Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Strain Isolation and Identification
4.2. Typing of PJI C. acnes Strains
4.3. Biofilm Formation
4.4. Susceptibility Testing
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R.; Infectious Diseases Society of America. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Mur, I.; Ribera, A.; Soriano, A.; Rodríguez-Pardo, D.; Sorlí, L.; Cobo, J.; Fernández-Sampedro, M.; del Toro, M.D.; Guío, L.; et al. The Different Microbial Etiology of Prosthetic Joint Infections according to Route of Acquisition and Time after Prosthesis Implantation, Including the Role of Multidrug-Resistant Organisms. J. Clin. Med. 2019, 8, 673. [Google Scholar] [CrossRef] [PubMed]
- Bossard, D.A.; Ledergerber, B.; Zingg, P.O.; Gerber, C.; Zinkernagel, A.S.; Zbinden, R.; Achermann, Y. Optimal Length of Cultivation Time for Isolation of Propionibacterium acnes in Suspected Bone and Joint Infections Is More than 7 Days. J. Clin. Microbiol. 2016, 54, 3043–3049. [Google Scholar] [CrossRef]
- Brüggemann, H.; Salar-Vidal, L.; Gollnick, H.P.M.; Lood, R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front. Microbiol. 2021, 12, 673845. [Google Scholar] [CrossRef]
- Coenye, T.; Spittaels, K.-J.; Achermann, Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2021, 4, 100063. [Google Scholar] [CrossRef]
- McDowell, A.; Valanne, S.; Ramage, G.; Tunney, M.M.; Glenn, J.V.; McLorinan, G.C.; Bhatia, A.; Maisonneuve, J.; Lodes, M.; Persing, D.H.; et al. Propionibacterium acnes Types I and II Represent Phylogenetically Distinct Groups. J. Clin.Microbiol. 2005, 43, 326–334. [Google Scholar] [CrossRef]
- McDowell, A.; Perry, A.L.; Lambert, P.A.; Patrick, S. A new phylogenetic group of Propionibacterium acnes. J. Med Microbiol. 2008, 57, 218–224. [Google Scholar] [CrossRef]
- Kilian, M.; Scholz, C.; Lomholt, H.B. Multilocus Sequence Typing and Phylogenetic Analysis of Propionibacterium acnes. J. Clin. Microbiol. 2012, 50, 1158–1165. [Google Scholar] [CrossRef]
- McDowell, A.; Barnard, E.; Nagy, I.; Gao, A.; Tomida, S.; Li, H.; Eady, A.; Cove, J.; Nord, C.E.; Patrick, S. An Expanded Multilocus Sequence Typing Scheme for Propionibacterium acnes: Investigation of ‘Pathogenic’, ‘Commensal’ and Antibiotic Resistant Strains. PLoS ONE. 2012, 7, e41480. [Google Scholar] [CrossRef] [Green Version]
- Scholz, C.F.P.; Jensen, A.; Lomholt, H.B.; Brüggemann, H.; Kilian, M. A Novel High-Resolution Single Locus Sequence Typing Scheme for Mixed Populations of Propionibacterium acnes In Vivo. PLoS ONE 2014, 9, e104199. [Google Scholar] [CrossRef]
- Petersen, R.L.W.; Scholz, C.F.P.; Jensen, A.; Brüggemann, H.; Lomholt, H.B. Propionibacterium acnes phylogenetic type III is associated with progressive macular hypomelanosis. Eur. J. Microbiol. Immunol. 2017, 7, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lomholt, H.B.; Kilian, M. Population Genetic Analysis of Propionibacterium acnes Identifies a Subpopulation and Epidemic Clones Associated with Acne. PLoS ONE 2010, 5, e12277. [Google Scholar] [CrossRef]
- McDowell, A.; Nagy, I.; Magyari, M.; Barnard, E.; Patrick, S. The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution. PLoS ONE 2013, 8, e70897. [Google Scholar] [CrossRef]
