Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. S. pseudintermedius Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devriese, L.A.; Vancanneyt, M.; Baele, M.; Vaneechoutte, M.; De Graef, E.; Snauwaert, C.; Cleenwerck, I.; Dawyndt, P.; Swings, J.; Decostere, A.; et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int. J. Syst. Evol. Microbiol. 2005, 55, 1569–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubMed. Staphylococcus pseudintermedius—Search Results. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=Staphylococcus+pseudintermedius&sort=date (accessed on 21 October 2022).
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Bierowiec, K.; Korzeniowska-Kowal, A.; Wzorek, A.; Rypuła, K.; Gamian, A. Prevalence of Staphylococcus Species Colonization in Healthy and Sick Cats. BioMed Res. Int. 2019, 2019, e4360525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, A.M.; Worthing, K.A.; Kulkarni, N.; Li, F.; Nakatsuji, T.; McGrosso, D.; Mills, R.H.; Kalla, G.; Cheng, J.Y.; Norris, J.M.; et al. Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius. eLife 2021, 10, e66793. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.C.; Burnham, C.-A.D.; Westblade, L.F. From canines to humans: Clinical importance of Staphylococcus pseudintermedius. PLoS Pathog. 2021, 17, e1009961. [Google Scholar] [CrossRef]
- Guardabassi, L.; Larsen, J.; Weese, J.S.; Butaye, P.; Battisti, A.; Kluytmans, J.; Lloyd, D.H.; Skov, R.L. Public health impact and antimicrobial selection of meticillin-resistant staphylococci in animals. J. Glob. Antimicrob. Resist. 2013, 1, 55–62. [Google Scholar] [CrossRef]
- Laarhoven, L.M.; de Heus, P.; van Luijn, J.; Duim, B.; Wagenaar, J.A.; van Duijkeren, E. Longitudinal study on methicillin-resistant Staphylococcus pseudintermedius in households. PLoS ONE 2011, 6, e27788. [Google Scholar] [CrossRef]
- Yarbrough, M.L.; Lainhart, W.; Burnham, C.-A.D. Epidemiology, Clinical Characteristics, and Antimicrobial Susceptibility Profiles of Human Clinical Isolates of Staphylococcus intermedius Group. J. Clin. Microbiol. 2018, 56, e01788-17. [Google Scholar] [CrossRef] [Green Version]
- Hritcu, O.M.; Schmidt, V.M.; Salem, S.E.; Maciuca, I.E.; Moraru, R.F.; Lipovan, I.; Mareş, M.; Solcan, G.; Timofte, D. Geographical Variations in Virulence Factors and Antimicrobial Resistance Amongst Staphylococci Isolated from Dogs from the United Kingdom and Romania. Front. Vet. Sci. 2020, 7, 414. [Google Scholar] [CrossRef]
- Meroni, G.; Soares Filipe, J.F.; Drago, L.; Martino, P.A. Investigation on Antibiotic-Resistance, Biofilm Formation and Virulence Factors in Multi Drug Resistant and Non Multi Drug Resistant Staphylococcus pseudintermedius. Microorganisms 2019, 7, 702. [Google Scholar] [CrossRef]
- Żarnowska, S.; Piechowicz, L.; Haras, K.; Garbacz, K.; Dąbrowska-Szponar, M. Heterogeneity of methicillin-sensitive Staphylococcus pseudintermedius strains isolated from diseased dogs. Pol. J. Vet. Sci. 2011, 14, 283–284. [Google Scholar]
- Frosini, S.M.; Bond, R.; McCarthy, A.J.; Feudi, C.; Schwarz, S.; Lindsay, J.A.; Loeffler, A. Genes on the Move: In Vitro Transduction of Antimicrobial Resistance Genes between Human and Canine Staphylococcal Pathogens. Microorganisms 2020, 8, 2031. [Google Scholar] [CrossRef]
