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Abstract: The aim of this study was to investigate the antimicrobial resistance profiles and geno-
types of Streptococcus suis in Heilongjiang Province, China. A total of 29 S. suis were isolated from
332 samples collected from 6 pig farms. The results showed that serotypes 2, 4 and 9 were prevalent,
and all the clinical isolates were resistant to at least two antibacterial drugs. The most resisted drugs
were macrolides, and the least resisted drugs were fluoroquinolones. Resistant genes ermB and aph
(3′)-IIIa were highly distributed among the isolates, with the detection rates of 79.31% and 75.86%.
The formation of biofilm could be observed in all the isolated S. suis, among which D-1, LL-1 and
LL-3 strains formed stronger biofilm structure than other strains. The results indicate that S. suis in
Heilongjiang Province presents a multi-drug resistance to commonly used antimicrobial drugs, which
was caused by the same target gene, the dissemination of drug resistance genes, and bacterial biofilm.

Keywords: Streptococcus suis; serotype; multi-drug resistance; biofilm; drug resistance gene

1. Introduction

Streptococcus suis (S. suis), as an important zoonotic pathogen, can cause several
symptoms, such as meningitis, arthritis, pneumonia, endocarditis, and septicaemia in
pigs and humans [1]. S. suis can be divided into 35 serotypes based on S. suis capsular
antigens [2], and serotypes 2, 4, 7 and 9 are frequently isolated from both healthy and
diseased animals [3,4]. In order to control the S. suis infections, massive amounts of
antimicrobials are used in the swine industry, which leads to the emergence of S. suis drug
resistance strains worldwide. In Thailand, 99.3% of S. suis isolated from humans and pigs
had resistance to at least one antibiotic drug [5]. In Korea, 95.6% of S. suis isolated from
pigs were resistant to clindamycin, tilmicosin, tylosin, oxytetracycline, and more classes of
antimicrobials [3]. In addition, most isolated clinical S. suis were resistant to clindamycin,
tetracycline, and erythromycin in China from 2017 to 2019 [6]. All of the isolates were
resistant to three or more categories of antimicrobial. Therefore, it is essential to monitor
antimicrobial susceptibility of S. suis.

The clinically isolated S. suis often showed cross resistance between macrolides, lin-
cosamides, aminoglycosides, chloramphenicol, β-lactams, fluoroquinolones, and tetra-
cyclines [7–9]. Especially, high levels of resistance to tetracycline (TET) and macrolides
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have been reported in many countries, including North America, Asia, and China [10–12].
Moreover, S. suis strains resistant to fluoroquinolone [13], lincosamides [14], β-lactams [15],
and chloramphenicol [16], and aminoglycosides [3] have also been described in previous
studies. Although there have been some reports on the emergence of multi-drug-resistant
S. suis strains, the molecular mechanisms of resistance remain unclear. Currently, examples
for resistance determinants belonging to one of these groups have been described for S. suis.
For instance, tetracycline resistance in streptococci is mainly due to ribosomal protection
genes tet(M) and tet(O), and less frequently tet(Q), tet(T), and tet(W), and to efflux genes
tet(K) and tet(L) [17]. The expressions of ermB, ermA, and ermTR [18] are an important mech-
anism among S. suis that confers resistance to macrolides. The macrolide efflux genes (mefE,
msrD, and mefA) which are transported by different genetic elements, are responsible for en-
coding the efflux pump, which promotes the development of resistance to antibiotic drugs
in bacterial strains. The resistances of the mef genes are often acquired. These genes are
located in the transposon or carried by plasmid, and are transmitted between bacteria [19].
Mechanisms of resistance specific to lincosamides relate to the modification of the target
by a nucleotidyl-transferase, encoded by the lnu(B) or lnu(C) genes. The aminoglycoside
O-phosphotransferases, encoded by the aph genes such as aph(3′)-IIIa, mediates resistance
to several aminoglycosides, including kanamycin and neomycin [17]. The occurrence of
bacterial multi-drug resistance has been of concern, but the exact mechanism is unclear.
One of the most important reasons may be that some antibacterial drugs of different classes
have the same action sites, including the target gene (e.g., 50S ribosomal subunit) [20,21],
and another reason may be the horizontal spread of resistance genes [22]. Under the
selective pressure of antimicrobials, resistant bacteria can transfer among animals [23].

