C-Locked Analogs of the Antimicrobial Peptide BP214
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.1.1. Fatty Acid Conjugates of BP214, Compounds 1–6
2.1.2. Synthesis of C-Locked Analogs of BP214, Compounds 7–9
2.1.3. Synthesis of Lipidated C-Locked Analogs of BP214, Compounds 10–18
2.1.4. Time-Kill Assay of Analog 13
3. Materials and Methods
3.1. Chemicals
3.2. Microbiology
3.3. Hemolysis
3.4. Peptide Synthesis
3.4.1. Synthesis of Lipidated BP214 Conjugates
3.4.2. Cleavage from Resin
3.4.3. Synthesis of C-Locked BP214 Analogs and Lipidated C-Locked BP214 Analogs
3.4.4. RP-HPLC and MALDI-TOF-MS
3.5. Hemolysis
3.6. Antimicrobial Activity
3.7. Time-Kill Assay for the Most Promising Peptide Candidate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACCA | α-cyano-4-hydroxycinnamic acid |
ACN | Acetonitrile |
AMP | Antimicrobial peptide |
ATCC | The American Type Culture Collection |
BrAcOH | Bromoacetic acid |
CFU | Colony-forming units |
DCM | Dichloromethane |
DIEA | Diisopropylethylamine |
DMF | Dimethylformamide |
DTT | Dithiothreitol |
ELISA | Enzyme-linked immunosorbent assay |
Fmoc | 9-fluorenylmethoxycarbonyl |
HATU | 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b] pyridinium-3-oxide hexafluoro-phosphate |
HOAt | 1-Hydroxy-7-azabenzotriazole |
MALDI-TOF-MS | Matrix-assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry |
MHB | Mueller-Hinton Broth |
Mtt | 4-methyltrityl |
OD | Optical density |
Pbf | 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl |
PBS | Phosphate-buffered saline |
RAM | Rink amide Linker |
RP-HPLC | Reverse Phase Analytical High Performance Liquid Chromatography |
TFA | trifluoroacetic acid |
TIS | Triisopropylamine |
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 131, 298–309. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Butler, M.S.; Paterson, D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. 2020, 73, 329–364. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef]
- Molchanova, N.; Hansen, P.R.; Franzyk, H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure–Activity Relationships of Polymyxin Antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2017, 73, 1–11. [Google Scholar] [CrossRef]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef]
- Mo, Y.; Nehring, F.; Jung, A.H.; Housman, S.T. Possible Hepatotoxicity Associated with Daptomycin: A Case Report and Literature Review. J. Pharm. Pract. 2016, 29, 253–256. [Google Scholar] [CrossRef]
- Kazory, A.; Dibadj, K.; Weiner, I.D. Rhabdomyolysis and acute renal failure in a patient treated with daptomycin. J. Antimicrob. Chemother. 2006, 57, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T.; Wencewicz, T.A. Prospects for new antibiotics: A molecule-centered perspective. J. Antibiot. 2014, 67, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Harper, M.; Boyce, J.D. Mechanisms of Polymyxin Resistance. In Polymyxin Antibiotics: From Laboratory Bench to Bedside; Li, J., Nation, R.L., Kaye, K.S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 55–71. [Google Scholar]
