In Vitro Activity of Imipenem-Relebactam, Meropenem-Vaborbactam, Ceftazidime-Avibactam and Comparators on Carbapenem-Resistant Non-Carbapenemase-Producing Enterobacterales
Abstract
:1. Introduction
2. Material and Methods
2.1. Strains Collection
2.2. Determination of the Mechanism Responsible for Decreased Susceptibility to Carbapenems
2.3. Antimicrobial Susceptibility Testing and MIC Determination
2.4. Whole Genome Sequencing
3. Results
3.1. Analysis of the Strains Collection
- (1)
- ESBL producers coupled with membrane permeability defect (named ESBL) (n = 123)
- (2)
- Isolates overproducing their intrinsic cephalosporinase coupled membrane permeability defect (named CASE) (n = 68)
- (3)
- A mix of intrinsic cephalosporinase overproduction associated with ESBL production and membrane permeability defect (named ESBL + CASE) (n = 36)
- (4)
- Isolates producing an acquired cephalosporinase associated with membrane permeability defect (named aCASE) (n = 14)
- (5)
- Klebsiella pneumoniae or Klebsiella oxytoca overproducing their intrinsic penicillinase SHV-like or OXY-like (named Hyper-SHV or Hyper-OXY) (n = 16 and n = 4, respectively)
- (6)
- Unclassified phenotype (named Unknown) (n = 25) (Supplementary Materials Table S1).
3.2. Susceptibility to Meropenem-Vaborbactam Compared to Meropenem
3.3. Susceptibility to Imipenem-Relebactam Compared to Imipenem
3.4. Susceptibility to Ceftazidime-Avibactam Compared to Ceftazidime
3.5. Susceptibility to Temocillin, Ceftolozane/Tazobactam, Ertapenem, Colistin, Eravacycline and Tigecycline
3.6. Susceptibility Testing without a Priori for CRE Non-CPE
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to Novel β-Lactam-β-Lactamase Inhibitor Combinations: The “Price of Progress”. Infect. Dis. Clin. N. Am. 2020, 34, 773–819. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Emeraud, C.; Oueslati, S.; Dortet, L.; Naas, T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front. Med. 2020, 7, 616490. [Google Scholar] [CrossRef]
- Wong, J.L.C.; David, S.; Sanchez-Garrido, J.; Woo, J.Z.; Low, W.W.; Morecchiato, F.; Giani, T.; Rossolini, G.M.; Beis, K.; Brett, S.J.; et al. Recurrent Emergence of Klebsiella Pneumoniae Carbapenem Resistance Mediated by an Inhibitory OmpK36 MRNA Secondary Structure. Proc. Natl. Acad. Sci. USA 2022, 119, e2203593119. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; He, T.; Li, D.; Zhang, L.; Zhang, D.; Feng, J.; Yang, W.; Yuan, Y. Molecular Epidemiology and Mechanism of Klebsiella Pneumoniae Resistance to Ertapenem but Not to Other Carbapenems in China. Front. Microbiol. 2022, 13, 974990. [Google Scholar] [CrossRef]
- Aissa, N.; Mayer, N.; Bert, F.; Labia, R.; Lozniewski, A.; Nicolas-Chanoine, M.-H. A New Mechanism to Render Clinical Isolates of Escherichia Coli Non-Susceptible to Imipenem: Substitutions in the PBP2 Penicillin-Binding Domain. J. Antimicrob. Chemother. 2016, 71, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Mammeri, H.; Guillon, H.; Eb, F.; Nordmann, P. Phenotypic and Biochemical Comparison of the Carbapenem-Hydrolyzing Activities of Five Plasmid-Borne AmpC β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 4556–4560. [Google Scholar] [CrossRef] [Green Version]
