Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Bacterial Collection
3.2. Molecular Detection of Carbapenemase Genes
3.3. Modification of AuNP Solution
3.4. Optimization of the mGoldC
3.5. Evaluation of the mGoldC Test for Carbapenemase Detection in Six Hospitals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-producing organisms: A global scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P. Carbapenemase-producing Enterobacteriaceae: Overview of a major public health challenge. Med. Et Mal. Infect. 2014, 44, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, G.T. Continuous evolution: Perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-negative bacteria. Infect. Dis. Ther. 2021, 10, 75–92. [Google Scholar] [CrossRef]
- National Antimicrobial Resistance Surveillance Center, Thailand. Antimicrobial Resistance 2000–2020. Available online: http://narst.dmsc.moph.go.th/ (accessed on 2 April 2022).
- Paveenkittiporn, W.; Lyman, M.; Biedron, C.; Chea, N.; Bunthi, C.; Kolwaite, A.; Janejai, N. Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016–2018. Antimicrob. Resist. Infect. Control. 2021, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Baeza, L.L.; Pfennigwerth, N.; Greissl, C.; Göttig, S.; Saleh, A.; Stelzer, Y.; Gatermann, S.G.; Hamprecht, A. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin. Microbiol. Infect. 2019, 25, 1286.e9–1286.e15. [Google Scholar] [CrossRef] [Green Version]
- Hombach, M.; von Gunten, B.; Castelberg, C.; Bloemberg, G.V. Evaluation of the Rapidec Carba NP test for detection of carbapenemases in Enterobacteriaceae. J. Clin. Microbiol. 2015, 53, 3828–3833. [Google Scholar] [CrossRef] [Green Version]
- Bir, R.; Mohapatra, S.; Kumar, A.; Tyagi, S.; Sood, S.; Das, B.K.; Kapil, A. Comparative evaluation of in-house Carba NP test with other phenotypic tests for rapid detection of carbapenem-resistant Enterobacterales. J. Clin. Lab. Anal. 2019, 33, e22652. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Liu, J.; Li, Y.; Yu, J.; Zhu, W.; Liu, Y.; Shen, L. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 22. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, H.; Du, H. Carbapenemases in Enterobacteriaceae: Detection and antimicrobial therapy. Front Microbiol. 2019, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Lasserre, C.; De Saint Martin, L.; Cuzon, G.; Bogaerts, P.; Lamar, E.; Glupczynski, Y.; Naas, T.; Tandé, D. Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J. Clin. Microbiol. 2015, 53, 2163–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. CLSI Guideline M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Pragasam, A.K.; Sahni, R.D.; Anandan, S.; Sharma, A.; Gopi, R.; Hadibasha, N.; Gunasekaran, P.; Veeraraghavan, B. A pilot study on carbapenemase detection: Do we see the same level of agreement as with the CLSI observations. J. Clin. Diagn. Res. 2016, 10, DC09–DC13. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.A.; Limbago, B.; Traczewski, M.; Anderson, K.; Hackel, M.; Hindler, J.; Sahm, D.; Alyanak, E.; Lawsin, A.; Gulvik, C.A.; et al. Multicenter performance assessment of Carba NP test. J. Clin. Microbiol. 2017, 55, 1954–1960. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, L.C.; Roundtree, S.S.; Lancaster, D.P.; Rudin, S.D.; Bard, J.D.; Roberts, A.L.; Marshall, S.H.; Bonomo, R.A.; Sullivan, K.V. Performance of the CLSI Carba NP and the Rosco Carb Screen assays using North American carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 2015, 53, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- Laolerd, W.; Akeda, Y.; Preeyanon, L.; Ratthawongjirakul, P.; Santanirand, P. Carbapenemase-producing carbapenem-resistant Enterobacteriaceae from Bangkok, Thailand, and their detection by the Carba NP and modified carbapenem inactivation method tests. Microb. Drug Resist. 2018, 24, 1006–1011. [Google Scholar] [CrossRef]
- Srisrattakarn, A.; Lulitanond, A.; Wilailuckana, C.; Charoensri, N.; Daduang, J.; Chanawong, A. A novel GoldNano Carb test for rapid phenotypic detection of carbapenemases, particularly OXA type, in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. J. Antimicrob. Chemother. 2017, 72, 2519–2527. [Google Scholar] [CrossRef] [Green Version]
- Karsisiotis, A.I.; Damblon, C.F.; Roberts, G.C. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014, 6, 1181–1197. [Google Scholar] [CrossRef]
- Bothra, S.; Kumar, R.; Sahoo, S.K. Pyridoxal derivative functionalized gold nanoparticles for colorimetric determination of zinc (ii) and aluminium (iii). RSC Adv. 2015, 5, 97690–97695. [Google Scholar] [CrossRef]
- Rimrang, B.; Chanawong, A.; Lulitanond, A.; Wilailuckana, C.; Charoensri, N.; Sribenjalux, P.; Phumsrikaew, W.; Wonglakorn, L.; Kerdsin, A.; Chetchotisakd, P. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J. Antimicrob. Chemother. 2012, 67, 2626–2630. [Google Scholar] [CrossRef]
- Teeraputon, S.; Wimonjariyaboon, J.; Pengkong, P.; Talan, P. Prevalence of carbapenemase genes in carbapenem non-susceptible Klebsiella pneumoniae isolated from clinical specimens in Buddhachinaraj Phitsanulok Hospital. J. Med. Tech. Assoc. Thailand 2021, 49, 7616–7623. (In Thai) [Google Scholar]
- Chiu, S.K.; Ma, L.; Chan, M.C.; Lin, Y.T.; Fung, C.P.; Wu, T.L.; Chuang, Y.C.; Lu, P.L.; Wang, J.T.; Lin, J.C.; et al. Carbapenem nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and increasing resistance of carbapenemase producers during 2012-2015. Sci. Rep. 2018, 8, 8468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srisrattakarn, A.; Lulitanond, A.; Wilailuckana, C.; Charoensri, N.; Wonglakorn, L.; Piyapatthanakul, S.; Supajeen, A.; Chanawong, A. Modification and evaluation of the Carba NP test by use of paper strip for simple and rapid detection of carbapenemase-producing Enterobacteriaceae. World J. Microbiol. Biotechnol. 2016, 32, 117. [Google Scholar] [CrossRef] [PubMed]
- Kerdsin, A.; Deekae, S.; Chayangsu, S.; Hatrongjit, R.; Chopjitt, P.; Takeuchi, D.; Akeda, Y.; Tomono, K.; Hamada, S. Genomic characterization of an emerging blaKPC-2 carrying Enterobacteriaceae clinical isolates in Thailand. Sci. Rep. 2019, 9, 18521. [Google Scholar] [CrossRef] [Green Version]
- Netikul, T.; Kiratisin, P. Genetic Characterization of carbapenem-resistant Enterobacteriaceae and the spread of carbapenem-resistant Klebsiella pneumoniae ST340 at a University Hospital in Thailand. PLoS ONE 2015, 10, e0139116. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- Khuntayaporn, P.; Yamprayoonswat, W.; Yasawong, M.; Chomnawang, M.T. Dissemination of carbapenem-resistance among multidrug resistant Pseudomonas aeruginosa carrying metallo-β-lactamase genes, including the novel blaIMP-65 gene in Thailand. Infect. Chemother. 2019, 51, 107–118. [Google Scholar] [CrossRef]