- Aubin, G.G.; Lavigne, J.-P.; Foucher, Y.; Dellière, S.; Lepelletier, D.; Gouin, F.; Corvec, S. Tropism and virulence of Cutibacterium (formerly Propionibacterium) acnes involved in implant-associated infection. Anaerobe 2017, 47, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Liew-Littorin, C.; Brüggemann, H.; Davidsson, S.; Nilsdotter-Augustinsson, Å.; Hellmark, B.; Söderquist, B. Clonal diversity of Cutibacterium acnes (formerly Propionibacterium acnes) in prosthetic joint infections. Anaerobe 2019, 59, 54–60. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, F.; Roux, A.L.; Sapriel, G.; Salomon, E.; Bauer, T.; Gaillard, J.L.; Rottman, M. Molecular Typing of Multiple Isolates Is Essential to Diagnose Cutibacterium acnes Orthopedic Device–related Infection. Clin. Infect. Dis. 2019, 68, 1942–1945. [Google Scholar] [CrossRef] [PubMed]
- Khassebaf, J.; Hellmark, B.; Davidsson, S.; Unemo, M.; Nilsdotter-Augustinsson, Å.; Söderquist, B. Antibiotic susceptibility of Propionibacterium acnes isolated from orthopaedic implant-associated infections. Anaerobe 2015, 32, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bayston, R.; Ashraf, W.; Barker-Davies, R.; Tucker, E.; Clement, R.; Clayton, J.; Freeman, B.J.; Nuradeen, B. Biofilm formation byPropionibacterium acnes on biomaterialsin vitro andin vivo: Impact on diagnosis and treatment. J. Biomed. Mater. Res. Part A 2007, 81, 705–709. [Google Scholar] [CrossRef]
- Holmberg, A.; Lood, R.; Mörgelin, M.; Söderquist, B.; Holst, E.; Collin, M.; Christensson, B.; Rasmussen, M. Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin. Microbiol. Infect. 2009, 15, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Kuehnast, T.; Cakar, F.; Weinhäupl, T.; Pilz, A.; Selak, S.; Schmidt, M.A.; Rüter, C.; Schild, S. Comparative analyses of biofilm formation among different Cutibacterium acnes isolates. Int. J. Med Microbiol. 2018, 308, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Sendi, P.; Zimmerli, W. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin. Microbiol. Infect. 2012, 18, 1176–1184. [Google Scholar] [CrossRef]
- Tafin, U.F.; Corvec, S.; Betrisey, B.; Zimmerli, W.; Trampuz, A. Role of Rifampin against Propionibacterium acnes Biofilm In Vitro and in an Experimental Foreign-Body Infection Model. Antimicrob. Agents Chemother. 2012, 56, 1885–1891. [Google Scholar] [CrossRef]
- Koch, J.A.; Pust, T.M.; Cappellini, A.J.; Mandell, J.B.; Ma, D.; Shah, N.B.; Brothers, K.M.; Urish, K.L. Staphylococcus epidermidis Biofilms Have a High Tolerance to Antibiotics in Periprosthetic Joint Infection. Life 2020, 10, 253. [Google Scholar] [CrossRef]
- Jahns, A.C.; Eilers, H.; Alexeyev, O.A. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro. Anaerobe 2016, 42, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Kusejko, K.; Auñón, Á.; Jost, B.; Natividad, B.; Strahm, C.; Thurnheer, C.; Pablo-Marcos, D.; Slama, D.; Scanferla, G.; Uckay, I.; et al. The Impact of Surgical Strategy and Rifampin on Treatment Outcome in Cutibacterium Periprosthetic Joint Infections. Clin. Infect. Dis. 2021, 72, e1064–e1073. [Google Scholar] [CrossRef]
