Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance
Abstract
:1. Introduction
2. Results
2.1. Genome Features of Aeromonas rivipollensis
2.2. Taxonomic Classification Using gyrB and Whole-Genome-Based Species Tree
2.3. Pangenome Analysis of the Aeromonas Species
2.4. Polysialic Acid and Sialic Acid Biosynthesis Genes
2.5. Antibiotics and Virulence Genes of Aeromonas rivipollensis Genomes
2.6. Mobile Genetic Elements
3. Materials and Methods
3.1. Sample Isolation and Classical Microbiological Tests
3.2. DNA Extractions
3.3. Whole-Genome Sequencing, Quality Control and Assembly
3.4. Phylogenetic Analysis Using gyraseB and Whole-Genome Species Tree
3.5. Pangenomics Analysis
3.6. Antibiotics Resistance, Plasmid Replicon, Mobile Genetic Elements, and Virulence Factor Determinants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khor, W.C.; Puah, S.M.; Tan, J.A.; Puthucheary, S.D.; Chua, K.H. Phenotypic and Genetic Diversity of Aeromonas Species Isolated from Fresh Water Lakes in Malaysia. PLoS ONE 2015, 10, e0145933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Raza, S.H.A.; Yang, B.; Sun, Y.; Wang, G.; Sun, W.; Qian, A.; Wang, C.; Kang, Y.; Shan, X. Aeromonas veronii Infection in Commercial Freshwater Fish: A Potential Threat to Public Health. Animals 2020, 10, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasquez, I.; Hossain, A.; Gnanagobal, H.; Valderrama, K.; Campbell, B.; Ness, M.; Charette, S.J.; Gamperl, A.K.; Cipriano, R.; Segovia, C.; et al. Comparative Genomics of Typical and Atypical Aeromonas salmonicida Complete Genomes Revealed New Insights into Pathogenesis Evolution. Microorganisms 2022, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Talagrand-Reboul, E.; Colston, S.M.; Graf, J.; Lamy, B.; Jumas-Bilak, E. Comparative and Evolutionary Genomics of Isolates Provide Insight into the Pathoadaptation of Aeromonas. Genome Biol. Evol. 2020, 12, 535–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaix, G.; Roger, F.; Berthe, T.; Lamy, B.; Jumas-Bilak, E.; Lafite, R.; Forget-Leray, J.; Petit, F. Distinct Aeromonas Populations in Water Column and Associated with Copepods from Estuarine Environment (Seine, France). Front. Microbiol. 2017, 8, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puthucheary, S.D.; Puah, S.M.; Chua, K.H. Molecular characterization of clinical isolates of Aeromonas species from Malaysia. PLoS ONE 2012, 7, e30205. [Google Scholar] [CrossRef] [Green Version]
- Villari, P.; Crispino, M.; Montuori, P.; Boccia, S. Molecular typing of Aeromonas isolates in natural mineral waters. Appl. Environ. Microbiol. 2003, 69, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Rutteman, B.; Borremans, K.; Beckers, J.; Devleeschouwer, E.; Lampmann, S.; Corthouts, I.; Verlinde, P. Aeromonas wound infection in a healthy boy, and wound healing with polarized light. JMM Case Rep. 2017, 4, e005118. [Google Scholar] [CrossRef]
- Yang, W.; Li, N.; Li, M.; Zhang, D.; An, G. Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila JBN2301. Genome Announc. 2016, 4, e01615-15. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Lim, S.R.; Son, J.S.; Kim, H.K.; Yoon, S.W.; Jeong, D.G.; Lee, M.S.; Lee, J.R.; Lee, D.H.; Kim, J.H. Complete Genome Sequence of Aeromonas rivipollensis KN-Mc-11N1, Isolated from a Wild Nutria (Myocastor coypus) in South Korea. Microbiol. Resour. Announc. 2018, 7, e00907-18. [Google Scholar] [CrossRef]
- Marti, E.; Balcazar, J.L. Aeromonas rivipollensis sp. nov., a novel species isolated from aquatic samples. J. Basic Microbiol. 2015, 55, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Tekedar, H.C.; Kumru, S.; Blom, J.; Perkins, A.D.; Griffin, M.J.; Abdelhamed, H.; Karsi, A.; Lawrence, M.L. Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PLoS ONE 2019, 14, e0221018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, V.R.; Witherden, E.A.; Lee, S.; Shoaie, S.; Mullany, P.; Proctor, G.B.; Gomez-Cabrero, D.; Moyes, D.L. Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat. Commun. 2020, 11, 693. [Google Scholar] [CrossRef] [Green Version]
- Seshadri, R.; Joseph, S.W.; Chopra, A.K.; Sha, J.; Shaw, J.; Graf, J.; Haft, D.; Wu, M.; Ren, Q.; Rosovitz, M.J.; et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades. J. Bacteriol. 2006, 188, 8272–8282. [Google Scholar] [CrossRef] [Green Version]