- Oddo, A.; Münzker, L.; Hansen, P.R. Peptide Macrocycles Featuring a Backbone Secondary Amine: A Convenient Strategy for the Synthesis of Lipidated Cyclic and Bicyclic Peptides on Solid Support. Org. Lett. 2015, 17, 2502–2505. [Google Scholar] [CrossRef] [PubMed]
- Oddo, A.; Thomsen, T.T.; Kjelstrup, S.; Gorey, C.; Franzyk, H.; Frimodt-Møller, N.; Løbner-Olesen, A.; Hansen, P.R. An all-D amphipathic undecapeptide shows promising activity against colistin-resistant strains of Acinetobacter baumannii and a dual mode of action. Antimicrob. Agents Chemother. 2016, 60, 592–599. [Google Scholar] [CrossRef]
- Ferre, R.; Melo, M.N.; Correia, A.D.; Feliu, L.; Bardaji, E.; Planas, M.; Castanho, M. Synergistic Effects of the Membrane Actions of Cecropin-Melittin Antimicrobial Hybrid Peptide BP100. Biophys. J. 2009, 96, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Storck, P.; Umstätter, F.; Wohlfart, S.; Domhan, C.; Kleist, C.; Werner, J.; Brandenburg, K.; Zimmermann, S.; Haberkorn, U.; Mier, W.; et al. Fatty Acid Conjugation Leads to Length-Dependent Antimicrobial Activity of a Synthetic Antibacterial Peptide (Pep19-4LF). Antibiotics 2020, 9, 844. [Google Scholar] [CrossRef]
- Koh, J.J.; Lin, H.F.; Caroline, V.; Chew, Y.S.; Pang, L.M.; Aung, T.T.; Li, J.G.; Lakshminarayanan, R.; Tan, D.T.H.; Verma, C.; et al. N-Lipidated Peptide Dimers: Effective Antibacterial Agents against Gram-Negative Pathogens through Lipopolysaccharide Permeabilization. J. Med. Chem. 2015, 58, 6533–6548. [Google Scholar] [CrossRef]
- Li, J.; Koh, J.-J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. 2017, 11, 73. [Google Scholar] [CrossRef]
- Vaara, M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med. Res. Rev. 2018, 38, 1661–1673. [Google Scholar] [CrossRef]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [Google Scholar] [CrossRef]
- Oddo, A.; Nyberg, N.T.; Frimodt-Moller, N.; Thulstrup, P.W.; Hansen, P.R. The effect of glycine replacement with flexible ϖ-amino acids on the antimicrobial and haemolytic activity of an amphipathic cyclic heptapeptide. Eur. J. Med. Chem. 2015, 102, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, M.; Arai, I.; Akabori, S.; Muramatsu, I. Role of Ring Size on the Secondary Structure and Antibiotic Activity of Gramicidin S. Int. J. Pept. Protein Res. 1995, 45, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Kondejewski, L.H.; Farmer, S.W.; Wishart, D.S.; Kay, C.M.; Hancock, R.E.W.; Hodges, R.S. Modulation of Structure and Antibacterial and Hemolytic Activity by Ring Size in Cyclic Gramicidin S Analogs. J. Biol. Chem. 1996, 271, 25261–25268. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α-helical antimicrobial peptides. Eur. J. Biochem. 2001, 268, 5589–5600. [Google Scholar] [CrossRef]
- Lakshmaiah Narayana, J.; Mishra, B.; Lushnikova, T.; Wu, Q.; Chhonker, Y.S.; Zhang, Y.; Zarena, D.; Salnikov, E.S.; Dang, X.; Wang, F.; et al. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc. Natl. Acad. Sci. USA 2020, 117, 19446–19454. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Nijnik, A.; Philpott, D.J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 2012, 10, 243–254. [Google Scholar] [CrossRef]