- Achermann, Y.; Goldstein, E.J.C.; Coenye, T.; Shirtliff, M.E. Propionibacterium acnes: From Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clin. Microbiol. Rev. 2014, 27, 419–440. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Broth Microdilution—EUCAST Reading Guide; v2.0; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020. [Google Scholar]
- Hernandes, C.; Coppede J da, S.; Bertoni, B.W.; França S de, C.; Pereira, A.M.S. Flashmicrobiocide: A Rapid and Economic Method for Determination of MBC and MFC. Am. J. Plant Sci. 2013, 04, 850–852. [Google Scholar] [CrossRef]
- Coenye, T.; Peeters, E.; Nelis, H.J. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res. Microbiol. 2007, 158, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Biofilm Formation (n-Fold ODc) (IQR) | p-Value | |
---|---|---|---|
Origin of the sample | 0.5953 | ||
HS | 84 | 2.47 (1.71–3.32) | |
PJI | 79 | 2.5 (1.78–3.44) | |
Gender | 0.2913 | ||
Male | 60 | 2.54 (1.95–3.76) | |
Female | 19 | 2.50 (1.67–3,29) | |
Joint site | 0.4352 | ||
Elbow | 1 | 2.98 | |
Hip | 40 | 2.40 (1.74–3.52) | |
Knee | 10 | 2.90 (1.93–3.13) | |
Shoulder | 27 | 2.90 (1.83–3.77) | |
Wrist | 1 | 1.15 | |
Immunosuppression | 0.7193 | ||
Yes | 11 | 2.94 (2.27–3.29) | |
No | 64 | 2.53 (1.80–3.64) | |
Phylotype | 0.6427 | ||
IA | 41 | 2.5 (1.77–3.40) | |
IB | 27 | 2.72 (1.78–3.53) | |
II | 11 | 2.49 (2.27–3.75) | |
SLST | 0.0449 | ||
A | 15 | 2.38 (1.75–3.29) | |
C | 3 | 2.28 (1.41–2.50) | |
D | 17 | 2.97 (2.07–3.40) | |
E | 3 | 1.67 (1.30–2.18) | |
F | 3 | 4.96 (4.28–6.41) | |
H | 27 | 2.72 (1.78–3.53) | |
K | 11 | 2.49 (2.27–3.75) |
Antibiotic | MIC50 (mg/L) | MIC90 (mg/L) | MBC50 (mg/L) | MBC90 (mg/L) | MBIC50 (mg/L) | MBIC90 (mg/L) | MBEC50 (mg/L) | MBEC90 (mg/L) |
---|---|---|---|---|---|---|---|---|
Amoxicillin-clavulanic acid | 0.25 | 0.50 | 0.5 | 1 | 0.25 | 0.25 | 64 | >256 |
Clindamycin | 0.25 | 0.50 | 0.25 | 1 | 0.25 | 0.50 | 64 | >256 |
Levofloxacin | 0.50 | 1 | 1 | 2 | 0.50 | 1 | >32 | >32 |
Linezolid | 0.50 | 1 | 1 | 2 | 0.50 | 0.50 | >256 | >256 |
Penicillin | 0.0625 | 0.125 | 0.25 | 0.5 | 0.0625 | 0.125 | 32 | > 32 |
Rifampin | 0.03125 | 0.03125 | 0.03125 | 0.03125 | 0.03125 | 0.03125 | 0.50 | 2 |
Vancomycin | 0.50 | 0.50 | 1 | 1 | 0.50 | 0.50 | >256 | >256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salar-Vidal, L.; Aguilera-Correa, J.J.; Brüggemann, H.; Achermann, Y.; Esteban, J., on behalf of the ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections. Antibiotics 2022, 11, 1260. https://doi.org/10.3390/antibiotics11091260
Salar-Vidal L, Aguilera-Correa JJ, Brüggemann H, Achermann Y, Esteban J on behalf of the ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections. Antibiotics. 2022; 11(9):1260. https://doi.org/10.3390/antibiotics11091260
Chicago/Turabian StyleSalar-Vidal, Llanos, John Jairo Aguilera-Correa, Holger Brüggemann, Yvonne Achermann, and Jaime Esteban on behalf of the ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. 2022. "Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections" Antibiotics 11, no. 9: 1260. https://doi.org/10.3390/antibiotics11091260
APA StyleSalar-Vidal, L., Aguilera-Correa, J. J., Brüggemann, H., Achermann, Y., & Esteban, J., on behalf of the ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. (2022). Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections. Antibiotics, 11(9), 1260. https://doi.org/10.3390/antibiotics11091260