- Philippon, A.; Arlet, G.; Labia, R.; Iorga, B.I. Class C β-Lactamases: Molecular Characteristics. Clin. Microbiol. Rev. 2022, 35, e0015021. [Google Scholar] [CrossRef]
- López Montesinos, I.; Montero, M.; Sorlí, L.; Horcajada, J.P. Ceftolozane-Tazobactam: When, How and Why Using It? Rev. Esp. Quimioter. 2021, 34 (Suppl. S1), 35–37. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Bouza, E. The Role of New Carbapenem Combinations in the Treatment of Multidrug-Resistant Gram-Negative Infections. J. Antimicrob. Chemother. 2021, 76, iv38–iv45. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Zhang, J.; Maharjan, S.; Doumith, M.; Woodford, N. Activities of NXL104 Combinations with Ceftazidime and Aztreonam against Carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Dortet, L.; Bréchard, L.; Poirel, L.; Nordmann, P. Impact of the Isolation Medium for Detection of Carbapenemase-Producing Enterobacteriaceae Using an Updated Version of the Carba NP Test. J. Med. Microbiol. 2014, 63, 772–776. [Google Scholar] [CrossRef]
- Boutal, H.; Vogel, A.; Bernabeu, S.; Devilliers, K.; Creton, E.; Cotellon, G.; Plaisance, M.; Oueslati, S.; Dortet, L.; Jousset, A.; et al. A Multiplex Lateral Flow Immunoassay for the Rapid Identification of NDM-, KPC-, IMP- and VIM-Type and OXA-48-like Carbapenemase-Producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Dortet, L.; Cuzon, G.; Plésiat, P.; Naas, T. Prospective Evaluation of an Algorithm for the Phenotypic Screening of Carbapenemase-Producing Enterobacteriaceae. J. Antimicrob. Chemother. 2016, 71, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, Y.; Murakami, K.; Nishikawa, T. Penetration of Moxalactam into Its Target Proteins in Escherichia Coli K-12: Comparison of a Highly Moxalactam Resistant Mutant with Its Parent Strain. Antimicrob. Agents Chemother. 1981, 20, 613–619. [Google Scholar] [CrossRef] [Green Version]
- EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 6 December 2021).
- Bonnin, R.A.; Bernabeu, S.; Emeraud, C.; Creton, E.; Vanparis, O.; Naas, T.; Jousset, A.B.; Dortet, L. Susceptibility of OXA-48-Producing Enterobacterales to Imipenem/Relebactam, Meropenem/Vaborbactam and Ceftazidime/Avibactam. Int. J. Antimicrob. Agents 2022, 60, 106660. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Chiarelli, A.; Emeraud, C.; Glaser, P.; Naas, T.; Dortet, L. Emergence of New Non-Clonal Group 258 High-Risk Clones among Klebsiella Pneumoniae Carbapenemase-Producing K. Pneumoniae Isolates, France. Emerg. Infect. Dis. 2020, 26, 1212–1220. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Jean, S.-S.; Hsueh, P.-R. SMART Asia-Pacific Group Antimicrobial Susceptibilities of the Ertapenem-Non-Susceptible Non-Carbapenemase-Producing Enterobacterales Isolates Causing Intra-Abdominal Infections in the Asia-Pacific Region during 2008-2014: Results from the Study for Monitoring the Antimicrobial Resistance Trends (SMART). J. Glob. Antimicrob. Resist. 2020, 21, 91–98. [Google Scholar] [CrossRef]