- Paul, N.C.; Moodley, A.; Ghibaudo, G.; Guardabassi, L. Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians: Indirect evidence of zoonotic transmission. Zoonoses Public Health 2011, 58, 533–539. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Categorisation of Antibiotics in the European Union Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals; EMA: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Collignon, P.C.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A.; World Health Organization Advisory Group, Bogotá Meeting on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR); Agerso, Y.; Andremont, A.; Collignon, P.C.; Conly, J.; et al. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance from Food Animal Production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. Access, Watch, Reserve (AWaRe) Classification of Antibiotics for Evaluation and Monitoring of Use, 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bierowiec, K.; Miszczak, M.; Korzeniowska-Kowal, A.; Wzorek, A.; Płókarz, D.; Gamian, A. Epidemiology of Staphylococcus pseudintermedius in cats in Poland. Sci. Rep. 2021, 11, 18898. [Google Scholar] [CrossRef]
- Feßler, A.T.; Scholtzek, A.D.; Schug, A.R.; Kohn, B.; Weingart, C.; Schink, A.-K.; Bethe, A.; Lübke-Becker, A.; Schwarz, S. Antimicrobial and Biocide Resistance among Feline and Canine Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Diagnostic Submissions. Antibiotics 2022, 11, 127. [Google Scholar] [CrossRef]
- Lai, C.-H.; Ma, Y.-C.; Shia, W.-Y.; Hsieh, Y.-L.; Wang, C.-M. Risk Factors for Antimicrobial Resistance of Staphylococcus Species Isolated from Dogs with Superficial Pyoderma and Their Owners. Vet. Sci. 2022, 9, 306. [Google Scholar] [CrossRef]
- Steed, M.E.; Rybak, M.J. Ceftaroline: A new cephalosporin with activity against resistant gram-positive pathogens. Pharmacotherapy 2010, 30, 375–389. [Google Scholar] [CrossRef]
- Baharoglu, Z.; Garriss, G.; Mazel, D. Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics 2013, 2, 288–315. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Reflection Paper on the Risk of Antimicrobial Resistance Transfer from Companion Animals; EMA: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Falagas, M.E.; Grammatikos, A.P.; Michalopoulos, A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev. Anti-Infect. Ther. 2008, 6, 593–600. [Google Scholar] [CrossRef]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR Method for Species Identification of Coagulase-Positive Staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 12.0; EUCAST: Växjö, Sweden, 2022; Available online: https://www.eucast.org/clinical_breakpoints (accessed on 12 May 2022).
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement M100-S15; CLSI: Wayne, PA, USA, 2005. [Google Scholar]
- Comité de l’Antibiogramme de la Société Française de Microbiologie (CASFM)—Recommandations 2013. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2020/07/CASFM_2013.pdf (accessed on 12 May 2022).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Guidance on the 2019 Modifications of Susceptibility Categories S., I and R Categories; EUCAST: Växjö, Sweden, 2018; Available online: https://www.eucast.org/eucastguidancedocuments (accessed on 12 May 2022).
- Agresti, A.; Coull, B.A. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Carugno, M.; Consonni, D.; Randi, G.; Catelan, D.; Grisotto, L.; Bertazzi, P.A.; Biggeri, A.; Baccini, M. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region. Environ. Res. 2016, 147, 415–424. [Google Scholar] [CrossRef]
Class/Group | Antibacterial | S (freq.) | I (freq.) | R (freq.) | R Prev. [CI] (%) |
---|---|---|---|---|---|
β-lactamase-sensitive penicillins | P | 1 | 0 | 39 | 97.5 [88.7–99.9] |
β-lactamase-resistant penicillins | OX | 16 | 0 | 24 | 60.0 [45.8–73.1] |
phosphonic acids | FOS | 40 | 0 | 0 | 0.0 [0.0–7.2] |
fluoroquinolones | ENR | 15 | 0 | 25 | 62.5 [48.3–75.3] |
CIP | 15 | 0 | 25 | 62.5 [48.3–75.3] | |
