Advocacy for Responsible Antibiotic Production and Use
Abstract
:1. Antibiotic Use in Animals
2. Antibiotic Manufacturing
2.1. The Opacity of the Antibiotic Production Chain
2.2. The Lack of Environmental Criteria Imposed by the Buyers
2.3. French and European Sovereignty
- Review, if necessary, the manufacturing and supply provisions in pharmaceutical legislation to improve transparency and strengthen the oversight of the antibiotic production chain;
- Clarify all responsibilities to ensure overall environmental sustainability, preserving drug quality, and ensuring our readiness for new technologies;
- Strengthen the environmental criteria in the marketing authorization process;
- Increase the share of the environmental assessment in the scoring grids for public procurement tenders;
- Develop an eco-toxicity classification for the various antibiotic compounds that can be easily understood by health professionals, e.g., the PBT index;
- Based on the above, promote the use of the least eco-toxic antibiotics;
- Define discharge limits in line with current guidelines to combat antimicrobial resistance, e.g., PNEC-MIC;
- Regarding pharmaceutical dispensing, promote single-dose dispensing by community pharmacies, with prior information for patients and pharmacists, along with packaging that is adapted to this type of dispensing in public contracts.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K. Use of antibiotics as feed additives: A burning question. Front. Microbiol. 2014, 5, 334. [Google Scholar] [CrossRef] [Green Version]
- Kirchhelle, C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Roope, L.S.J.; Smith, R.D.; Pouwels, K.B.; Buchanan, J.; Abel, L.; Eibich, P.; Butler, C.C.; Tan, P.S.; Walker, A.S.; Robotham, J.V.; et al. The challenge of antimicrobial resistance: What economics can contribute. Science 2019, 364, eaau4679. [Google Scholar] [CrossRef]
- European Food Safety Authority Journal. Available online: www.efsa.europa.eu/efsajournal (accessed on 4 May 2022).
- Wu, J.; Su, Y.; Deng, Y.; Guo, Z.; Mao, C.; Liu, G.; Xu, L.; Cheng, C.; Bei, L.; Feng, J. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China. Sci. Total Environ. 2019, 653, 605–611. [Google Scholar] [CrossRef]
- Jang, H.M.; Kim, Y.B.; Choi, S.; Lee, Y.; Shin, S.G.; Unno, T.; Kim, Y.M. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut. 2018, 233, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Moremi, N.; Manda, E.V.; Falgenhauer, L.; Ghosh, H.; Imirzalioglu, C.; Matee, M.; Chakraborty, T.; Mshana, S.E. Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Front. Microbiol. 2016, 7, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://ec.europa.eu/commission/presscorner/api/files/document/print/fr/ip_05_1687/IP_05_1687_FR.pdf (accessed on 7 May 2022).
- Available online: https://agriculture.gouv.fr/plan-ecoantibio-baisse-de-37-de-lexposition-des-animaux-aux-antibiotiques (accessed on 3 May 2022).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Andremont, A.; Fleck, F. What to do about resistant bacteria in the food-chain? Bull. World Health Organ. 2015, 93, 217–218. [Google Scholar] [CrossRef]
- Larsson, D.G.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://changingmarkets.org/ (accessed on 3 May 2022).
- Larsson, D.G. Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R Soc. Lond. B Biol. Sci. 2014, 369, 20130571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübbert, C.; Baars, C.; Dayakar, A.; Lippmann, N.; Rodloff, A.C.; Kinzig, M.; Sörgel, F. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 2017, 45, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Bhutta, Z.A. Antimicrobial resistance-a threat to neonate survival. Lancet Glob. Health 2016, 4, e676–e677. [Google Scholar] [CrossRef] [Green Version]
- Jajoo, M.; Manchanda, V.; Chaurasia, S.; Sankar, M.J.; Gautam, H.; Agarwal, R.; Yadav, C.P.; Aggarwal, K.C.; Chellani, H.; Ramji, S.; et al. Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration, New Delhi, India. Alarming rates of antimicrobial resistance and fungal sepsis in outborn neonates in North India. PLoS ONE 2018, 13, e0180705. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Matsui, Y.; WRiley, L. Risk factors for fecal carriage of drug-resistant Escherichia coli: A systematic review and meta-analysis. Antimicrob. Resist. Infect Control 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.anses.fr/fr/content/avis-et-rapport-de-lanses-relatif-%C3%A0-%C2%AB%C2%A0antibior%C3%A9sistance-et-environnement-%C3%A9tat-et-causes (accessed on 30 April 2022).
