Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation?
Abstract
:1. Introduction
2. TDM of Azoles in Critically Ill Patients
2.1. Itraconazole
Clinical Context | Dose | AUC0–24 (mg × h/L) | Cmin (mg/L) | Cmax (mg/L) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
10 ICU patients with IFIs | IV formulation 200 × 2 days 1 & 2, followed by 200 mg daily | 29.3 ± 6 | 0.37 ± 0.17 | 1.2 ± 0.3 | - | - | [36] |
Healthy volunteers | 200 mg capsules (with food) | 45.2 ± 10.8 | 1.86 ± 0.54 | 2.23 ± 0.51 | - | - | [37] |
Healthy volunteers | 200 mg capsules once daily (with food) | 15.4 ± 6.9 | 0.42 ± 0.18 | 1.07 ± 0.05 | [38] |
2.2. Posaconazole
Clinical Context | Dose | AUC0–24 (mg h/L) | Cmin (mg/L) | Cmax (mg/L) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
27 patients in the general intensive care unit | Oral suspension, 200 mg 4 times daily | 0.217 | 0.137 | 0.084 | - | - | [43] |
27 patients in the general intensive care unit | Oral suspension, 400 mg twice daily | 0.762 | 0.306 | 0.111 | - | - | [43] |
Subjects at high risk of invasive fungal disease (neutropenic patients receiving cytotoxic chemotherapy) | IV, 200 mg once daily | 28.2 | 0.96 | 1.95 | [47] |
2.3. Voriconazole
Clinical Context | Dose | AUC0–24 (mg h/L) | Cmin (mg/L) | Cmax (mg/L) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
Patients with venous haemofiltration | IV, 6 mg/kg twice daily on day 1; maintenance dose 4 mg/kg twice daily | 44.8 ± 7.4 | 1.1 ± 0.3 | 5.9 ± 2.9 | 12.9 ± 6.7 | 2.96 ± 0.55 | [51] |
454 patients with invasive aspergillosis | IV, 6 mg/kg twice daily on day 1; maintenance dose 4 mg/kg twice daily | 100.2 ± 43.08 | 3.10 (52) | - | - | - | [52] |
2.4. Fluconazole and Isavuconazole
2.5. Recommendations for Azole TDM
3. TDM of Echinocandins in Critically Ill Patients
3.1. Anidulafungin
3.2. Caspofungin
Clinical Context | Dose | AUC0–24 (mg h/L) | Cmin (mg/L) | Cmax (mg/L) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
1. ICU patients with suspected or proven invasive candida infection | Standard * | 57.8 (51.6 to 69.8) | - | - | 0.88 | 11.9 | [12] |
2. ICU patients administered with caspofungin | Standard * | 52.0 | 1.5 | 3.9 | - | - | [18] |
3. Critically ill adult patients with suspected or proven invasive candidiasis receiving continuous venovenous hemodiafiltration | Standard * | Arterial: 102 ± 46 Venous: 123 ± 46 | 2.4 ± 0.8 | 9.3 ± 2.3 | 0.630 ± 0.225 | 16.4 ± 5.4 | [73] |
4. ICU patients with suspected invasive candidiasis | Standard * | 78 [IQR], 69 to 97 mg | 1.7 (1.1–3.9) | 7.4 (4.7–14.7) | 0.66 (0.37–1.26) | 9.1 (5.5–13.2) | [83] |
5. ICU septic patients receiving caspofungin as empirical treatment | Standard * | 89.2 | 2.6 | 10.5 | 0.06 | 9.3 | [84] |
6. ICU patients administered with caspofungin | Standard * | 88.7 (72.2–97.5) | 2.15 (1.40–2.48) | 7.51 (6.05–8.17) | 0.57 (0.54–0.77) | 7.72 (6.12–9.01) | [85] |
7. ICU patients with Child–Pugh B | 70 mg loading dose followed by 35 mg daily | 65 (22–241) | - | - | 0.55 | - | [86] |
8. ICU patients receiving caspofungin | 140 mg loading dose | 79.1 (IQR 55.2; 108.4) | - | - | - | - | [87] |
3.3. Micafungin
Clinical Context | Dose | AUC0–24 (mg h/L) | AUC/MIC ratio | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|
1. ICU patients receiving micafungin for suspected or proven fungal infection | Standard * | 91 (67–122) | - | 1.10 | 17.6 | [86] |
150 mg daily | 137 (101–183) | - | ||||
200 mg daily | 183 (135–244) | - | ||||
2. ICU patients treated with micafungin for a suspected or proven invasive candida infection | Standard * | 89.6 | 6221 (C. albicans) 5643 (C. glabrata) | - | - | [95] |
3. ICU patients with sepsis and mechanical ventilation | Standard * | 65.5 ** | - | 1.34 L/h | 11.80 | [98] |
4. ICU patients treated with micafungin for a suspected or proven invasive candida infection | Standard * | 76.33 | - | 1.31 L/h | 14.2 L | [100] |
3.4. Recommendations for Echinocandin TDM
4. TDM of Amphotericin B in Critically Ill Patients
Recommendations for Amphotericin B TDM
5. Flucytosine
Clinical Context | Dose | AUC0–24 (mcg h/mL) | Cmin (mcg/mL) | Cmax (mcg/mL) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
Healthy volunteers given immediate-release oral flucytosine | 13.8–25.4 mg/kg PO every 12 h | 435 | 5.32 | 57.3 | 0.49 | 5.62 | [186] |
Healthy volunteers given controlled-release oral flucytosine (Methocel K4M) | 13.8–25.4 mg/kg PO every 12 h | 221 | 3.54 | 28.4 | 0.75 | 7.37 | [186] |
Healthy volunteers given controlled-release oral flucytosine (Methocel K100M) | 13.8–25.4 mg/kg PO every 12 h | 222 | 5.31 | 23.5 | 0.82 | 15.0 | [186] |
Case report of a patient with a severe cryptococcal infection undergoing CVVHDF | 25.8 mg/kg PO every 12 h | 2980 | 2.0 | >8.0 | 1.92–2.31 | 48.1–57.7 | [187] |
Case report of a patient with a severe cryptococcal infection undergoing CVVHDF | 25 mg/kg PO every 12 h | - | 45 | 62–64 | 1.32–1.36 | 0.42–0.42 (per Kg) | [188] |
Empiric antifungal coverage in a patient with refractory septic shock and requiring CVVHD | 37.5 mg/kg on day 1 and 50 mg/kg after | - | 34 | 110 | 1.1 | 57.4 | [189] |
Recommendations for Flucytosine TDM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, J.L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [Green Version]
- Pardo, E.; Lemiale, V.; Mokart, D.; Stoclin, A.; Moreau, A.S.; Kerhuel, L.; Calvet, L.; Valade, S.; de Jong, A.; Darmon, M.; et al. Invasive Pulmonary Aspergillosis in Critically Ill Patients with Hematological Malignancies. Intensive Care Med. 2019, 45, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Han, X.; Li, Y.; Zhang, C.; Xing, X. Invasive Pulmonary Aspergillosis in Immunocompetent Patients Hospitalised with Influenza A-Related Pneumonia: A Multicenter Retrospective Study. BMC Pulm. Med. 2020, 20, 239. [Google Scholar] [CrossRef] [PubMed]
- Al-Dorzi, H.M.; Sakkijha, H.; Khan, R.; Aldabbagh, T.; Toledo, A.; Ntinika, P.; al Johani, S.M.; Arabi, Y.M. Invasive Candidiasis in Critically Ill Patients: A Prospective Cohort Study in Two Tertiary Care Centers. J. Intensive Care Med. 2020, 35, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Rello, J.; Dimopoulos, G.; Bulpa, P.; Blot, K.; Vogelaers, D.; Blot, S. Invasive Pulmonary Aspergillosis in Solid-Organ Transplant Patients in the Intensive Care Unit. Transpl. Infect. Dis. 2021, 24, e13746. [Google Scholar] [CrossRef] [PubMed]
- Bretagne, S.; Sitbon, K.; Botterel, F.; Dellière, S.; Letscher-Bru, V.; Chouaki, T.; Bellanger, A.-P.; Bonnal, C.; Fekkar, A.; Persat, F.; et al. COVID-19-Associated Pulmonary Aspergillosis, Fungemia, and Pneumocystosis in the Intensive Care Unit: A Retrospective Multicenter Observational Cohort during the First French Pandemic Wave. Microbiol. Spectr. 2021, 9, e01138-21. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Posteraro, B.; Trecarichi, E.M.; Fiori, B.; Rossi, M.; Porta, R.; Donati, K.D.G.; la Sorda, M.; Spanu, T.; Fadda, G.; et al. Biofilm Production by Candida Species and Inadequate Antifungal Therapy as Predictors of Mortality for Patients with Candidemia. J. Clin. Microbiol. 2007, 45, 1843–1850. [Google Scholar] [CrossRef] [Green Version]