- Thirapanmethee, K.; Srisiri-A-Nun, T.; Houngsaitong, J.; Montakantikul, P.; Khuntayaporn, P.; Chomnawang, M.T. Prevalence of OXA-type β-lactamase genes among carbapenem-resistant Acinetobacter baumannii clinical isolates in Thailand. Antibiotics 2020, 9, 864. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin. Microbiol. Rev. 2019, 32, e00115–e00118. [Google Scholar] [CrossRef] [Green Version]
- Moali, C.; Anne, C.; Lamotte-Brasseur, J.; Groslambert, S.; Devreese, B.; Van Beeumen, J.; Galleni, M.; Frère, J.M. Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem. Biol. 2003, 10, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Greissl, C.; Saleh, A.; Hamprecht, A. Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 331–335. [Google Scholar] [CrossRef]
- Girlich, D.; Poirel, L.; Nordmann, P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 477–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijet, N.; Boyd, D.; Patel, S.N.; Mulvey, M.R.; Melano, R.G. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 4578–4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumudunie, W.G.M.; Wijesooriya, L.I.; Wijayasinghe, Y.S. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS ONE 2021, 16, e0245290. [Google Scholar] [CrossRef] [PubMed]
- Walther-Rasmussen, J.; Høiby, N. OXA-type carbapenemases. J. Antimicrob. Chemother. 2006, 57, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Nordmann, P. Rapidec Carba NP test for rapid detection of carbapenemase producers. J. Clin. Microbiol. 2015, 53, 3003–3008. [Google Scholar] [CrossRef] [Green Version]
- Jousset, A.B.; Oueslati, S.; Bernabeu, S.; Takissian, J.; Creton, E.; Vogel, A.; Sauvadet, A.; Cotellon, G.; Gauthier, L.; Bonnin, R.A.; et al. False-positive carbapenem-hydrolyzing confirmatory tests due to ACT-28, a chromosomally encoded AmpC with weak carbapenemase activity from Enterobacter kobei. Antimicrob. Agents Chemother. 2019, 63, e02388-18. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Sadek, M.; Demord, A.; Poirel, L. NitroSpeed-Carba NP test for rapid detection and differentiation between different classes of carbapenemases in Enterobacterales. J. Clin. Microbiol. 2020, 58, e00932-20. [Google Scholar] [CrossRef]
- Whitley, V.; Kircher, S.; Gill, T.; Hindler, J.A.; O’Rourke, S.; Cooper, C.; Tulpule, A.; Denys, G.A. Multicenter evaluation of the BD Phoenix CPO Detect test for detection and classification of carbapenemase-producing organisms in clinical isolates. J. Clin. Microbiol. 2020, 58, e01752-19. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.D.; Poirel, L.; Bogaerts, P.; Berhin, C.; Nordmann, P.; Glupczynski, Y. Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. J. Antimicrob. Chemother. 2014, 69, 445–450. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Thet, K.T.; Lunha, K.; Srisrattakarn, A.; Lulitanond, A.; Tavichakorntrakool, R.; Kuwatjanakul, W.; Charoensri, N.; Chanawong, A. Colistin heteroresistance in carbapenem-resistant Acinetobacter baumannii clinical isolates from a Thai university hospital. World J. Microbiol. Biotechnol. 2020, 36, 102. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.D.; Mirkin, C.A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 2006, 1, 324–336. [Google Scholar] [CrossRef] [PubMed]