- Sjölund, M.; Bonnedahl, J.; Hernandez, J.; Bengtsson, S.; Cederbrant, G.; Pinhassi, J.; Kahlmeter, G.; Olsen, B. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg. Infect. Dis. 2008, 14, 70–72. [Google Scholar] [CrossRef]
- Blanco-Picazo, P.; Roscales, G.; Toribio-Avedillo, D.; Gómez-Gómez, C.; Avila, C.; Ballesté, E.; Muniesa, M.; Rodríguez-Rubio, L. Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Microorganisms 2020, 8, 1293. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Chen, D.; Tan, X.; Tian, X.; Shi, L. Does the “Blue Sky Defense War Policy” Paint the Sky Blue?—A Case Study of Beijing–Tianjin–Hebei Region, China. Int. J. Environ. Res. Public Health 2021, 18, 12397. [Google Scholar] [CrossRef]
- Mondain, V.; Retur, N.; Fontaine, P.; Carenco, P.; Risso, K.; Bertrand, B.; Lieutier-Colas, F. Et si transparence et écotoxicité devenaient des nouveaux critères de prescription et d’achats des antibiotiques ? Médecine Mal. Infect. 2020, 50, S53–S54. [Google Scholar] [CrossRef]
- Available online: https://ansm.sante.fr/qui-sommes-nous/nos-missions/assurer-la-securite-des-produits-de-sante/p/assurer-la-disponibilite#title (accessed on 30 April 2022).
- Available online: http://changingmarkets.org/wp-content/uploads/2017/04/Marche_des_antibiotiques_France.pdf (accessed on 1 May 2022).
- Available online: https://www.lenntech.fr/processes/Brine-Treatment/zero-liquid-discharge-zld.htm (accessed on 1 May 2022).
- Available online: https://www.lemonde.fr/sciences/article/2018/12/10/les-usines-d-antibiotiques-indiennes-sont-des-fabriques-d-antibioresistance_5395476_1650684.html (accessed on 1 May 2022).
- Available online: https://changingmarkets.org/wp-content/uploads/2017/07/2016-04_pharma-pollution-in-India_small_web_spread.pdf (accessed on 16 May 2022).
- Bengtsson-Palme, J.; Boulund, F.; Fick, J.; Kristiansson, E.; Larsson, D.G. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 2014, 5, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://setac.onlinelibrary.wiley.com/doi/full/10.1002/ieam.4141 (accessed on 16 May 2022).
- Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf (accessed on 9 June 2022).
- Available online: https://www.france24.com/en/20200514-covid-19-forces-france-to-look-at-relocating-its-pharmaceutical-industry (accessed on 9 June 2022).
- Singer, M.; Bulled, N.; Ostrach, B.; Mendenhall, E. Syndemics and the biosocial conception of health. Lancet 2017, 389, 941–950. [Google Scholar] [CrossRef]
- Nijsingh, N.; Munthe, C.; Larsson, D.G.J. Managing pollution from antibiotics manufacturing: Charting actors, incentives and disincentives. Environ. Health 2019, 18, 95. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://ec.europa.eu/health/medicinal-products/pharmaceutical-strategy-europe_en (accessed on 9 May 2022).
- Available online: https://ec.europa.eu/environment/news/pharmaceuticals-environment-new-report-shows-good-progress-implementing-strategy-2020-11-25_fr (accessed on 25 May 2022).
- Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy_en (accessed on 25 May 2022).
- Available online: https://www.gov.uk/government/publications/g7-carbis-bay-health-declaration (accessed on 17 May 2022).
- Available online: https://accesstomedicinefoundation.org/publications/2021-antimicrobial-resistance-benchmark (accessed on 23 May 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondain, V.; Retur, N.; Bertrand, B.; Lieutier-Colas, F.; Carenco, P.; Diamantis, S. Advocacy for Responsible Antibiotic Production and Use. Antibiotics 2022, 11, 980. https://doi.org/10.3390/antibiotics11070980
Mondain V, Retur N, Bertrand B, Lieutier-Colas F, Carenco P, Diamantis S. Advocacy for Responsible Antibiotic Production and Use. Antibiotics. 2022; 11(7):980. https://doi.org/10.3390/antibiotics11070980
Chicago/Turabian StyleMondain, Véronique, Nicolas Retur, Benjamin Bertrand, Florence Lieutier-Colas, Philippe Carenco, and Sylvain Diamantis. 2022. "Advocacy for Responsible Antibiotic Production and Use" Antibiotics 11, no. 7: 980. https://doi.org/10.3390/antibiotics11070980
APA StyleMondain, V., Retur, N., Bertrand, B., Lieutier-Colas, F., Carenco, P., & Diamantis, S. (2022). Advocacy for Responsible Antibiotic Production and Use. Antibiotics, 11(7), 980. https://doi.org/10.3390/antibiotics11070980