- Kably, B.; Launay, M.; Derobertmasure, A.; Lefeuvre, S.; Dannaoui, E.; Billaud, E.M. Antifungal Drugs TDM: Trends and Update. Ther. Drug Monit. 2022, 44, 166–197. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P.; Furlanut, M. Antimicrobial Therapy in Critically Ill Patients: A Review of Pathophysiological Conditions Responsible for Altered Disposition and Pharmacokinetic Variability. Clin. Pharmacokinet. 2005, 44, 1009–1034. [Google Scholar] [CrossRef]
- Williams, P.; Cotta, M.O.; Roberts, J.A. Pharmacokinetics/Pharmacodynamics of β-Lactams and Therapeutic Drug Monitoring: From Theory to Practical Issues in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2019, 40, 476–487. [Google Scholar] [CrossRef]
- Ince, C.; Mayeux, P.R.; Nguyen, T.; Gomez, H.; Kellum, J.A.; Ospina-Tascón, G.A.; Hernandez, G.; Murray, P.; de Backer, D. The endothelium in sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurland, S.; Furebring, M.; Löwdin, E.; Eliasson, E.; Nielsen, E.I.; Sjölin, J. Pharmacokinetics of Caspofungin in Critically Ill Patients in Relation to Liver Dysfunction: Differential Impact of Plasma Albumin and Bilirubin Levels. Antimicrob. Agents Chemother. 2019, 63, e02466-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.; Boyken, L.; Hollis, R.; Kroeger, J.; Messer, S.; Tendolkar, S.; Diekema, D. Use of Epidemiological Cutoff Values to Examine 9-Year Trends in Susceptibility of Candida Species to Anidulafungin, Caspofungin, and Micafungin. J. Clin. Microbiol. 2011, 49, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Brüggemann, R.J.M.; Middel-Baars, V.; de Lange, D.W.; Colbers, A.; Girbes, A.R.J.; Pickkers, P.; Swart, E.L. Pharmacokinetics of Anidulafungin in Critically Ill Intensive Care Unit Patients with Suspected or Proven Invasive Fungal Infections. Antimicrob. Agents Chemother. 2017, 61, e01894-16. [Google Scholar] [CrossRef] [Green Version]
- Udy, A.A.; Roberts, J.A.; Lipman, J. Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–275. [Google Scholar] [CrossRef]
- Kapralos, I.; Mainas, E.; Apostolopoulou, O.; Siopi, M.; Neroutsos, E.; Apostolidi, S.; Dimopoulos, G.; Sambatakou, H.; Valsami, G.; Meletiadis, J.; et al. Population Pharmacokinetics of Anidulafungin in ICU Patients Assessing Inter- and Intrasubject Variability. Br. J. Clin. Pharmacol. 2021, 87, 1024–1032. [Google Scholar] [CrossRef]
- Sinnollareddy, M.G.; Roberts, J.A.; Lipman, J.; Akova, M.; Bassetti, M.; de Waele, J.J.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. Pharmacokinetic Variability and Exposures of Fluconazole, Anidulafungin, and Caspofungin in Intensive Care Unit Patients: Data from Multinational Defining Antibiotic Levels in Intensive Care Unit (DALI) Patients Study. Crit. Care 2015, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Zonios, D.I.; Bennett, J.E. Update on Azole Antifungals. Semin. Respir. Crit. Care Med. 2008, 29, 198–210. [Google Scholar] [CrossRef]
- Koltin, Y.; Hitchcock, C.A. The Search for New Triazole Antifungal Agents. Curr. Opin. Chem. Biol. 1997, 1, 176–182. [Google Scholar] [CrossRef]
- Rodrigues, M.L. The Multifunctional Fungal Ergosterol. MBio 2018, 9, e01755-18. [Google Scholar] [CrossRef] [Green Version]
- John, J.; Loo, A.; Mazur, S.; Walsh, T.J. Therapeutic Drug Monitoring of Systemic Antifungal Agents: A Pragmatic Approach for Adult and Pediatric Patients. Expert Opin. Drug Metab. Toxicol. 2019, 15, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, A. Antifungal Therapeutic Drug Monitoring: Focus on Drugs without a Clear Recommendation. Clin. Microbiol. Infect. 2020, 26, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic Drug Monitoring (TDM) of Antifungal Agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, L.; van der Geest, R.; de Beule, K. Itraconazole Oral Solution and Intravenous Formulations: A Review of Pharmacokinetics and Pharmacodynamics. J. Clin. Pharm. Ther. 2001, 26, 159–169. [Google Scholar] [CrossRef]
- Vandewoude, K.; Vogelaers, D.; Decruyenaere, J.; Jaqmin, P.; de Beule, K.; van Peer, A.; Woestenborghs, R.; Groen, K.; Colardyn, F. Concentrations in Plasma and Safety of 7 Days of Intravenous Itraconazole Followed by 2 Weeks of Oral Itraconazole Solution in Patients in Intensive Care Units. Antimicrob. Agents Chemother. 1997, 41, 2714–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreary, E.K.; Bayless, M.; Van, A.P.; Lepak, A.J.; Wiebe, D.A.; Schulz, L.T.; Andes, D.R. Impact of Triazole Therapeutic Drug Monitoring Availability and Timing. Antimicrob. Agents Chemother. 2019, 63, e01245-19. [Google Scholar] [CrossRef] [PubMed]
- Wheat, J.; Hafner, R.; Korzun, A.H.; Limj, M.T.; Spencer, P.; Larsen, R.A.; Hecht, F.M.; Powderly, W. Itraconazole Treatment of Disseminated Histoplasmosis in Patients with the Acquired Immunodeficiency Syndrome. AIDS Clinical Trial Group. Am. J. Med. 1995, 98, 336–342. [Google Scholar] [CrossRef]
- Sharkey, P.K.; Rinaldi, M.G.; Dunn, J.F.; Hardin, T.C.; Fetchick, R.J.; Graybill, J.R. High-Dose Itraconazole in the Treatment of Severe Mycoses. Antimicrob. Agents Chemother. 1991, 35, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Denning, D.W.; Tucker, R.M.; Hanson, L.H.; Hamilton, J.R.; Stevens, D.A. Itraconazole Therapy for Cryptococcal Meningitis and Cryptococcosis. Arch. Intern. Med. 1989, 149, 2301–2308. [Google Scholar] [CrossRef]
- Denning, D.W.; Tucker, R.M.; Hansen, L.H.; Stevens, D.A. Treatment of Invasive Aspergillosis with Itraconazole. Am. J. Med. 1989, 86, 791–800. [Google Scholar] [CrossRef]
- Stott, K.E.; Hope, W.W. Therapeutic Drug Monitoring for Invasive Mould Infections and Disease: Pharmacokinetic and Pharmacodynamic Considerations. J. Antimicrob. Chemother. 2017, 72, i12–i18. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Lestner, J.M.; Roberts, S.A.; Moore, C.B.; Howard, S.J.; Denning, D.W.; Hope, W.W. Toxicodynamics of Itraconazole: Implications for Therapeutic Drug Monitoring. Clin. Infect. Dis. 2009, 49, 928–930. [Google Scholar] [CrossRef]
- Fung, S.L.; Chau, C.H.; Yew, W.W. Cardiovascular Adverse Effects during Itraconazole Therapy. Eur. Respir. J. 2008, 32, 240. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, M.; Kasai, H.; Umemura, T.; Kato, T.; Hasegawa, T.; Mikamo, H. Pharmacokinetic-Pharmacodynamic Study of Itraconazole in Patients with Fungal Infections in Intensive Care Units. J. Infect. Chemother. 2011, 17, 224–230. [Google Scholar] [CrossRef] [PubMed]
- EUCAST European Committee on Antimicrobial Susceptibility Testing. Itraconazole: Rationale for the Clinical Breakpoints, Version 3.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Itraconazole_RD_v3.0_final.pdf. (accessed on 13 March 2022).