Moreover, bacterial biofilm is another important factor responsible for the develop-
ment of the multi-drug resistance of bacteria [24]. Biofilms are heterogeneous structures
which are composed of bacterial cells surrounded by a matrix and attached to solid surfaces.
It has been reported that sub-minimum inhibitory concentrations (Sub-MIC) of a variety of
antibiotics can induce biofilm formation in a number of phylogenetically diverse Gram-
positive and Gram-negative bacteria in vitro [25], as well as induce mutagenesis bacteria of
cross-resistance to other antibiotics [24]. Biofilm-associated sessile cells are different from
planktonic cells in phenotype and physiology, and they have lower sensitivity to antimi-
crobial agents due to both tolerance and resistance. Bacterial tolerance refers to the ability
of microorganisms to survive brief exposure to high concentrations of antimicrobials [26].
However, tolerant bacteria remain sensitive to antibiotics. Although short exposure to high
concentrations of antimicrobials has no significant effect on tolerant bacteria, prolonged
exposure to antimicrobials above the minimum inhibitory concentration could lead to the
development of resistance [27]. Biofilm can slow down the penetration of antibiotics into
the bacteria membrane, change the microenvironment for bacteria to survive, limit bacteria
growth, and protect the stress response, all of which will lead to bacterial tolerance [28].
Slow growing or non-growing cells can evade killing by exhibiting low activity of common
targets of antibiotics, e.g., RNA polymerase and cell-wall biosynthetic enzymes. Bacteria
metabolic adaptations could lead to antibiotic tolerance by decreasing production of elec-
tron donors [29]. The presence of an established tolerant mutant in the population could
provide more opportunities for the occurrence of rarer resistance mutations. Therefore,
the biofilm formation of S. suis could lead to the emergence of multi-drug resistant strains,
which represents a public health risk to both humans and animals. However, the biofilm
formation ability and mechanism of the multi-drug resistant strains of S. suis clinically
isolated have not been completely elucidated.

In the study, 29 isolates of S. suis with multiple drug resistance features were collected
from 332 clinical samples of pig farms in Heilongjiang Province of China from 2017 to 2018.
Multi-drug resistance related factors were analyzed, including serotype, drug resistant
phenotypes, drug resistance genes, and biofilm formation ability. Our findings explain
some of the reasons for the development of multi-drug resistance by S. suis, providing a
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theoretical basis to understand, prevent, control, and reduce the occurrence of multiple
drug resistance in S. suis as well as inhibit their biofilms formation ability.

2. Results
2.1. Isolation and Identification of S. suis

Isolates were collected from pigs with symptoms of clinical mastitis across different
regions in Heilongjiang Province (Figure 1). qPCR detection results showed that gdh of
S. suis were positive. The Gram staining of S. suis appeared paired or short-chain. Of the
332 samples tested, 29 (8.7%) isolates were further characterized into various serotypes
using cps genes (Figure 2). In the Harbin-1 farm, six S. suis strains were isolated, in which
four isolates belonged to serotype 4, and two isolates belonged to serotype 2. In the Harbin-
2 farm, three S. suis strains were isolated, in which one isolate belonged to serotype 2, one
isolate belonged to serotype 9, and one isolate was unidentified. In the Harbin-3 farm, nine
S. suis strains were isolated, all of which belonged to serotype 4. In the Suihua farm, one
S. suis strain was isolated and unidentified. In the Daqing farm, three S. suis strains were
isolated, in which two isolates belonged to serotype 4, and one isolate was unidentified.
In the Qiqihar farm, seven S. suis strains were isolated, all of which belonged to serotype
2. Taken together, 10 S. suis strains of serotype 2 (34.48%), 15 S. suis strains of serotype
4 (51.72%), 1 S. suis strain of serotype 9 (3.45%), and 3 unidentified S. suis strains (10.35%)
were isolated (Supplementary Table S1).
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Figure 1. Geographical distribution of the farms where the experimental samples were collected.
Numbers 1–6 represent the different farms where samples were collected and the number of samples;
1: Harbin-1 (40), 2: Harbin-2 (26), 3: Harbin-3 (44), 4: Suihua (4), 5: Daqing (40), 6: Qiqihar (178).

2.2. Antimicrobial Susceptibility Testing

The definition of multidrug resistance (MDR) is resistance to at least one agent in three
or more antimicrobial classes. The MICs distributions of 29 isolates are shown in Figure 3,
and the list of the MIC50 and MIC90 values were included in Supplementary Table S2,
showing that all the clinical isolates were resistant to macrolides, and the least resisted
drugs were fluoroquinolones. According to the CLSI breakpoint, the drug resistance
rates of erythromycin, tetracycline, chloramphenicol, florfenicol, penicillin K, gentamicin,
ceftiofur, and enrofloxacin were 100%, 96.6%, 89.7%, 86.2%, 86.2%, 82.8%, 82.7%, and 69%
respectively. All clinical isolates were resistant to at least two antibacterial drugs (Table 1),
and isolates S-2, S-1, AH94-2, B1-2, YB58-2, H1-2, AZ45-1, AZ52-1, and 2-5 showed stronger
resistance (Figure 3). In addition, strains of serotype 4 (S-2, S-1, AH94-2, B1-2) showed
higher resistance levels than other serotypes.
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Figure 2. Percentage isolation rate of the different serotypes of S. suis isolated from the six farms.
S. suis 2 were 34.48%, S. suis 4 were 51.72%, S. suis 9 were 3.45%, and S. suis with no serotype were
10.35%. Only one serotype existed in the farms located in Qiqihar, Harbin-3, and Suihua. The farms in
Harbin-1 and Daqing had two serotypes. Three serotypes were isolated the farm located in Harbin-2.
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Figure 3. The MIC results of 29 clinical isolates of S. suis. The MIC value is represented by a color
scale (top right) going from low (green) to high (red).