- Jensen, S.K.; Thomsen, T.T.; Oddo, A.; Franzyk, H.; Løbner-Olesen, A.; Hansen, P.R. Novel Cyclic Lipopeptide Antibiotics: Effects of Acyl Chain Length and Position. Int. J. Mol. Sci. 2020, 21, 5829. [Google Scholar] [CrossRef]
- Oddo, A.; Hansen, P.R. Hemolytic Activity of Antimicrobial Peptides. Methods Mol. Biol. 2017, 1548, 427–435. [Google Scholar]
ID | Peptide | SA a | EC b | KP c | AB d | PA e | %H f |
---|---|---|---|---|---|---|---|
BP214 | kklfkkilryl-NH2 | 8(5.5) | 4(2.8) | 2(1.4) | 2(1.4) | 4(2.8) | 41 |
1 | C4-kklfkkilryl-NH2 | 64(42.1) | 2(1.3) | 4(2.6) | 2(1.3) | 32(21.1) | 100 |
2 | C6-kklfkkilryl-NH2 | 64(41.4) | 8(5.2) | 8(5.2) | 4(2.6) | 32(20.7) | 100 |
3 | C8-kklfkkilryl-NH2 | 64(40.1) | 16(10.2) | 8(5.1) | 4(2.5) | 32(20.3) | 100 |
4 | C10-kklfkkilryl-NH2 | 32(20.0) | 32(20.0) | 32(20.0) | 32(20.0) | 32(20.0) | 100 |
5 | C12-kklfkkilryl-NH2 | 64(39.2) | 64(39.2) | 64(39.2) | 64(39.2) | 64(39.2) | 100 |
6 | C14-kklfkkilryl-NH2 | >64(38.6) | >64(38.6) | >64(38.6) | >64(38.6) | >64(38.6) | 100 |
7 | kklfkkilryk g-NH2 | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | 3 |
8 | kklfkkilryk-NH2 | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | 3 |
9 | kklfkkilryk-NH2 | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | >64(42.6) | 3 |
10 | C10-kklfkkilryk-NH2 | 4(2.4) | 4(2.4) | 8(4.8) | 4(2.4) | 4(2.4) | 81 |
11 | C12-kklfkkilryk-NH2 | 4(2.3) | 4(2.3) | 8(4.6) | 4(2.3) | 4(2.3) | 96 |
12 | C14-kklfkkilryk-NH2 | 8(4.6) | 8(4.6) | 4(2.3) | 16(9.3) | 16(9.3) | 95 |
13 | C10-kklfkkilryk-NH2 | 8(4.8) | 4(2.4) | 16(9.6) | 2(1.2) | 8(4.8) | 36 |
14 | C12-kklfkkilryk-NH2 | 4(2.4) | 4(2.4) | 16(9.5) | 4(2.4) | 4(2.4) | 98 |
15 | C14-kklfkkilryk-NH2 | 4(2.3) | 4(2.3) | 16(9.3) | 4(2.3) | 8(4.6) | 83 |
16 | C10-kklfkkilryk-NH2 | 4(2.4) | 8(4.8) | 16(9.7) | 4(2.4) | 8(4.8) | 59 |
17 | C12-kklfkkilryk-NH2 | 4(2.4) | 8(4.7) | 64(40.0) | 4(2.4) | 8(4.8) | 100 |
18 | C14-kklfkkilryk-NH2 | 4(2.3) | 8(4.6) | 32(18.7) | 4(2.3) | 16(9.3) | 94 |
19 | Colistin | N/A | 0.25(0.2) | 0.5(0.4) | 0.25(0.2) | 0.5(0.4) | N/A |
20 | Vancomycin | 0.5(0.35) | N/A | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, I.K.L.; Thomsen, T.T.; Rashid, J.; Bobak, T.R.; Oddo, A.; Franzyk, H.; Løbner-Olesen, A.; Hansen, P.R. C-Locked Analogs of the Antimicrobial Peptide BP214. Antibiotics 2022, 11, 1080. https://doi.org/10.3390/antibiotics11081080
Andersen IKL, Thomsen TT, Rashid J, Bobak TR, Oddo A, Franzyk H, Løbner-Olesen A, Hansen PR. C-Locked Analogs of the Antimicrobial Peptide BP214. Antibiotics. 2022; 11(8):1080. https://doi.org/10.3390/antibiotics11081080
Chicago/Turabian StyleAndersen, Ida Kristine Lysgaard, Thomas T. Thomsen, Jasmina Rashid, Thomas Rønnemoes Bobak, Alberto Oddo, Henrik Franzyk, Anders Løbner-Olesen, and Paul R. Hansen. 2022. "C-Locked Analogs of the Antimicrobial Peptide BP214" Antibiotics 11, no. 8: 1080. https://doi.org/10.3390/antibiotics11081080
APA StyleAndersen, I. K. L., Thomsen, T. T., Rashid, J., Bobak, T. R., Oddo, A., Franzyk, H., Løbner-Olesen, A., & Hansen, P. R. (2022). C-Locked Analogs of the Antimicrobial Peptide BP214. Antibiotics, 11(8), 1080. https://doi.org/10.3390/antibiotics11081080