- Hardin, T.C.; Graybill, J.R.; Fetchick, R.; Woestenborghs, R.; Rinaldi, M.G.; Kuhn, J.G. Pharmacokinetics of Itraconazole Following Oral Administration to Normal Volunteers. Antimicrob. Agents Chemother. 1988, 32, 1310–1313. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, B.G.J.; Bakker, M.; van der Elst, K.C.M.; Sturkenboom, M.G.G.; Veringa, A.; Span, L.F.R.; Alffenaar, J.W.C. Therapeutic Drug Monitoring of Posaconazole: An Update. Curr. Fungal Infect. Rep. 2016, 10, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Andes, D.; Marchillo, K.; Conklin, R.; Krishna, G.; Ezzet, F.; Cacciapuoti, A.; Loebenberg, D. Pharmacodynamics of a New Triazole, Posaconazole, in a Murine Model of Disseminated Candidiasis. Antimicrob. Agents Chemother. 2004, 48, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Dolton, M.J.; Ray, J.E.; Marriott, D.; McLachlan, A.J. Posaconazole Exposure-Response Relationship: Evaluating the Utility of Therapeutic Drug Monitoring. Antimicrob. Agents Chemother. 2012, 56, 2806–2813. [Google Scholar] [CrossRef] [Green Version]
- Seyedmousavi, S.; Mouton, J.W.; Verweij, P.E.; Brüggemann, R.J.M. Therapeutic Drug Monitoring of Voriconazole and Posaconazole for Invasive Aspergillosis. Expert Rev. Anti-Infect. Ther. 2014, 11, 931–941. [Google Scholar] [CrossRef]
- Ray, J.; Campbell, L.; Rudham, S.; Nguyen, Q.; Marriott, D. Posaconazole Plasma Concentrations in Critically Ill Patients. Ther. Drug Monit. 2011, 33, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Raad, I.; Patterson, T.F.; Chandrasekar, P.; Donowitz, G.R.; Graybill, R.; Greene, R.E.; Hachem, R.; Hadley, S.; Herbrecht, R.; et al. Treatment of Invasive Aspergillosis with Posaconazole in Patients Who Are Refractory to or Intolerant of Conventional Therapy: An Externally Controlled Trial. Clin. Infect. Dis. 2007, 44, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Maertens, J.; Winston, D.J.; Perfect, J.; Ullmann, A.J.; Walsh, T.J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.-T.; et al. Posaconazole vs. Fluconazole or Itraconazole Prophylaxis in Patients with Neutropenia. N. Engl. J. Med. 2007, 356, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baracaldo-Santamaría, D.; Llinás-Caballero, K.; Corso-Ramirez, J.M.; Restrepo, C.M.; Dominguez-Dominguez, C.A.; Fonseca-Mendoza, D.J.; Calderon-Ospina, C.A. Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation. Int. J. Mol. Sci. 2021, 22, 8090. [Google Scholar] [CrossRef]
- Maertens, J.; Cornely, O.A.; Ullmann, A.J.; Heinz, W.J.; Krishna, G.; Patino, H.; Caceres, M.; Kartsonis, N.; Waskin, H.; Robertson, M.N. Phase 1B Study of the Pharmacokinetics and Safety of Posaconazole Intravenous Solution in Patients at Risk for Invasive Fungal Disease. Antimicrob. Agents Chemother. 2014, 58, 3610–3617. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ng, P.; Hamandi, B.; Husain, S.; Lefebvre, M.J.; Battistella, M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann. Pharmacother. 2021, 55, 509–529. [Google Scholar] [CrossRef]
- Park, W.B.; Kim, N.H.; Kim, K.H.; Lee, S.H.; Nam, W.S.; Yoon, S.H.; Song, K.H.; Choe, P.G.; Kim, N.J.; Jang, I.J.; et al. The Effect of Therapeutic Drug Monitoring on Safety and Efficacy of Voriconazole in Invasive Fungal Infections: A Randomized Controlled Trial. Clin. Infect. Dis. 2012, 55, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Bienvenu, A.L.; Pradat, P.; Plesa, A.; Leclerc, V.; Piriou, V.; Fellahi, J.L.; Argaud, L.; Rimmelé, T.; Menotti, J.; Aubrun, F.; et al. Association between Voriconazole Exposure and Sequential Organ Failure Assessment (SOFA) Score in Critically Ill Patients. PLoS ONE 2021, 16, e0260656. [Google Scholar] [CrossRef]
- Fuhrmann, V.; Schenk, P.; Jaeger, W.; Miksits, M.; Kneidinger, N.; Warszawska, J.; Holzinger, U.; Kitzberger, R.; Thalhammer, F. Pharmacokinetics of Voriconazole during Continuous Venovenous Haemodiafiltration. J. Antimicrob. Chemother. 2007, 60, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Mould, D.R. Population Pharmacokinetic Analysis of Voriconazole and Anidulafungin in Adult Patients with Invasive Aspergillosis. Antimicrob. Agents Chemother. 2014, 58, 4718–4726. [Google Scholar] [CrossRef] [Green Version]
- Chatelon, J.; Cortegiani, A.; Hammad, E.; Cassir, N.; Leone, M. Choosing the Right Antifungal Agent in ICU Patients. Adv. Ther. 2019, 36, 3308–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, M.P.; Turpin, R.S.; Garey, K.W. Association of Fluconazole Area under the Concentration-Time Curve/MIC and Dose/MIC Ratios with Mortality in Nonneutropenic Patients with Candidemia. Antimicrob. Agents Chemother. 2007, 51, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Chiba, M.; Nishime, J.; Hochman, J.; Chen, I.; Williams, T.; Lin, J. Comparison of Imidazole- and 2-Methyl Imidazole-Containing Farnesyl-Protein Transferase Inhibitors: Interaction with and Metabolism by Rat Hepatic Cytochrome P450s. Drug Metab. Dispos. 2000, 28, 680–686. [Google Scholar] [PubMed]
- Rodríguez-Tudela, J.L.; Almirante, B.; Rodríguez-Pardo, D.; Laguna, F.; Donnelly, J.P.; Mouton, J.W.; Pahissa, A.; Cuenca-Estrella, M. Correlation of the MIC and Dose/MIC Ratio of Fluconazole to the Therapeutic Response of Patients with Mucosal Candidiasis and Candidemia. Antimicrob. Agents Chemother. 2007, 51, 3599–3604. [Google Scholar] [CrossRef] [Green Version]
- Andes, D.; Kovanda, L.; Desai, A.; Kitt, T.; Zhao, M.; Walsh, T.J. Isavuconazole Concentration in Real-World Practice: Consistency with Results from Clinical Trials. Antimicrob. Agents Chemother. 2018, 62, e00585-18. [Google Scholar] [CrossRef] [Green Version]
- Schmitt-Hoffmann, A.; Roos, B.; Spickermann, J.; Heep, M.; Peterfaí, É.; Edwards, D.J.; Stoeckel, K. Effect of Mild and Moderate Liver Disease on the Pharmacokinetics of Isavuconazole after Intravenous and Oral Administration of a Single Dose of the Prodrug BAL8557. Antimicrob. Agents Chemother. 2009, 53, 4885–4890. [Google Scholar] [CrossRef] [Green Version]
- Brunton, L.; Chabner, B.; Knollmann, B. Goodman & Gilman: Las Bases Farmacológicas De La Terapéutica, Decimotercera Edición; McGraw Hill: New York, NY, USA, 2019. [Google Scholar]
- Theuretzbacher, U. Pharmacokinetics/Pharmacodynamics of Echinocandins. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 805–812. [Google Scholar] [CrossRef]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014, 5, a019752. [Google Scholar] [CrossRef]
- van Wanrooy, M.J.P.; Rodgers, M.G.G.; Uges, D.R.A.; Arends, J.P.; Zijlstra, J.G.; van der Werf, T.S.; Kosterink, J.G.W.; Alffenaar, J.W.C. Low but Sufficient Anidulafungin Exposure in Critically Ill Patients. Antimicrob. Agents Chemother. 2014, 58, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Liu, P. Population Pharmacokinetic-Pharmacodynamic Analysis of Anidulafungin in Adult Patients with Fungal Infections. Antimicrob. Agents Chemother. 2013, 57, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, D.; Pan, Y.; Li, Y. Pharmacokinetic/Pharmacodynamics Variability of Echinocandins in Critically Ill Patients: A Systematic Review and Meta-Analysis. J. Clin. Pharm. Ther. 2020, 45, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Anidulafungin: A Novel Echinocandin. Clin. Infect. Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.S.; Reinhardt, J.; Vazquez, J.A.; Reboli, A.; Goldstein, B.P.; Wible, M.; Henkel, T. Phase 2, Randomized, Dose-Ranging Study Evaluating the Safety and Efficacy of Anidulafungin in Invasive Candidiasis and Candidemia. Antimicrob. Agents Chemother. 2004, 48, 2021–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andes, D.; Diekema, D.J.; Pfaller, M.A.; Prince, R.A.; Marchillo, K.; Ashbeck, J.; Hou, J. In Vivo Pharmacodynamic Characterization of Anidulafungin in a Neutropenic Murine Candidiasis Model. Antimicrob. Agents Chemother. 2008, 52, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Siopi, M.; Perlin, D.S.; Arendrup, M.C.; Pournaras, S.; Meletiadis, J. Comparative Pharmacodynamics of Echinocandins against Aspergillus Fumigatus Using an in Vitro Pharmacokinetic/Pharmacodynamic Model That Correlates with Clinical Response to Caspofungin Therapy: Is There a Place for Dose Optimization? Antimicrob. Agents Chemother. 2021, 65, e01618-20. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Anidulafungin: Rationale for the Clinical Breakpoints, Version 3.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Anidulafungin_RD_v3.0_final_13_02.pdf (accessed on 27 January 2022).