- VassarStats: Website for Statistical Computation. Available online: http://vassarstats.net/ (accessed on 4 May 2022).
β-Lactamase Classes and Types (n) | Species (n) | Specified β-Lactamases | No. of Isolates Tested by a | |||
---|---|---|---|---|---|---|
cGoldC | mGoldC | |||||
+ (+w) | - | + (+w) | - | |||
Carbapenemase producers (29) | ||||||
Ambler class A (1) | ||||||
KPC-type (1) | K. pneumoniae ATCC BAA-1705 (1) | KPC-2 | 1 | 1 | ||
Ambler class B (17) | ||||||
NDM-type (7) | K. pneumoniae (4) | NDM | 4 | 4 | ||
E. coli (2) | NDM | 2 | 2 | |||
A. pittii (1) | NDM-1 | 1 | 1 | |||
IMP-type (7) | P. aeruginosa (2) | IMP-14a | 2 | 2 | ||
K. pneumoniae (2) | IMP-14a | 2 | 2 | |||
P. aeruginosa (1) | IMP-1 | 1 | 1 | |||
P. aeruginosa (1) | IMP-9 | 1 | 1 | |||
P. aeruginosa (1) | IMP-15 | 1 | 1 | |||
VIM-type (3) | P. aeruginosa (3) | VIM-2 | 3 | 3 | ||
Ambler class D (11) | ||||||
OXA-type (11) | K. pneumoniae (2) | OXA-48-like | 2 | 2 | ||
E. coli (1) | OXA-48-like | 1 | 1 | |||
E. coli (1) | OXA-181 | 1 | 1 | |||
A. baumannii (5) | OXA-23-like | 4(3) | 1 | 5(1) | ||
A. baumannii (1) | OXA-72 | 1 | 1 | |||
Acinetobacter spp. (1) | OXA-72 | 1(1) | 1 | |||
Non-carbapenemase producers (13) | ||||||
ESBL (3) | K. pneumoniae (1) | CTX-M-1-like, SHV | 1 | 1 | ||
E. coli (1) | CTX-M-1-like, TEM-1 | 1 | 1 | |||
K. pneumoniae (1) b | 1 | 1 | ||||
AmpC (1) | Enterobacter spp. (1) | 1 | 1 | |||
pAmpC (4) | E. coli (1) | CMY-2 | 1 | 1 | ||
E. coli J53 (pSLK54) (1) | ACC-1 | 1 | 1 | |||
E. coli J53 (pMG251) (1) | ACT-1 | 1 | 1 | |||
K. pneumoniae (1) | 1 | 1 | ||||
ESBL & pAmpC (4) | E. coli (1) | VEB-like, CMY-8b | 1 | 1 | ||
E. coli (1) | VEB-like, MOX-2-like | 1 | 1 | |||
K. pneumoniae (1) b | 1 | 1 | ||||
E. coli (1) b | 1 | 1 | ||||
Non-ESBL & non-AmpC (1) | K. pneumoniae ATCC BAA-1706 (1) | 1 | 1 |
Hospitals/Organisms | No. Test Isolates | No. of Isolates with PCR | % (95% CI) | No. of Isolates Giving | |||||
---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Sensitivity | Specificity | LR+ | LR− | False Negative (Species, Types) | False Positive (Species) | ||
A | |||||||||
Enterobacterales | 105 | 26 | 79 | 100.0 (84.0–100.0) | 100.0 (94.2–100.0) | In (NaN-In) | 0 (0-NaN) | - | - |
A. baumannii | 63 | 30 | 33 | 100.0 (85.9–100.0) | 97.0 (82.5–99.8) | 33.0 (4.79–227.4) | 0 (0-NaN) | - | 1 (A. baumannii) |
P. aeruginosa | 59 | 9 | 50 | 100.0 (62.9–100.0) | 100.0 (91.1–100.0) | In (NaN-In) | 0 (0-NaN) | - | - |
Total | 227 | 65 | 162 | 100.0 (93.0–100.0) | 99.4 (96.1–99.9) | 162 (22.95–1143.1) | 0 (0-NaN) | - | - |
B | |||||||||
Enterobacterales | 124 | 59 | 65 | 94.9 (84.9–98.7) | 100.0 (93.0–100.0) | In (NaN-In) | 0.05 (0.02–0.15) | 3 (K. pneumoniae, NDM) | - |
A. baumannii | 44 | 38 | 6 | 100.0 (88.6–100.0) | 83.3 (36.5–99.1) | 6 (1.0–35.9) | 0 (0-NaN) | - | 1 (A. baumannii) |
P. aeruginosa | 21 | 14 | 7 | 100.0 (73.2–100.0) | 100.0 (56.1–100.0) | In (NaN-In) | 0 (0-NaN) | - | - |
Total | 189 | 111 | 78 | 97.3 (91.7–99.3) | 98.7 (92.1–99.9) | 75.9 (10.8–532.1) | 0.03 (0.009–0.08) | ||
C | |||||||||
