% | 0.10% | 37.2% | 27.3% | |
Other | 1926 | 185 | 64 | 239 | 475 | 1 | 291 | 305 | |
% | 9.6% | 3.3% | 0.00% | 12.4% | 24.7% | 0.05% | 15.1% | 15.8% | |
Total | 8703 | 928 | 166 | 1166 | 1310 | 4 | 1071 | 1123 | |
% | 10.7% | 1.9% | 0.00% | 13.0% | 15.0% | 0.05% | 12.3% | 12.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellou, K.; Gkova, M.; Panagiotidou, E.; Tzani, M.; Sideroglou, T.; Mandilara, G. Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020. Antibiotics 2021, 10, 983. https://doi.org/10.3390/antibiotics10080983
Mellou K, Gkova M, Panagiotidou E, Tzani M, Sideroglou T, Mandilara G. Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020. Antibiotics. 2021; 10(8):983. https://doi.org/10.3390/antibiotics10080983
Chicago/Turabian StyleMellou, Kassiani, Mary Gkova, Emily Panagiotidou, Myrsini Tzani, Theologia Sideroglou, and Georgia Mandilara. 2021. "Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020" Antibiotics 10, no. 8: 983. https://doi.org/10.3390/antibiotics10080983
APA StyleMellou, K., Gkova, M., Panagiotidou, E., Tzani, M., Sideroglou, T., & Mandilara, G. (2021). Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020. Antibiotics, 10(8), 983. https://doi.org/10.3390/antibiotics10080983