- Black, C.A.; So, W.; Dallas, S.S.; Gawrys, G.; Benavides, R.; Aguilar, S.; Chen, C.-J.; Shurko, J.F.; Lee, G.C. Predominance of Non-Carbapenemase Producing Carbapenem-Resistant Enterobacterales in South Texas. Front. Microbiol. 2021, 11, 623574. [Google Scholar] [CrossRef]
- Jousset, A.B.; Oueslati, S.; Bernabeu, S.; Takissian, J.; Creton, E.; Vogel, A.; Sauvadet, A.; Cotellon, G.; Gauthier, L.; Bonnin, R.A.; et al. False-Positive Carbapenem-Hydrolyzing Confirmatory Tests Due to ACT-28, a Chromosomally Encoded AmpC with Weak Carbapenemase Activity from Enterobacter Kobei. Antimicrob. Agents Chemother. 2019, 63, e02388-18. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Dabos, L.; Oueslati, S.; Bernabeu, S.; Bonnin, R.A.; Dortet, L.; Naas, T. To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms 2022, 10, 258. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Deshpande, L.M.; Mendes, R.E.; Sader, H.S. Activity of Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam against Carbapenemase-Negative Carbapenem-Resistant Enterobacterales Isolates from US Hospitals. Int. J. Antimicrob. Agents 2021, 58, 106439. [Google Scholar] [CrossRef]
- Bhagunde, P.; Patel, P.; Lala, M.; Watson, K.; Copalu, W.; Xu, M.; Kulkarni, P.; Young, K.; Rizk, M.L. Population Pharmacokinetic Analysis for Imipenem–Relebactam in Healthy Volunteers and Patients With Bacterial Infections. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Sun, D.; Li, S.; Chen, J.; Teng, M.; Yang, B.; Dong, Y.; Wang, T. Pharmacokinetic/Pharmacodynamic Adequacy of Novel β-Lactam/β-Lactamase Inhibitors against Gram-Negative Bacterial in Critically Ill Patients. Antibiotics 2021, 10, 993. [Google Scholar] [CrossRef]
MIC Distribution (mg/L) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ≤0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | >32 | MIC50 | MIC90 | % S | % I | % R | |
Temocillin | 284 | 0 | 0 | 0 | 1 | 0 | 3 | 27 | 88 | 165 | >32 | >32 | 0.0 | 14.1 | 85.9 |
Ceftazidime | 284 | 0 | 0 | 2 | 3 | 5 | 8 | 8 | 13 | 245 | >32 | >32 | 0.7 | 2.8 | 96.5 |
Ceftazidime/avibactam | 284 | 7 | 9 | 56 | 78 | 68 | 33 | 13 | 7 | 13 | 2 | 16 | 88.4 | 11.6 | |
Ceftolozane/tazobactam | 284 | 0 | 0 | 7 | 6 | 13 | 22 | 34 | 24 | 178 | >32 | >32 | 4.6 | 95.4 | |
Ertapenem | 284 | 5 | 2 | 2 | 11 | 11 | 15 | 38 | 72 | 128 | 32 | >32 | 2.5 | 97.5 | |
Imipenem | 284 | 13 | 23 | 28 | 64 | 66 | 41 | 28 | 11 | 10 | 4 | 16 | 45.1 | 23.2 | 31.7 |
Imipenem/relebactam | 284 | 52 | 71 | 63 | 44 | 35 | 10 | 5 | 1 | 3 | 1 | 4 | 81.0 | 19.0 | |
Meropenem | 284 | 19 | 4 | 6 | 13 | 49 | 100 | 54 | 31 | 8 | 8 | 32 | 14.8 | 52.5 | 32.7 |
Meropenem/vaborbactam | 284 | 24 | 5 | 15 | 36 | 75 | 74 | 39 | 10 | 6 | 4 | 16 | 80.6 | 19.4 |
MIC Distribution (mg/L) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | ≤0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | >128 | MIC50 | MIC90 | % S | % R | |