- Talagrand-Reboul, E.; Jumas-Bilak, E.; Lamy, B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front. Microbiol. 2017, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Gryllos, I.; Tomas, J.M.; Shaw, J.G. Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect. Immun. 2001, 69, 4257–4267. [Google Scholar] [CrossRef] [Green Version]
- Gavin, R.; Merino, S.; Altarriba, M.; Canals, R.; Shaw, J.G.; Tomas, J.M. Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiol. Lett. 2003, 224, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Canals, R.; Jimenez, N.; Vilches, S.; Regue, M.; Merino, S.; Tomas, J.M. Role of Gne and GalE in the virulence of Aeromonas hydrophila serotype O34. J. Bacteriol. 2007, 189, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Kirov, S.M.; O’Donovan, L.A.; Sanderson, K. Functional characterization of type IV pili expressed on diarrhea-associated isolates of Aeromonas species. Infect. Immun. 1999, 67, 5447–5454. [Google Scholar] [CrossRef] [Green Version]
- Massad, G.; Arceneaux, J.E.; Byers, B.R. Acquisition of iron from host sources by mesophilic Aeromonas species. J. Gen. Microbiol. 1991, 137, 237–241. [Google Scholar] [CrossRef]
- Burr, S.E.; Stuber, K.; Wahli, T.; Frey, J. Evidence for a type III secretion system in Aeromonas salmonicida subsp. salmonicida. J. Bacteriol. 2002, 184, 5966–5970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sha, J.; Pillai, L.; Fadl, A.A.; Galindo, C.L.; Erova, T.E.; Chopra, A.K. The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect. Immun. 2005, 73, 6446–6457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.B.; Yoon, J.; Lee, Y.; Kim, M.S.; Lee, K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei. Med. J. 2015, 56, 550–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Gen. Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S. Hot papers-Bioinformatics-Gapped BLAST and PSI-BLAST: A new generation of protein database search programs by S.F. Altschul, T.L. Madden, A.A. Schaffer, J.H. Zhang, Z. Zhang, W. Miller, D.J. Lipman-Comments. Scientist 1999, 13, 15. [Google Scholar]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Gen. Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018, 46, D851–D860. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Gen. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11 Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Seemann, M. Das neue Spiel: Strategien fur die Welt nach dem digitalen Kontrollverlust; Orange-Press: Freiburg, Germany, 2014; p. 255. [Google Scholar]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 2461. [Google Scholar] [CrossRef]
- Junier, T.; Zdobnov, E.M. The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 2010, 26, 1669–1670. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, D.D.; Zhou, S.Y.; Chen, L.H.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef]
- Li, X.B.; Xie, Y.Z.; Liu, M.; Tai, C.; Sung, J.Y.; Deng, Z.X.; Ou, H.Y. oriTfinder: A web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018, 46, W229–W234. [Google Scholar] [CrossRef] [Green Version]
- Pezzicoli, A.; Ruggiero, P.; Amerighi, F.; Telford, J.L.; Soriani, M. Exogenous sialic acid transport contributes to group B streptococcus infection of mucosal surfaces. J. Infect. Dis. 2012, 206, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Puente-Polledo, L.; Reglero, A.; Gonzalez-Clemente, C.; Rodriguez-Aparicio, L.B.; Ferrero, M.A. Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2. Glycoconj. J. 1998, 15, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Navasa, N.; Rodriguez-Aparicio, L.B.; Ferrero, M.A.; Monteagudo-Mera, A.; Martinez-Blanco, H. Transcriptional control of RfaH on polysialic and colanic acid synthesis by Escherichia coli K92. FEBS Lett. 2014, 588, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.X.; Qiao, Y.; Shi, B.; Tao, Y. Polysialic acid biosynthesis and production in Escherichia coli: Current state and perspectives. Appl. Microbiol. Biotechnol. 2016, 100, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cress, B.F.; Englaender, J.A.; He, W.; Kasper, D.; Linhardt, R.J.; Koffas, M.A. Masquerading microbial pathogens: Capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol. Rev. 2014, 38, 660–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colley, K.J.; Kitajima, K.; Sato, C. Polysialic acid: Biosynthesis, novel functions and applications. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 498–532. [Google Scholar] [CrossRef]