Enterobacterales | 94 | 71 | 23 | 100.0 (93.6–100.0) | 95.7 (76.0–99.8) | 23 (3.4–156.4) | 0 (0-NaN | - | 1 (E. coli) |
D | |||||||||
Enterobacterales | 72 | 20 | 52 | 100.0 (79.9–100.0) | 100.0 (91.4–100.0) | In (NaN-In | 0 (0-NaN) | - | - |
A. baumannii | 67 | 58 | 9 | 96.6 (87.0–99.4) | 88.9 (50.7–99.4) | 8.69 (1.4–55.2) | 0.04 (0.01–0.16) | 1 (A. baumannii, OXA-23); 1 (A. baumannii, OXA-58) | 1 (A. baumannii) |
A. haemolyticus | 1 | 1 | 0 | 100.0 (5.5–100.0) | NaN (NaN-NaN) | NaN (NaN-NaN) | NaN (NaN-NaN) | - | - |
P. aeruginosa | 24 | 1 | 23 | 100.0 (5.5–100.0) | 100.0 (82.2–100.0) | In (NaN-In | 0 (0-NaN) | - | - |
Total | 164 | 80 | 84 | 97.5 (90.4–99.6) | 98.8 (92.6–99.9) | 81.9 (11.7–574.8) | 0.03 (0.006–0.1) | ||
E | |||||||||
Enterobacterales | 53 | 33 | 20 | 100.0 (87.0–100.0) | 90.0 (66.9–98.2) | 10 (2.7–37.4) | 0 (0-NaN) | - | 2 (E. coli) |
A. baumannii | 37 | 36 | 1 | 100.0 (88.0–100.0) | 100.0 (5.5–100.0) | In (NaN-In | 0 (0-NaN) | - | - |
P. aeruginosa | 21 | 20 | 1 | 100.0 (80.0–100.0) | 100.0 (5.5–100.0) | In (NaN-In | 0 (0-NaN) | - | - |
Total | 111 | 89 | 22 | 100.0 (94.8–100.0) | 90.9 (69.4–98.4) | 11 (2.9–41.2) | 0 (0-NaN) | ||
F | |||||||||
Enterobacterales | 47 | 28 | 19 | 96.4 (79.8–99.8) | 94.7 (71.9–99.7) | 18.3 (2.7–123.6) | 0.04 (0.005–0.3) | 1 (K. pneumoniae, OXA-48-like) | 1 (K. pneumoniae) |
Total | |||||||||
Enterobacterales | 495 | 237 | 258 | 98.3 (95.4–99.5) | 98.4 (95.8–99.5) | 63.4 (24.0–167.7) | 0.02 (0.006–0.05) | 4 | 4 |
Acinetobacter spp. | 212 | 163 | 49 | 98.8 (95.2–99.8) | 93.9 (82.1–98.4) | 16.1 (5.4–48.3) | 0.01 (0.003–0.05) | 2 | 3 |
P. aeruginosa | 125 | 44 | 81 | 100.0 (90.0–100.0) | 100.0 (94.4–100.0) | In (NaN-In | 0 (0-NaN) | - | - |
Total | 832 | 444 | 388 | 98.6 (96.9–99.4) | 98.2 (96.1–99.2) | 54.7 (26.2–113.9) | 0.01 (0.006–0.03) | 6 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srisrattakarn, A.; Lulitanond, A.; Charoensri, N.; Wonglakorn, L.; Kenprom, S.; Sukkasem, C.; Kuwatjanakul, W.; Piyapatthanakul, S.; Luanphairin, O.; Phukaw, W.; et al. Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli. Antibiotics 2022, 11, 684. https://doi.org/10.3390/antibiotics11050684
Srisrattakarn A, Lulitanond A, Charoensri N, Wonglakorn L, Kenprom S, Sukkasem C, Kuwatjanakul W, Piyapatthanakul S, Luanphairin O, Phukaw W, et al. Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli. Antibiotics. 2022; 11(5):684. https://doi.org/10.3390/antibiotics11050684
Chicago/Turabian StyleSrisrattakarn, Arpasiri, Aroonlug Lulitanond, Nicha Charoensri, Lumyai Wonglakorn, Suthida Kenprom, Chutipapa Sukkasem, Waewta Kuwatjanakul, Sirikan Piyapatthanakul, Onphailin Luanphairin, Wichuda Phukaw, and et al. 2022. "Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli" Antibiotics 11, no. 5: 684. https://doi.org/10.3390/antibiotics11050684
APA StyleSrisrattakarn, A., Lulitanond, A., Charoensri, N., Wonglakorn, L., Kenprom, S., Sukkasem, C., Kuwatjanakul, W., Piyapatthanakul, S., Luanphairin, O., Phukaw, W., Khanchai, K., Pasuram, J., Wilailuckana, C., Daduang, J., & Chanawong, A. (2022). Multi Evaluation of a Modified GoldNano Carb Test for Carbapenemase Detection in Clinical Isolates of Gram-Negative Bacilli. Antibiotics, 11(5), 684. https://doi.org/10.3390/antibiotics11050684