Colistin | 284 | 17 | 176 | 54 | 9 | 1 | 12 | 5 | 4 | 0 | 5 | 1 | 0.5 | 4 | 90.1 | 9.9 |
Eravacycline | 284 | 73 | 83 | 42 | 46 | 35 | 5 a | ND b | ND b | ND b | ND b | ND b | 0.5 | 4 | 54.9 | 96.5 |
Tigecycline | 284 | 20 | 59 | 85 | 63 | 43 | 14 a | ND b | ND b | ND b | ND b | ND b | 1 | 4 | 27.8 | 72.2 |
Phenotypes | N | % of Susceptibility | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CAZ (High Dose) (≤4 mg/L) | CZT (≤2 mg/L) | ETP (≤0.5 mg/L) | IMP (Standard Dose) (≤2 mg/L) | IMP (High Dose) (≤4 mg/L) | IMP-REL (≤2 mg/L) | a IMP-REL (High Dose) (≤4 mg/L) | MEM (Standard Dose) (≤2 mg/L) | MEM (High Dose) (≤8 mg/L) | MEM-VAB (Standard Dose) (≤8 mg/L) | CAZ-AVI (Standard Dose) (≤8 mg/L) | COL (≤2 mg/L) | ||
ETP R (>0.5 mg/L) | 277 | 3.2 | 3.6 | 0.0 | 43.7 | 67.5 | 80.5 | 93.1 | 12.6 | 66.4 | 80.1 | 88.1 | 90.3 |
IMI R (>4 mg/L) | 90 | 3.3 | 3.3 | 0.0 | 0.0 | 0.0 | 46.7 | 78.9 | 0.0 | 37.8 | 53.3 | 80.0 | 91.1 |
MEM R (>8 mg/L) | 93 | 3.2 | 2.2 | 0.0 | 12.9 | 39.8 | 55.9 | 82.8 | 0.0 | 0.0 | 43.0 | 78.5 | 86.0 |
IMI R (>4 mg/L) + MEM R (>8 mg/L) + ETP R (>0.5 mg/L) | 56 | 5.4 | 3.6 | 0.0 | 0.0 | 0.0 | 30.4 | 71.4 | 0.0 | 0.0 | 26.8 | 75.0 | 87.5 |
CZA R (>8 mg/L) | 33 | 0.0 | 0.0 | 0.0 | 18.2 | 45.5 | 54.5 | 87.9 | 3.0 | 39.4 | 48.5 | 0.0 | 84.8 |
IMP-REL R (>2 mg/L) | 54 | 7.4 | 5.6 | 0.0 | 0.0 | 11.1 | 0.0 | 64.8 | 0.0 | 24.1 | 35.2 | 72.2 | 90.7 |
IMP-REL high dose R (>4 mg/L) | 19 | 15.8 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.8 | 21.1 | 78.9 | 89.5 |
MEM-VAB R (>8 mg/L) | 55 | 5.5 | 3.6 | 0.0 | 0.0 | 23.6 | 36.4 | 72.7 | 0.0 | 0.0 | 0.0 | 69.1 | 89.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnin, R.A.; Bernabeu, S.; Emeraud, C.; Naas, T.; Girlich, D.; Jousset, A.B.; Dortet, L. In Vitro Activity of Imipenem-Relebactam, Meropenem-Vaborbactam, Ceftazidime-Avibactam and Comparators on Carbapenem-Resistant Non-Carbapenemase-Producing Enterobacterales. Antibiotics 2023, 12, 102. https://doi.org/10.3390/antibiotics12010102
Bonnin RA, Bernabeu S, Emeraud C, Naas T, Girlich D, Jousset AB, Dortet L. In Vitro Activity of Imipenem-Relebactam, Meropenem-Vaborbactam, Ceftazidime-Avibactam and Comparators on Carbapenem-Resistant Non-Carbapenemase-Producing Enterobacterales. Antibiotics. 2023; 12(1):102. https://doi.org/10.3390/antibiotics12010102
Chicago/Turabian StyleBonnin, Rémy A., Sandrine Bernabeu, Cécile Emeraud, Thierry Naas, Delphine Girlich, Agnès B. Jousset, and Laurent Dortet. 2023. "In Vitro Activity of Imipenem-Relebactam, Meropenem-Vaborbactam, Ceftazidime-Avibactam and Comparators on Carbapenem-Resistant Non-Carbapenemase-Producing Enterobacterales" Antibiotics 12, no. 1: 102. https://doi.org/10.3390/antibiotics12010102
APA StyleBonnin, R. A., Bernabeu, S., Emeraud, C., Naas, T., Girlich, D., Jousset, A. B., & Dortet, L. (2023). In Vitro Activity of Imipenem-Relebactam, Meropenem-Vaborbactam, Ceftazidime-Avibactam and Comparators on Carbapenem-Resistant Non-Carbapenemase-Producing Enterobacterales. Antibiotics, 12(1), 102. https://doi.org/10.3390/antibiotics12010102