- Bailey, M.J.; Hughes, C.; Koronakis, V. RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol. Microbiol. 1997, 26, 845–851. [Google Scholar] [CrossRef]
- Lekota, K.E.; Bezuidt, O.K.I.; Mafofo, J.; Rees, J.; Muchadeyi, F.C.; Madoroba, E.; van Heerden, H. Whole genome sequencing and identification of Bacillus endophyticus and B. anthracis isolated from anthrax outbreaks in South Africa. BMC Microbiol. 2018, 18, 67. [Google Scholar] [CrossRef]
- Vimr, E.R.; Kalivoda, K.A.; Deszo, E.L.; Steenbergen, S.M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 2004, 68, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, M.A.; Aparicio, L.R. Biosynthesis and production of polysialic acids in bacteria. Appl. Microbiol. Biotechnol. 2010, 86, 1621–1635. [Google Scholar] [CrossRef]
- Daines, D.A.; Wright, L.F.; Chaffin, D.O.; Rubens, C.E.; Silver, R.P. NeuD plays a role in the synthesis of sialic acid in Escherichia coli K1. FEMS Microbiol. Lett. 2000, 189, 281–284. [Google Scholar] [CrossRef]
- Lubin, J.B.; Kingston, J.J.; Chowdhury, N.; Boyd, E.F. Sialic acid catabolism and transport gene clusters are lineage specific In Vibrio vulnificus. Appl. Environ. Microbiol. 2012, 78, 3407–3415. [Google Scholar] [CrossRef]
- Rosa, L.T.; Bianconi, M.E.; Thomas, G.H.; Kelly, D.J. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front. Cell Infect. Microbiol. 2018, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Revilla-Nuin, B.; Rodriguez-Aparicio, L.B.; Ferrero, M.A.; Reglero, A. Regulation of capsular polysialic acid biosynthesis by N-acetyl-D-mannosamine, an intermediate of sialic acid metabolism. FEBS Lett. 1998, 426, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Horne, C.R.; Venugopal, H.; Panjikar, S.; Wood, D.M.; Henrickson, A.; Brookes, E.; North, R.A.; Murphy, J.M.; Friemann, R.; Griffin, M.D.W.; et al. Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism. Nat. Commun. 2021, 12, 1988. [Google Scholar] [CrossRef]
- Severi, E.; Hood, D.W.; Thomas, G.H. Sialic acid utilization by bacterial pathogens. Microbiology 2007, 153, 2817–2822. [Google Scholar] [CrossRef] [Green Version]
- Brigham, C.; Caughlan, R.; Gallegos, R.; Dallas, M.B.; Godoy, V.G.; Malamy, M.H. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 2009, 191, 3629–3638. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, I.; Rossi Paccani, S.; Rosini, R.; Mattera, R.; Ferrer Navarro, M.; Urosev, D.; Nesta, B.; Lo Surdo, P.; Del Vecchio, M.; Rippa, V.; et al. EsiB, a novel pathogenic Escherichia coli secretory immunoglobulin A-binding protein impairing neutrophil activation. mBio 2013, 4, e00206-13. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, M.; Przygodzinska, D.; Matyjewicz, K.; Popowska, M. Occurrence and Variety of beta-Lactamase Genes among Aeromonas spp. Isolated from Urban Wastewater Treatment Plant. Front. Microbiol. 2017, 8, 863. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Lopez, R.; Solano-Galvez, S.; Alvarez-Hernandez, D.A.; Ascencio-Aragon, J.A.; Gomez-Conde, E.; Pina-Leyva, C.; Lara-Lozano, M.; Guerrero-Gonzalez, T.; Gonzalez-Barrios, J.A. The Beta-Lactam Resistome Expressed by Aerobic and Anaerobic Bacteria Isolated from Human Feces of Healthy Donors. Pharmaceuticals 2021, 14, 533. [Google Scholar] [CrossRef]
- Tekedar, H.C.; Abdelhamed, H.; Kumru, S.; Blom, J.; Karsi, A.; Lawrence, M.L. Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS. Front. Microbiol. 2018, 9, 3216. [Google Scholar] [CrossRef]
- Jacobs, L.; Chenia, H.Y. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int. J. Food Microbiol. 2007, 114, 295–306. [Google Scholar] [CrossRef]