- Liu, P.; Ruhnke, M.; Meersseman, W.; Paiva, J.A.; Kantecki, M.; Damle, B. Pharmacokinetics of Anidulafungin in Critically Ill Patients with Candidemia/Invasive Candidiasis. Antimicrob. Agents Chemother. 2013, 57, 1672–1676. [Google Scholar] [CrossRef] [Green Version]
- Dupont, H.; Massias, L.; Jung, B.; Ammenouche, N.; Montravers, P. Pharmacokinetic Study of Anidulafungin in ICU Patients with Intra-Abdominal Candidiasis. J. Antimicrob. Chemother. 2017, 72, 1429–1432. [Google Scholar] [CrossRef] [Green Version]
- Luque, S.; Hope, W.; Campillo, N.; Muñoz-Bermúdez, R.; Sorli, L.; Barceló-Vidal, J.; González-Colominas, E.; Alvarez-Lerma, F.; Masclans, J.R.; Montero, M.; et al. Population Pharmacokinetics of Anidulafungin in Critically Ill Patients. Antimicrob. Agents Chemother. 2019, 63, e00378-19. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, G.; Azanza, J.R.; Carbonell, J.A.; Ferrando, C.; Badenes, R.; Parra, M.A.; Sadaba, B.; Navarro, D.; Puig, J.; Miñana, A.; et al. Anidulafungin Dosing in Critically Ill Patients with Continuous Venovenous Haemodiafiltration. J. Antimicrob. Chemother. 2014, 69, 1620–1623. [Google Scholar] [CrossRef] [Green Version]
- Division of Pfizer Inc. Final Package Insert for ERAXIS (Anidulafungin) for Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021632s000,021948s000lbl.pdf (accessed on 30 January 2022).
- Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse Effects Associated With Currently Commonly Used Antifungal Agents: A Network Meta-Analysis and Systematic Review. Front. Pharmacol. 2021, 12, 3046. [Google Scholar] [CrossRef]
- Wasmann, R.E.; ter Heine, R.; van Dongen, E.P.; Burger, D.M.; Lempers, V.J.; Knibbe, C.A.; Brüggemann, R.J. Pharmacokinetics of Anidulafungin in Obese and Normal-Weight Adults. Antimicrob. Agents Chemother. 2018, 62, e00063-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancidas (Previously Caspofungin MSD)|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/cancidas-previously-caspofungin-msd (accessed on 31 January 2022).
- van Vianen, W.; de Marie, S.; ten Kate, M.T.; Mathot, R.A.A.; Bakker-Woudenberg, I.A.J.M. Caspofungin: Antifungal Activity in Vitro, Pharmacokinetics, and Effects on Fungal Load and Animal Survival in Neutropenic Rats with Invasive Pulmonary Aspergillosis. J. Antimicrob. Chemother. 2006, 57, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Louie, A.; Deziel, M.; Liu, W.; Drusano, M.F.; Gumbo, T.; Drusano, G.L. Pharmacodynamics of Caspofungin in a Murine Model of Systemic Candidiasis: Importance of Persistence of Caspofungin in Tissues to Understanding Drug Activity. Antimicrob. Agents Chemother. 2005, 49, 5058–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andes, D.; Diekema, D.J.; Pfaller, M.A.; Bohrmuller, J.; Marchillo, K.; Lepak, A. In Vivo Comparison of the Pharmacodynamic Targets for Echinocandin Drugs against Candida Species. Antimicrob. Agents Chemother. 2010, 54, 2497–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Moor, A.B.; Sysiak-Sławecka, J.; Rypulak, E.; Borys, M.; Piwowarczyk, P.; Raszewski, G.; Onichimowski, D.; Czuczwar, M.; Wiczling, P. Nonstationary Pharmacokinetics of Caspofungin in ICU Patients. Antimicrob. Agents Chemother. 2020, 64, e00345-20. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.A.; Holland, S.D.; Wickersham, P.J.; Sterrett, A.; Schwartz, M.; Bonfiglio, C.; Hesney, M.; Winchell, G.A.; Deutsch, P.J.; Greenberg, H.; et al. Single- and Multiple-Dose Pharmacokinetics of Caspofungin in Healthy Men. Antimicrob. Agents Chemother. 2002, 46, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Elst, K.C.M.; Veringa, A.; Zijlstra, J.G.; Beishuizen, A.; Klont, R.; Brummelhuis-Visser, P.; Uges, D.R.A.; Touw, D.J.; Kosterink, J.G.W.; van der Werf, T.S.; et al. Low Caspofungin Exposure in Patients in Intensive Care Units. Antimicrob. Agents Chemother. 2017, 61, e01582-16. [Google Scholar] [CrossRef] [Green Version]
- Adembri, C.; Villa, G.; Rosi, E.; Tofani, L.; Fallani, S.; de Gaudio, A.R.; Novelli, A. Caspofungin PK in Critically Ill Patients after the First and Fourth Doses: Suggestions for Therapeutic Drug Monitoring? J. Chemother. 2020, 32, 124–131. [Google Scholar] [CrossRef]
- Muilwijk, E.W.; Schouten, J.A.; van Leeuwen, H.J.; van Zanten, A.R.H.; de Lange, D.W.; Colbers, A.; Verweij, P.E.; Burger, D.M.; Pickkers, P.; Brüggemann, R.J.M. Pharmacokinetics of Caspofungin in ICU Patients. J. Antimicrob. Chemother. 2014, 69, 3294–3299. [Google Scholar] [CrossRef] [Green Version]
- Martial, L.C.; Brü Ggemann, J.M.; Schouten, J.A.; van Leeuwen, J.; van Zanten, A.R.; de Lange, D.W.; Muilwijk, E.W.; Verweij, P.E.; Burger, D.M.; Aarnoutse, R.E.; et al. Dose Reduction of Caspofungin in Intensive Care Unit Patients with Child Pugh B Will Result in Suboptimal Exposure Key Points. Clin. Pharmacokinet. 2016, 55, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Bailly, S.; Gautier-Veyret, E.; Lê, M.P.; Bouadma, L.; Andremont, O.; Neuville, M.; Mourvillier, B.; Sonneville, R.; Magalhaes, E.; Lebut, J.; et al. Impact of Loading Dose of Caspofungin in Pharmacokinetic-Pharmacodynamic Target Attainment for Severe Candidiasis Infections in Patients in Intensive Care Units: The CASPOLOAD Study. Antimicrob. Agents Chemother. 2020, 64, e01545-20. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.G.; Swancutt, M.A.; Meek, C.; Leff, R.; Gumbo, T. Weight Drives Caspofungin Pharmacokinetic Variability in Overweight and Obese People: Fractal Power Signatures beyond Two-Thirds or Three-Fourths. Antimicrob. Agents Chemother. 2013, 57, 2259–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Märtson, A.G.; van der Elst, K.C.M.; Veringa, A.; Zijlstra, J.G.; Beishuizen, A.; van der Werf, T.S.; Kosterink, J.G.W.; Neely, M.; Alffenaar, J.W. Caspofungin Weight-Based Dosing Supported by a Population Pharmacokinetic Model in Critically Ill Patients. Antimicrob. Agents Chemother. 2020, 64, e00905-20. [Google Scholar] [CrossRef] [PubMed]
- Astellas Pharma US, Inc. Mycamine ® (Micafungin Sodium) For Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021506s009lbl.pdf (accessed on 3 February 2022).