folate-pathway inhibitors | SXT | 16 | 0 | 24 | 60.0 [45.8–73.1] |
ansamycins | RD | 35 | 0 | 5 | 12.5 [5.1–24.5] |
amphenicols | C | 29 | 0 | 11 | 27.5 [16.3–41.4] |
macrolides | E | 12 | 0 | 28 | 70.0 [56.0–81.7] |
lincosamides | DA | 12 | 0 | 28 | 70.0 [56.0–81.7] |
tetracyclines | TE | 16 | 1 | 23 | 57.5 [45.8–73.1] |
glycylcyclines | TGC | 40 | 0 | 0 | 0.0 [0.0–7.2] |
aminoglycosides | CN | 14 | 0 | 26 | 65.0 [50.8–77.4] |
steroid antibacterials | FD | 40 | 0 | 0 | 0.0 [0.0–7.2] |
anti-MRS cephalosporins | CPT | 34 | 3 | 3 | 7.5 [6.7–27.5] |
glycopeptides | TEC/VA | 40 | 0 | 0 | 0.0 [0.0–7.2] |
TLV | 39 | 0 | 1 | 2.5 [0.1–11.3] | |
lipopeptides | DAP | 40 | 0 | 0 | 0.0 [0.0–7.2] |
streptogramins | QDA | 40 | 0 | 0 | 0.0 [0.0–7.2] |
oxazolidinones | LNZ | 40 | 0 | 0 | 0.0 [0.0–7.2] |
Classification | Category | S | I | R | Prev. [CI] (%) | Antibacterials |
---|---|---|---|---|---|---|
WHO * | HPCIA | 140 | 3 | 57 | 28.5 [23.3–34.2] | CIP, E, CPT, TEC/VA, TLV |
HCIA | 209 | 0 | 31 | 12.9 [9.5–17] | FOS, RD, TGC, CN, DAP, LNZ | |
HIA | 170 | 1 | 149 | 46.6 [41.9–51.3] | P, OX, SXT, C, DA, TE, FD, QDA | |
AwaRe * | Access | 104 | 1 | 175 | 62.5 [57.5–67.3] | P, OX, SXT, C, DA, TE, CN |
Watch | 142 | 0 | 58 | 29.0 [23.7–34.7] | CIP, RD, E, FD, TEC/VA | |
Reserve | 273 | 3 | 4 | 1.4 [0.5–3.2] | FOS, TGC, CPT, TLV, DAP, QDA, LNZ | |
AMEG | A | 348 | 3 | 9 | 2.5 [1.3–4.3] | FOS, RD, TGC, CPT, TEC/VA, TLV, DAP, QDA, LNZ |
B | 30 | 0 | 50 | 62.5 [52.7–71.6] | ENR, CIP | |
C | 67 | 0 | 93 | 58.1 [51.3–64.7] | C, E, DA, CN | |
D | 89 | 1 | 110 | 55 [48.9–61.0] | P, OX, SXT, TE, FD |
WHO | HIA | HIA | HCIA | HPCIA | HIA | HCIA | HIA | HPCIA | HIA | HIA | HCIA | HCIA | HIA | HPCIA | HPCIA | HPCIA | HCIA | HIA | HCIA | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AwaRe | Access | Access | Reserve | Watch | Access | Watch | Access | Watch | Access | Access | Reserve | Access | Watch | Reserve | Watch | Reserve | Reserve | Reserve | Reserve | |||
AMEG | D | D | A | B | B | D | A | C | C | C | D | A | C | D | A | A | A | A | A | A | ||
Profile | Freq | P | OX | FOS | ENR | CIP | SXT | RD | C | E | DA | TE | TGC | CN | FD | CPT | TEC/VA | TLV | DAP | QDA | LNZ | MDR |
A | 1 | R | R | S | R | R | R | R | R | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
B | 7 | R | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S/S | S | S | S | S | 0 |
C | 3 | R | R | S | R | R | R | S | S | R | R | S | S | R | S | S | S/S | S | S | S | S | 1 |
D | 2 | R | R | S | R | R | R | S | S | R | R | R | S | R | S | R | S/S | S | S | S | S | 1 |
E | 6 | R | R | S | R | R | R | S | S | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
F | 3 | R | R | S | R | R | R | S | R | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
G | 2 | R | R | S | R | R | S | S | R | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
H | 2 | R | R | S | R | R | R | S | R | R | R | R | S | R | S | I | S/S | S | S | S | S | 1 |
I | 2 | R | R | S | S | S | S | S | S | S | S | S | S | S | S | S | S/S | S | S | S | S | 0 |
J | 1 | R | S | S | S | S | R | S | S | S | S | R | S | S | S | S | S/S | S | S | S | S | 1 |
K | 1 | R | S | S | S | S | S | S | S | S | S | I | S | R | S | S | S/S | R | S | S | S | 1 |
L | 1 | R | R | S | R | R | R | S | S | R | R | S | S | R | S | R | S/S | S | S | S | S | 1 |
M | 1 | R | R | S | R | R | R | R | S | R | R | R | S | R | S | R | S/S | S | S | S | S | 1 |
N | 1 | R | S | S | R | R | S | S | S | R | R | R | S | S | S | S | S/S | S | S | S | S | 1 |
O | 1 | R | R | S | R | R | R | R | S | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