- Kirov, S.M.; Barnett, T.C.; Pepe, C.M.; Strom, M.S.; Albert, M.J. Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect. Immun. 2000, 68, 4040–4048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.; Yu, Y.; Lee, H.; Jeon, J.H.; Wanner, B.L.; Ritchie, K. Asymmetric polar localization dynamics of the serine chemoreceptor protein Tsr in Escherichia coli. PLoS ONE 2018, 13, e0195887. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; Zhulin, I.B.; Krell, T. Sensory Repertoire of Bacterial Chemoreceptors. Microbiol. Mol. Biol. R 2017, 81, e00033-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacal, J.; Garcia-Fontana, C.; Munoz-Martinez, F.; Ramos, J.L.; Krell, T. Sensing of environmental signals: Classification of chemoreceptors according to the size of their ligand binding regions. Environ. Microbiol. 2010, 12, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
Feature | G36 | G42 | G78 | G87 | KN-Mc-11N1 * |
---|---|---|---|---|---|
Genome size (bp) | 4,530,639 | 4,584,495 | 4,531,506 | 4,663,030 | 4,508,901 |
CDSs (protein coding sequences) | 4,239 | 4,273 | 4,205 | 4,319 | 4,025 |
Number of tRNAs | 115 | 109 | 101 | 108 | 124 |
Number of total rRNAs | 5 | 3 | 7 | 4 | 31 |
GC% | 61,48 | 61,3 | 61,48 | 61,08 | 61,9 |
Number of contigs | 93 | 55 | 57 | 71 | 1 |
N50 | 94,736 | 184,598 | 194,165 | 160,487 | - |
Sequence reads archive (SRA) or GenBank | SRR13249124 | SRR13249123 | SRR13249122 | SRR13249121 | CP027856.1 |
Gene Annotation | Abbreviation | Subsystem Assigned |
---|---|---|
Capsular polysaccharide export system periplasmic protein | kpsD | Capsular polysaccharide (CPS) of Campylobacter CPS biosynthesis and assembly |
Capsular polysaccharide ABC transporter, permease protein | kpsM | Rhamnose containing glycans, CPS of Campylobacter, CPS biosynthesis and assembly |
Capsular polysaccharide ABC transporter, ATP-binding protein | kpsT | CPS biosynthesis and assembly |
Capsular polysaccharide export system inner membrane protein | kpsE | CPS of Campylobacter; CPS biosynthesis and assembly |
COG3563: Capsule polysaccharide export protein | KpsF | CPS biosynthesis and assembly |
Capsular polysaccharide export system protein | kpsS | CPS biosynthesis and assembly |
N-Acetylneuraminate cytidylyltransferase (EC 2.7.7.43) | neuA | CMP-N-acetylneuraminate_biosynthesis; Sialic acid metabolism |
N-acetylneuraminate synthase (EC 2.5.1.56) | neuB | CMP-N-acetylneuraminate biosynthesis; Sialic acid metabolism |
dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) | neuC | dTDP-rhamnose_synthesis; Rhamnose containing glycans; Capsular_heptose_biosynthesis |
Transcriptional regulator NanR | nanR | Sialic acid metabolism |
N-acetylneuraminate lyase (EC 4.1.3.3) | nanA2 | Sialic acid metabolism |
TRAP-type C4-dicarboxylate transport system, periplasmic component | nanTp or siaM | TRAP Transporter collection |
TRAP-type C4-dicarboxylate transport system, large permease component | nanTI | TRAP Transporter collection |
Sialidase (EC 3.2.1.18) | nanH | Galactosylceramide and sulfatide metabolism; Sialic acid metabolism |
N-acetylneuraminate lyase (EC 4.1.3.3) | nanA1 | Sialic acid metabolism |
Sialic acid utilization regulator, RpiR family | nanX | Sialic acid metabolism |
N-acetylmannosamine-6-phosphate 2-epimerase (EC 5.1.3.9) | nanE | Sialic acid metabolism |
N-acetylmannosamine kinase (EC 2.7.1.60) | nanK | Sialic acid metabolism |
Predicted sialic acid transporter | nanP | Sialic acid metabolism |
Putative sugar isomerase involved in processing of exogenous sialic acid | yhcH | Sialic acid metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fono-Tamo, E.U.K.; Kamika, I.; Dewar, J.B.; Lekota, K.E. Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics 2023, 12, 131. https://doi.org/10.3390/antibiotics12010131
Fono-Tamo EUK, Kamika I, Dewar JB, Lekota KE. Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics. 2023; 12(1):131. https://doi.org/10.3390/antibiotics12010131
Chicago/Turabian StyleFono-Tamo, Esther Ubani K., Ilunga Kamika, John Barr Dewar, and Kgaugelo Edward Lekota. 2023. "Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance" Antibiotics 12, no. 1: 131. https://doi.org/10.3390/antibiotics12010131
APA StyleFono-Tamo, E. U. K., Kamika, I., Dewar, J. B., & Lekota, K. E. (2023). Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance. Antibiotics, 12(1), 131. https://doi.org/10.3390/antibiotics12010131