- Hebert, M.F.; Smith, H.E.; Marbury, T.C.; Swan, S.K.; Smith, W.B.; Townsend, R.W.; Buell, D.; Keirns, J.; Bekersky, I. Pharmacokinetics of Micafungin in Healthy Volunteers, Volunteers with Moderate Liver Disease, and Volunteers with Renal Dysfunction. J. Clin. Pharmacol. 2005, 45, 1145–1152. [Google Scholar] [CrossRef]
- Petraitis, V.; Petraitiene, R.; Groll, A.H.; Roussillon, K.; Hemmings, M.; Lyman, C.A.; Sein, T.; Bacher, J.; Bekersky, I.; Walsh, T.J. Comparative Antifungal Activities and Plasma Pharmacokinetics of Micafungin (FK463) against Disseminated Candidiasis and Invasive Pulmonary Aspergillosis in Persistently Neutropenic Rabbits. Antimicrob. Agents Chemother. 2002, 46, 1857–1869. [Google Scholar] [CrossRef] [Green Version]
- Gumbo, T.; Drusano, G.L.; Liu, W.; Kulawy, R.W.; Fregeau, C.; Hsu, V.; Louie, A. Once-Weekly Micafungin Therapy is as Effective as Daily Therapy for Disseminated Candidiasis in Mice with Persistent Neutropenia. Antimicrob. Agents Chemother. 2007, 51, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Micafungin and Candida Spp.: Rationale for the EUCAST Clinical Breakpoints, version 2.0; Rationale for EUCAST Clinical Breakpoints Agent Micafungin against Candida Spp.; Current Version 2.0.4; European Committee on Antimicrobial Susceptibility Testing. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Micafungin_RD_v2.0_final_13_02.pdf (accessed on 8 February 2022).
- Boonstra, J.M.; van der Elst, K.C.; Veringa, A.; Jongedijk, E.M.; Brüggemann, R.J.; Koster, R.A.; Kampinga, G.A.; Kosterink, J.G.; van der Werf, T.S.; Zijlstra, J.G.; et al. Pharmacokinetic Properties of Micafungin in Critically Ill Patients Diagnosed with Invasive Candidiasis. Antimicrob. Agents Chemother. 2017, 61, e01398-17. [Google Scholar] [CrossRef] [Green Version]
- Hebert, M.F.; Blough, D.K.; Townsend, R.W.; Allison, M.; Buell, D.; Keirns, J.; Bekersky, I. Concomitant Tacrolimus and Micafungin Pharmacokinetics in Healthy Volunteers. J. Clin. Pharmacol. 2005, 45, 1018–1024. [Google Scholar] [CrossRef]
- Hebert, M.F.; Townsend, R.W.; Austin, S.; Balan, G.; Blough, D.K.; Buell, D.; Keirns, J.; Bekersky, I. Concomitant Cyclosporine and Micafungin Pharmacokinetics in Healthy Volunteers. J. Clin. Pharmacol. 2005, 45, 954–960. [Google Scholar] [CrossRef]
- Jullien, V.; Azoulay, E.; Schwebel, C.; le Saux, T.; Charles, P.E.; Cornet, M.; Souweine, B.; Klouche, K.; Jaber, S.; Trouillet, J.L.; et al. Population Pharmacokinetics of Micafungin in ICU Patients with Sepsis and Mechanical Ventilation. J. Antimicrob. Chemother. 2017, 72, 181–189. [Google Scholar] [CrossRef]
- Maseda, E.; Grau, S.; Luque, S.; Castillo-Mafla, M.P.; Suárez-de-la-Rica, A.; Montero-Feijoo, A.; Salgado, P.; Gimenez, M.J.; García-Bernedo, C.A.; Gilsanz, F.; et al. Population Pharmacokinetics/Pharmacodynamics of Micafungin against Candida Species in Obese, Critically Ill, and Morbidly Obese Critically Ill Patients. Crit. Care 2018, 22, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapralos, I.; Mainas, E.; Neroutsos, E.; Apostolidi, S.; Siopi, M.; Apostolopoulou, O.; Dimopoulos, G.; Sambatakou, H.; Valsami, G.; Meletiadis, J.; et al. Population Pharmacokinetics of Micafungin over Repeated Doses in Critically Ill Patients: A Need for a Loading Dose? J. Pharm. Pharmacol. 2020, 72, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- van Wanrooy, M.J.P.; Proost, J.H.; Rodgers, M.G.G.; Zijlstra, J.G.; Uges, D.R.A.; Kosterink, J.G.W.; van der Werf, T.S.; Alffenaar, J.W.C. Limited-Sampling Strategies for Anidulafungin in Critically Ill Patients. Antimicrob. Agents Chemother. 2015, 59, 1177–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, M.G.; Cotta, M.O.; Abdul-Aziz, M.H.; Roberts, J.A. What Are the Current Approaches to Optimising Antimicrobial Dosing in the Intensive Care Unit? Pharmaceutics 2020, 12, 638. [Google Scholar] [CrossRef]
- Donovick, R.; Gold, W.; Pagano, J.; Sout, H. Amphotericins A and B, Antifungal Antibiotics Produced by a Streptomycete. I. In Vitro Studies. Antibiot. Annu. 1955, 3, 579–586. [Google Scholar]
- Dutcher, J. Amphotericin B, Its Production, and Its Salts. U.S. Patent 2908,611, 13 October 1959. [Google Scholar]
- Williams, M. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; O’Neil, M.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2013; 2708p, ISBN 9781849736701. [Google Scholar]
- Wong-Beringer, A.; Jacobs, R.A.; Guglielmo, B.J. Lipid Formulations of Amphotericin B: Clinical Efficacy and Toxicities. Clin. Infect. Dis. 1998, 27, 603–618. [Google Scholar] [CrossRef]
- Adler-Moore, J.P.; Gangneux, J.P.; Pappas, P.G. Comparison between Liposomal Formulations of Amphotericin B. Med. Mycol. 2016, 54, 223–231. [Google Scholar] [CrossRef]
- Janoff, A.S.; Boni, L.T.; Popescu, M.C.; Minchey, S.R.; Cullis, P.R.; Madden, T.D.; Taraschi, T.; Gruner, S.M.; Shyamsunder, E.; Tate, M.W.; et al. Unusual Lipid Structures Selectively Reduce the Toxicity of Amphotericin B. Proc. Natl. Acad. Sci. USA 1988, 85, 6122–6126. [Google Scholar] [CrossRef] [Green Version]
- Moribe, K.; Maruyama, K.; Iwatsuru, M. Molecular Localization and State of Amphotericin B in PEG Liposomes. Int. J. Pharm. 1999, 193, 97–106. [Google Scholar] [CrossRef]
- Jung, S.H.; Lim, D.H.; Jung, S.H.; Lee, J.E.; Jeong, K.S.; Seong, H.; Shin, B.C. Amphotericin B-Entrapping Lipid Nanoparticles and Their in Vitro and in Vivo Characteristics. Eur. J. Pharm. Sci. 2009, 37, 313–320. [Google Scholar] [CrossRef]
- Chopra, R.; Blair, S.; Strang, J.; Cervi, P.; Patterson, K.G.; Goldstone, A.H. Liposomal Amphotericin B (AmBisome) in the Treatment of Fungal Infections in Neutropenic Patients. J. Antimicrob. Chemother. 1991, 28, 93–104. [Google Scholar] [CrossRef]
- Parvez, S.; Yadagiri, G.; Karole, A.; Singh, O.P.; Verma, A.; Sundar, S.; Mudavath, S.L. Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-Leishmanial Activity. Front. Cell. Infect. Microbiol. 2020, 10, 576. [Google Scholar] [CrossRef] [PubMed]
- Asthana, S.; Jaiswal, A.K.; Gupta, P.K.; Pawar, V.K.; Dube, A.; Chourasia, M.K. Immunoadjuvant Chemotherapy of Visceral Leishmaniasis in Hamsters Using Amphotericin B-Encapsulated Nanoemulsion Template-Based Chitosan Nanocapsules. Antimicrob. Agents Chemother. 2013, 57, 1714–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It Only Takes One to Do Many Jobs: Amphotericin B as Antifungal and Immunomodulatory Drug. Front. Microbiol. 2012, 3, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baginski, M.; Sternal, K.; Czub, J.; Borowski, E. Molecular Modelling of Membrane Activity of Amphotericin B, a Polyene Macrolide Antifungal Antibiotic. Acta Biochim. Pol. 2005, 52, 655–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venegas, B.; González-Damián, J.; Celis, H.; Ortega-Blake, I. Amphotericin B Channels in the Bacterial Membrane: Role of Sterol and Temperature. Biophys. J. 2003, 85, 2323–2332. [Google Scholar] [CrossRef] [Green Version]