P | 1 | S | S | S | S | S | S | S | S | S | S | R | S | S | S | S | S/S | S | S | S | S | 0 |
Q | 2 | R | S | S | R | R | R | R | S | R | R | R | S | R | S | S | S/S | S | S | S | S | 1 |
R | 2 | R | S | S | S | S | S | S | R | R | R | S | S | S | S | S | S/S | S | S | S | S | 1 |
S | 1 | R | S | S | S | S | R | S | R | R | R | S | S | R | S | S | S/S | S | S | S | S | 1 |
TOT.* | 18 | 11 | 0 | 12 | 12 | 12 | 4 | 6 | 14 | 14 | 12 | 0 | 13 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 16 | |
(%) * | - | 94.7 | 57.9 | 0.0 | 63.2 | 63.2 | 63.2 | 21.1 | 31.6 | 73.7 | 73.7 | 63.2 | 0.0 | 68.4 | 0.0 | 15.8 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 | 84.2 |
Reason for Admission | Strain Freq. (Col. %) | Dogs | Cats |
---|---|---|---|
Orthopedic surgery | 20 (50.0%) | 18 | 0 |
Pyoderma or wound | 8 (20.0%) | 4 | 3 |
Ear infection | 6 (15.0%) | 5 | 0 |
Urinary tract infection | 5 (12.5%) | 3 | 2 |
Reproductive tract infection | 1 (2.5%) | 1 | 0 |
Total | 40 | 31 | 5 |
Antibacterial Agent | Abbrev. | Class/Group | Disk Content (µg) | Clinical Breakpoint | WHO Classif. | AWaRe Classif. | EMA AMEG Classif. |
---|---|---|---|---|---|---|---|
penicillin G | P | β-lactamase sensitive penicillins | 1 UI | EUCAST | HIA | Access | D |
oxacillin | OX | β-lactamase resistant penicillins | 1 | EUCAST | HIA | Access | D |
fosfomycin | FOS | phosphonic acids | 50 | CASFM | HCIA | Reserve | A |
enrofloxacin | ENR | fluoroquinolones | 5 | CLSI Vet | - | - | B |
ciprofloxacin | CIP | fluoroquinolones | 5 | EUCAST | HPCIA | Watch | B |
trimethoprim-sulfamethoxazole | SXT | folate-pathway inhibitors | 1.25/23.75 | EUCAST | HIA | Access | D |
rifampicin | RD | ansamycins | 5 | EUCAST | HCIA | Watch | A |
chloramphenicol | C | amphenicols | 30 | EUCAST | HIA | Access | C |
erythromycin | E | macrolides | 15 | EUCAST | HPCIA | Watch | C |
clindamycin | DA | lincosamides | 2 | EUCAST | HIA | Access | C |
tetracycline | TE | tetracyclines | 30 | EUCAST | HIA | Access | D |
tigecycline | TGC | glycylcyclines | 15 | EUCAST | HCIA | Reserve | A |
gentamycin | CN | aminoglycosides | 10 | EUCAST | HCIA | Access | C |
fusidic acid | FD | steroid antibacterials | 10 | EUCAST | HIA | Watch | D |
ceftaroline | CPT | anti-MRS cephalosporins | -* | EUCAST | HPCIA | Reserve | A |
teicoplanin/vancomycin | TEC/VA | glycopeptides | -* | EUCAST | HPCIA | Watch | A |
telavancin | TLV | glycopeptides | -* | EUCAST | HPCIA | Reserve | A |
daptomycin | DAP | lipopeptides | -* | EUCAST | HCIA | Reserve | A |
quinupristin-dalfopristin | QDA | streptogramins | -* | EUCAST | HIA | Reserve | A |
linezolid | LNZ | oxazolidinones | -* | EUCAST | HCIA | Reserve | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellato, A.; Robino, P.; Stella, M.C.; Scarrone, L.; Scalas, D.; Nebbia, P. Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin. Antibiotics 2022, 11, 1758. https://doi.org/10.3390/antibiotics11121758
Bellato A, Robino P, Stella MC, Scarrone L, Scalas D, Nebbia P. Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin. Antibiotics. 2022; 11(12):1758. https://doi.org/10.3390/antibiotics11121758
Chicago/Turabian StyleBellato, Alessandro, Patrizia Robino, Maria Cristina Stella, Laura Scarrone, Daniela Scalas, and Patrizia Nebbia. 2022. "Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin" Antibiotics 11, no. 12: 1758. https://doi.org/10.3390/antibiotics11121758
APA StyleBellato, A., Robino, P., Stella, M. C., Scarrone, L., Scalas, D., & Nebbia, P. (2022). Resistance to Critical Important Antibacterials in Staphylococcus pseudintermedius Strains of Veterinary Origin. Antibiotics, 11(12), 1758. https://doi.org/10.3390/antibiotics11121758