- Vertut-Croquin, A.; Bolard, J.; Chabbert, M.; Gary-Bobo, C. Differences in the Interaction of the Polyene Antibiotic Amphotericin B with Cholesterol- or Ergosterol-Containing Phospholipid Vesicles. A Circular Dichroism and Permeability Study. Biochemistry 2002, 22, 2939–2944. [Google Scholar] [CrossRef]
- Sokol-Anderson, M.L.; Brajtburg, J.; Medoff, G. Amphotericin B-Induced Oxidative Damage and Killing of Candida Albicans. J. Infect. Dis. 1986, 154, 76–83. [Google Scholar] [CrossRef]
- Liu, T.T.; Lee, R.E.B.; Barker, K.S.; Lee, R.E.; Wei, L.; Homayouni, R.; Rogers, P.D. Genome-Wide Expression Profiling of the Response to Azole, Polyene, Echinocandin, and Pyrimidine Antifungal Agents in Candida Albicans. Antimicrob. Agents Chemother. 2005, 49, 2226–2236. [Google Scholar] [CrossRef] [Green Version]
- Haido, R.M.T.; Barreto-Bergter, E. Amphotericin B-Induced Damage of Trypanosoma Cruzi Epimastigotes. Chem. Biol. Interact. 1989, 71, 91–103. [Google Scholar] [CrossRef]
- Simitsopoulou, M.; Roilides, E.; Dotis, J.; Dalakiouridou, M.; Dudkova, F.; Andreadou, E.; Walsh, T.J. Differential Expression of Cytokines and Chemokines in Human Monocytes Induced by Lipid Formulations of Amphotericin B. Antimicrob. Agents Chemother. 2005, 49, 1397–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellocchio, S.; Gaziano, R.; Bozza, S.; Rossi, G.; Montagnoli, C.; Perruccio, K.; Calvitti, M.; Pitzurra, L.; Romani, L. Liposomal Amphotericin B Activates Antifungal Resistance with Reduced Toxicity by Diverting Toll-like Receptor Signalling from TLR-2 to TLR-4. J. Antimicrob. Chemother. 2005, 55, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Suschek, C.V.; Bonmann, E.; Kapsokefalou, A.; Hemmrich, K.; Kleinert, H.; Förstermann, U.; Kröncke, K.D.; Mahotka, C.; Kolb-Bachofen, V. Revisiting an Old Antimicrobial Drug: Amphotericin B Induces Interleukin-1-Converting Enzyme as the Main Factor for Inducible Nitric-Oxide Synthase Expression in Activated Endothelia. Mol. Pharmacol. 2002, 62, 936–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadkchan, Y.; Keisari, Y.; Segal, E. Cytokines in Mice Treated with Amphotericin B-Intralipid. Med. Mycol. 2004, 42, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringdèn, O.; Andström, E.; Remberger, M.; Svahn, B.; Tollemar, J. Safety of Liposomal Amphotericin B (AmBisome) in 187 Transplant Recipients Treated with Cyclosporin. Bone Marrow Transpl. 1994, 14, S10-4. [Google Scholar]
- Steimbach, L.M.; Tonin, F.S.; Virtuoso, S.; Borba, H.H.L.; Sanches, A.C.C.; Wiens, A.; Fernandez-Llimós, F.; Pontarolo, R. Efficacy and Safety of Amphotericin B Lipid-Based Formulations-A Systematic Review and Meta-Analysis. Mycoses 2017, 60, 146–154. [Google Scholar] [CrossRef]
- Gigliotti, F.; Shenep, J.L.; Lott, L.; Thornton, D. Induction of Prostaglandin Synthesis as the Mechanism Responsible for the Chills and Fever Produced by Infusing Amphotericin B. J. Infect. Dis. 1987, 156, 784–789. [Google Scholar] [CrossRef]
- Falci, D.R.; da Rosa, F.B.; Pasqualotto, A.C. Hematological Toxicities Associated with Amphotericin B Formulations. Leuk. Lymphoma 2015, 56, 2889–2894. [Google Scholar] [CrossRef]
- Ellis, M.; Spence, D.; de Pauw, B.; Meunier, F.; Marinus, A.; Collette, L.; Sylvester, R.; Meis, J.; Boogaerts, M.; Selleslag, D.; et al. An EORTC International Multicenter Randomized Trial (EORTC Number 19923) Comparing Two Dosages of Liposomal Amphotericin B for Treatment of Invasive Aspergillosis. Clin. Infect. Dis. 1998, 27, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Meunier, F.; Prentice, H.G.; Ringden, O. Liposomal Amphotericin B (AmBisome): Safety Data from a Phase II/III Clinical Trial. J. Antimicrob. Chemother. 1991, 28, 83–91. [Google Scholar] [CrossRef]
- Davey, K.G.; Holmes, A.D.; Johnson, E.M.; Szekely, A.; Warnock, D.W. Comparative Evaluation of FUNGITEST and Broth Microdilution Methods for Antifungal Drug Susceptibility Testing of Candida Species and Cryptococcus Neoformans. J. Clin. Microbiol. 1998, 36, 926–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, D. Amphotericin B: Spectrum and Resistance. J. Antimicrob. Chemother. 2002, 49, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington-Skaggs, B.A.; Motley, M.; Warnock, D.W.; Morrison, C.J. Comparative Evaluation of PASCO and National Committee for Clinical Laboratory Standards M27-A Broth Microdilution Methods for Antifungal Drug Susceptibility Testing of Yeasts. J. Clin. Microbiol. 2000, 38, 2254–2260. [Google Scholar] [CrossRef] [PubMed]
- Seidenfeld, S.M.; Cooper, B.H.; Smith, J.W.; Luby, J.P.; Mackowiak, P.A. Amphotericin B Tolerance: A Characteristic of Candida Parapsilosis Not Shared by Other Candida Species. J. Infect. Dis. 1983, 147, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Binder, U.; Arastehfar, A.; Schnegg, L.; Hörtnagl, C.; Hilmioğlu-Polat, S.; Perlin, D.S.; Lass-Flörl, C. Efficacy of LAMB against Emerging Azole- and Multidrug-Resistant Candida Parapsilosis Isolates in the Galleria Mellonella Model. J. Fungi 2020, 6, 377. [Google Scholar] [CrossRef] [PubMed]
- Kovacicova, G.; Hanzen, J.; Pisarcikova, M.; Sejnova, D.; Horn, J.; Babela, R.; Svetlansky, I.; Lovaszova, M.; Gogova, M.; Krcmery, V. Nosocomial Fungemia Due to Amphotericin B-Resistant Candida Spp. in Three Pediatric Patients after Previous Neurosurgery for Brain Tumors. J. Infect. Chemother. 2001, 7, 45–48. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Ruiz-Díez, B.; Martínez-Suárez, J.V.; Monzón, A.; Rodríguez-Tudela, J.L. Comparative In-Vitro Activity of Voriconazole (UK-109,496) and Six Other Antifungal agents against Clinical Isolates of Scedosporium Prolificans and Scedosporium. J. Antimicrob. Chemother. 1999, 43, 149–151. [Google Scholar] [CrossRef] [Green Version]
- Espinel-Ingroff, A.; Dawson, K.; Pfaller, M.; Anaissie, E.; Breslin, B.; Dixon, D.; Fothergill, A.; Paetznick, V.; Peter, J.; Rinaldi, M.; et al. Comparative and Collaborative Evaluation of Standardization of Antifungal Susceptibility Testing for Filamentous Fungi. Antimicrob. Agents Chemother. 1995, 39, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef] [Green Version]
- Arikan, S.; Lozano-Chiu, M.; Paetznick, V.; Nangia, S.; Rex, J.H. Microdilution Susceptibility Testing of Amphotericin B, Itraconazole, and Voriconazole against Clinical Isolates of Aspergillus and FusariumSpecies. J. Clin. Microbiol. 1999, 37, 3946–3951. [Google Scholar] [CrossRef] [Green Version]
- Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In Vitro Activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a Large Collection of Clinically Important Molds and Yeasts. Antimicrob. Agents Chemother. 2006, 50, 2009–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramythiotou, E.; Frantzeskaki, F.; Flevari, A.; Armaganidis, A.; Dimopoulos, G. Invasive Fungal Infections in the ICU: How to Approach, How to Treat. Molecules 2014, 19, 1085–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajwa, S.; Kulshrestha, A. Fungal Infections in Intensive Care Unit: Challenges in Diagnosis and Management. Ann. Med. Health Sci. Res. 2013, 3, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Aziz, M.H.; Alffenaar, J.W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Groll, A.H.; Rijnders, B.J.A.; Walsh, T.J.; Adler-Moore, J.; Lewis, R.E.; Brüggemann, R.J.M. Clinical Pharmacokinetics, Pharmacodynamics, Safety and Efficacy of Liposomal Amphotericin B. Clin. Infect. Dis. 2019, 68, S260–S274. [Google Scholar] [CrossRef] [PubMed]
- Grunberg, E.; Titsworth, W.; Bennett, M. Chemotherapeutic activity of 5-fluorocytosine. Antimicrob. Agents Chemother. 1963, 161, 566–568. [Google Scholar]
- Montgomery, J.A.; Hewson, K. The Synthesis of 5-Fluoropyrimidines. J. Am. Chem. Soc. 2002, 79, 4559–4560. [Google Scholar] [CrossRef]
- Heidelberger, C.; Griesbach, L.; Montag, B.; Mooren, D.; Cruz, O.; Schonitzer, E.; Chunberg, E. Studies on Fluorinated Pyrimidines. II. Effects on Transplanted Tumors. Cancer Res. 1958, 18, 305–317. [Google Scholar]
- Chaudhri, N.; Montag, B.; Heidelberger, C. Studies on Fluorinated Pyrimidines. III. The Metabolism of 5-Fluorouracil-2-C14 and 5-Fluoroorotic-2-C14 Acid In Vivo. Available online: https://pubmed.ncbi.nlm.nih.gov/13523598/ (accessed on 13 March 2022).
- Tassel, D.; Madoff, A. Treatment of Candida Sepsis and Cryptococcus Meningitis with 5-Fluorocytosine: A New Antifungal Agent. JAMA 1968, 206, 830–832. [Google Scholar] [CrossRef]
- Vermes, A.; Guchelaar, H.J.; Dankert, J. Flucytosine: A Review of Its Pharmacology, Clinical Indications, Pharmacokinetics, Toxicity and Drug Interactions. J. Antimicrob. Chemother. 2000, 46, 171–179. [Google Scholar] [CrossRef]
- Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Bermejo, J.L. 5-Fluorouracil-Based Chemotherapy for Colorectal Cancer and MTHFR/MTRR Genotypes. Br. J. Clin. Pharmacol. 2011, 72, 162–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, A.; Scholer, H.J. Mode of Action of 5-Fluorocytosine and Mechanisms of Resistance. Chemotherapy 1975, 21, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Waldorf, A.R.; Polak, A. Mechanisms of Action of 5-Fluorocytosine. Antimicrob. Agents Chemother. 1983, 23, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. MIC Distributions for Amphotericin B, Fluconazole, Itraconazole, Voriconazole, Flucytosine and Anidulafungin and 35 Uncommon Pathogenic Yeast Species from the UK Determined Using the CLSI Broth Microdilution Method. J. Antimicrob. Chemother. 2020, 75, 1194–1205. [Google Scholar] [CrossRef]
- Medoff, G.; Kobayashi, G.S. Strategies in the Treatment of Systemic Fungal Infections. N. Engl. J. Med. 2009, 302, 145–155. [Google Scholar] [CrossRef]
- Fasoli, M.; Kerridge, D. Isolation and Characterization of Fluoropyrimidine-Resistant Mutants in Two Candida Species. Ann. N. Y. Acad. Sci. 1988, 544, 260–263. [Google Scholar] [CrossRef]
- Fackenthal, J.D.; Cartegni, L.; Krainer, A.R.; Olopade, O.I. BRCA2 T2722R is a Deleterious Allele That Causes Exon Skipping. Am. J. Hum. Genet. 2002, 71, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Normark, S.; Schönebeck, J. In Vitro Studies of 5-Fluorocytosine Resistance in Candida Albicans and Torulopsis Glabrata. Antimicrob. Agents Chemother. 1972, 2, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Messer, S.A.; Boyken, L.; Huynh, H.; Hollis, R.J.; Diekema, D.J. In Vitro Activities of 5-Fluorocytosine against 8,803 Clinical Isolates of Candida Spp.: Global Assessment of Primary Resistance Using National Committee for Clinical Laboratory Standards Susceptibility Testing Methods. Antimicrob. Agents Chemother. 2002, 46, 3518–3521. [Google Scholar] [CrossRef] [Green Version]
- Cutler, R.E.; Blair, A.D.; Kelly, M.R. Flucytosine Kinetics in Subjects with Normal and Impaired Renal Function. Clin. Pharmacol. Ther. 1978, 24, 333–342. [Google Scholar] [CrossRef]
- Daneshmend, T.K.; Warnock, D.W. Clinical Pharmacokinetics of Systemic Antifungal Drugs. Clin. Pharmacokinet. 1983, 8, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Gillum, J. Flucytosine Dosing in an Obese Patient with Extrameningeal Cryptococcal Infection. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1995, 15, 251–253. [Google Scholar]
- Schönebeck, J.; Polak, A.; Fernex, M.; Scholer, H.J. Pharmacokinetic Studies on the Oral Antimycotic Agent 5-Fluorocytosine in Individuals with Normal and Impaired Kidney Function. Chemotherapy 1973, 18, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Block, E.R.; Bennett, J.E.; Livoti, L.G.; Klein, W.J.; MacGregor, R.R.; Henderson, L. Flucytosine and Amphotericin B: Hemodialysis Effects on the Plasma Concentration and Clearance. Studies in Man. Ann. Intern. Med. 1974, 80, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E. Flucytosine. Ann. Intern. Med. 1977, 86, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Muther, R.S.; Bennett, W.M. Peritoneal Clearance of Amphotericin B and 5-Fluorocytosine. West. J. Med. 1980, 133, 157. [Google Scholar]
- Andes, D.; van Ogtrop, M. In Vivo Characterization of the Pharmacodynamics of Flucytosine in a Neutropenic Murine Disseminated Candidiasis Model. Antimicrob. Agents Chemother. 2000, 44, 938–942. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.W.; Warn, P.A.; Sharp, A.; Howard, S.; Kasai, M.; Louie, A.; Walsh, T.J.; Drusano, G.L.; Denning, D.W. Derivation of an in Vivo Drug Exposure Breakpoint for Flucytosine against Candida Albicans and Impact of the Mic, Growth Rate, and Resistance Genotype on the Antifungal Effect. Antimicrob. Agents Chemother. 2006, 50, 3680–3688. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Tobin, C.M.; Bowker, K.E.; Sunderland, J.; MacGowan, A.P.; Lovering, A.M. Evidence of Excessive Concentrations of 5-Flucytosine in Children Aged below 12 Years: A 12-Year Review of Serum Concentrations from a UK Clinical Assay Reference Laboratory. Int. J. Antimicrob. Agents 2006, 28, 574–577. [Google Scholar] [CrossRef]
- Pasqualotto, A.C.; Howard, S.J.; Moore, C.B.; Denning, D.W. Flucytosine Therapeutic Monitoring: 15 Years Experience from the UK. J. Antimicrob. Chemother. 2007, 59, 791–793. [Google Scholar] [CrossRef] [Green Version]
- Stamm, A.M.; Diasio, R.B.; Dismukes, W.E.; Shadomy, S.; Cloud, G.A.; Bowles, C.A.; Karam, G.H.; Espinel-Ingroff, A. Toxicity of Amphotericin B plus Flucytosine in 194 Patients with Cryptococcal Meningitis. Am. J. Med. 1987, 83, 236–242. [Google Scholar] [CrossRef]
- Francis, P.; Walsh, T.J. Evolving Role of Flucytosine in Immunocompromised Patients: New Insights into Safety, Pharmacokinetics, and Antifungal Therapy. Clin. Infect. Dis. 1992, 15, 1003–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R. Antifungal Agents. Part I. Amphotericin B Preparations and Flucytosine. Mayo Clin. Proc. 1998, 73, 1205–1225. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.M.; Nahata, M.C. Clinical Use of Systemic Antifungal Agents. Clin. Pharm. 1988, 7, 424–438. [Google Scholar]
- Brouwer, A.E.; van Kan, H.J.M.; Johnson, E.; Rajanuwong, A.; Teparrukkul, P.; Wuthiekanun, V.; Chierakul, W.; Day, N.; Harrison, T.S. Oral versus Intravenous Flucytosine in Patients with Human Immunodeficiency Virus-Associated Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2007, 51, 1038–1042. [Google Scholar] [CrossRef] [Green Version]
- Harder, E.; Hermans, P. Treatment of Fungal Infections with Flucytosine. Arch. Intern. Med. 1975, 135, 231–237. [Google Scholar] [CrossRef]
- Bennett, G. Update on the Neurophysiology of Pain Transmission and Modulation: Focus on the NMDA-Receptor. J. Pain Symptom Manag. 2000, 19, 2–6. [Google Scholar] [CrossRef]
- Kauffman, C.A.; Frame, P.T. Bone Marrow Toxicity Associated with 5-Fluorocytosine Therapy. Antimicrob. Agents Chemother. 1977, 11, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Utz, J.P.; Garriques, I.L.; Sande, M.A.; Warner, J.F.; Mandell, G.L.; McGehee, R.F.; Duma, R.J.; Shadomy, S. Therapy of Cryptococcosis with a Combination of Flucytosine and Amphotericin B. J. Infect. Dis. 1975, 132, 368–373. [Google Scholar] [CrossRef]
- van der Horst, C.M.; Saag, M.S.; Cloud, G.A.; Hamill, R.J.; Graybill, J.R.; Sobel, J.D.; Johnson, P.C.; Tuazon, C.U.; Kerkering, T.; Moskovitz, B.L.; et al. Treatment of Cryptococcal Meningitis Associated with the Acquired Immunodeficiency Syndrome. N. Engl. J. Med. 2009, 337, 15–21. [Google Scholar] [CrossRef]
- Dismukes, W.E.; Cloud, G.; Gallis, H.A.; Kerkering, T.M.; Medoff, G.; Craven, P.C.; Kaplowitz, L.G.; Fisher, J.F.; Gregg, C.R.; Bowles, C.A.; et al. Treatment of Cryptococcal Meningitis with Combination Amphotericin B and Flucytosine for Four as Compared with Six Weeks. N. Engl. J. Med. 2010, 317, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, R.; Axelrod, J.L. Fatal Aplastic Anemia Resulting From Flucytosine. JAMA 1974, 228, 1573. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R.J.; Bernier, G.M.; Bellanti, J.A.; Maybee, D.A.; Osborne, G.B.; Stewart, J.L.; Pearlman, D.S.; Ouelette, J.; Biehusen, F.C. Severe Candidiasis Associated with Thymic Dysplasia, IgA Deficiency, and Plasma Antilymphocyte Effects. Pediatrics 1970, 45, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Chuck, S.L.; Sande, M.A. Infections with Cryptococcus Neoformans in the Acquired Immunodeficiency Syndrome. N. Engl. J. Med. 2010, 321, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.P.; Bruce, H.; Felton, L.A. Clinical Pharmacokinetics of Oral Controlled-Release 5-Fluorocytosine. Antimicrob. Agents Chemother. 2010, 54, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Kunka, M.E.; Cady, E.A.; Woo, H.C.; Thompson Bastin, M.L. Flucytosine Pharmacokinetics in a Critically Ill Patient Receiving Continuous Renal Replacement Therapy. Case Rep. Crit. Care 2015, 2015, 927496. [Google Scholar] [CrossRef] [Green Version]
- Greene, R.A.; Adams, K.K.; Rogers, R.D.; Berard-Collins, C.; Lorenzo, M.P. Pharmacokinetics of Flucytosine in a Critically Ill Patient on Continuous Venovenous Hemodiafiltration. Am. J. Health Syst. Pharm. 2020, 77, 609–613. [Google Scholar] [CrossRef]
- Thomson, A.H.; Shankland, G.; Clareburt, C.; Binning, S. Flucytosine Dose Requirements in a Patient Receiving Continuous Veno-Venous Haemofiltration. Intensive Care Med. 2002, 28, 999. [Google Scholar] [CrossRef]
- Andes, D.; Pascua, A.; Marchetti, O. Antifungal Therapeutic Drug Monitoring: Established and Emerging Indications. Antimicrob. Agents Chemother. 2009, 53, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.H.; et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 291–322. [Google Scholar] [CrossRef] [Green Version]
Clinical Context | Dose | AUC0–24 (mg h/L) | Cmin (mg/L) | Cmax (mg/L) | Cl (L/h) | Vd (L) | Reference |
---|---|---|---|---|---|---|---|
Critically ill patients with proven or suspected invasive fungal infection | Standard * |
|
|
|
|
| [15] |
ICU patients administered with anidulafungin | Standard * | 114 ± 40.78 | 3.21 ± 1.43 | 9.27 ± 2.76 | 0.842 | - | [17] |
ICU patients administered with anidulafungin | Standard * | 55 | 1.8 | 55 | - | - | [18] |
ICU patients with invasive candidiasis | Standard * | 69.8 ± 24.1 | 2.2 ± 0.8 | 4.7 ± 1.4 | 1.6 ± 0.6 | - | [62] |
ICU patients with invasive candidiasis | Standard * | 92.7 | 3.0 | 7.7 | 1.3 | 38.8 | [70] |
ICU patients with suspected intra-abdominal candidiasis | Standard * | 88.9 ± 34.3 | 3.2 ± 1.2 | 6.0 ± 1.8 | 1.2 ± 0.5 | 72.8 ± 63.9 | [71] |
ICU patients with proven or suspected invasive fungal infection | Standard * | 102.19 | - | - | - | - | [72] |
Critically ill patients with continuous venovenous haemodiafiltration | Standard * | 93.9 ± 19.4 (arterial sample), 104.1 ± 20.3mg·h/L (venous sample) | 3.0 ± 0.6 | 6.2 ± 1.7 (arterial sample) 7.1 ± 1.9 (venous sample) | - | - | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baracaldo-Santamaría, D.; Cala-Garcia, J.D.; Medina-Rincón, G.J.; Rojas-Rodriguez, L.C.; Calderon-Ospina, C.-A. Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics 2022, 11, 645. https://doi.org/10.3390/antibiotics11050645
Baracaldo-Santamaría D, Cala-Garcia JD, Medina-Rincón GJ, Rojas-Rodriguez LC, Calderon-Ospina C-A. Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics. 2022; 11(5):645. https://doi.org/10.3390/antibiotics11050645
Chicago/Turabian StyleBaracaldo-Santamaría, Daniela, Juan David Cala-Garcia, Germán José Medina-Rincón, Luis Carlos Rojas-Rodriguez, and Carlos-Alberto Calderon-Ospina. 2022. "Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation?" Antibiotics 11, no. 5: 645. https://doi.org/10.3390/antibiotics11050645
APA StyleBaracaldo-Santamaría, D., Cala-Garcia, J. D., Medina-Rincón, G. J., Rojas-Rodriguez, L. C., & Calderon-Ospina, C. -A. (2022). Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics, 11(5), 645. https://doi.org/10.3390/antibiotics11050645