2.3. Detection of Antimicrobial Resistance Genes

Several drug resistance genes were identified, including the ermA, ermB, and ermTR
genes, the efflux pump mefA, mefE, and msrD genes of macrolides, the lnu(B) gene of
lincosamides, the aph (3′)-IIIa gene of aminoglycosides, and the tetO and tetM genes of
tetracyclines. The results showed that resistance genes mefE, ermB, and aph (3′)-IIIa were
highly distributed among the 29 isolates, with the detection rates of 72.41%, 79.31%, and
75.86%, respectively (Supplementary Table S3). The percentages of other resistant genes are
presented as follows: ermA (55.17%), ermTR (58.62%), mefA (3.45%), msrD (10.34%), lnu(B)
(55.17%), tetO (31.03%), tetM (44.83%) (Figure 4). It could be also observed that the isolated
strains were 100% resistant to macrolides, and corresponding resistance genes could be
amplified from most of the strains.
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Table 1. The antimicrobial resistant types of S. suis strains isolated from pigs.

Serial Number Serotype Antimicrobial Resistant Types * No. of Antimicrobials

AHD-110-6-2 4 ERY-TET 2
AY18-2 4 CHL-CEF-ENR-ERY-PK-FFL-TET 7
AH94-4 4 ENR-ERY-GEN-TET 4
AZ45-1 2 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
AZ52-1 2 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
AH94-2 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
YF74-2 unidentified CEF-ENR-ERY-GEN-PK-TET 6
YHB13-2 2 ENR-ERY-GEN 3
YB58-2 9 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
H1-2 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
GJ1-2 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
HB10-1 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
B9-1 4 CHL-CEF-ERY-GEN-FFL-TET 6
H3-1 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
Y10-2 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
S-1 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
S-2 4 CHL-ENR-ERY-GEN-PK-FFL-TET 7
B1-2 4 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
2-5 unidentified CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
ZL695-2 unidentified CHL-CEF-ERY-GEN-PK-FFL-TET 7
DZ001-2 4 CHL-ERY-GEN-PK-FFL-TET 6
DY12-2 4 CHL-CEF-ERY-GEN-PK-FFL-TET 7
LQ-5 2 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
D-1 2 CHL-CEF-ENR-ERY-PK-FFL-TET 7
G-3 2 CHL-CEF-ENR-ERY-PK-FFL-TET 7
LL-3 2 CHL-CEF-ERY-PK-FFL-TET 6
LL-1 2 CHL-CEF-ERY-GEN-PK-FFL-TET 7
K-5 2 CHL-CEF-ENR-ERY-GEN-PK-FFL-TET 8
Z-5 2 CHL-CEF-ERY-GEN-PK-FFL-TET 7

* CHL, Chloramphenicol; CEF, Ceftiofur; ENR, Enrofloxacin; ERY, Erythromycin; GEN, Gentamicin; PK, Penicillin
K; FFL, Florfenicol; TET, Tetracycline.
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Figure 4. Detection rate of drug resistance genes, ermA (55.17%), ermB (79.31%), ermTR (58.62%),
msrD (10.34%), mefA (3.45%), mefE (72.41%), aph (3′)-IIIa (75.86%), lnu(B) (55.17%), tetO (31.03%), tetM
(44.83%). The resistance genes of ermA, ermB, ermTR, mefA, mefE, msrD belong to macrolides, the aph
(3′)-IIIa gene belongs to aminoglycosides, the lnu(B) gene belongs to lincosamides, the tetO and tetM
genes belong to tetracyclines.
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2.4. Biofilm Formation Analysis

Biofilm formation ability was observed in all of the isolated S. suis strains. According
to the OD values, biofilm formation ability could be divided into three groups: strong,
medium, and weak. Among these strains, clinical isolates, such as D-1, LL-1, and LL-3
showed strong ability to form biofilm. Isolates G-3, S-2, S-1, GJ1-2, Y10-2, YF74-2, AH94-
2, AZ45-1, K-5, Z-5, YB58-2, DZ001-2, H1-2, AZ52-1, AHD-110-6-2, and AY18-2 showed
medium ability to form biofilm. However, LQ-5, H3-1, B1-2, 2-5, B9-1, HB10-1, ZL695-2,
YHB13-2, DY12-2, and AH94-4 showed weak ability to form biofilm. When compared
to S. suis ATCC 7007794 (positive control), isolates D-1, LL-1, and LL-3 also exhibited
stronger biofilm formation ability, while AY18-2, AZ45-1, AHD110-6-2, AH94-2, YF74-2,
Y10-2, DZ001-2, GJ1-2, S-1, S-2, and G-3 exhibited similar biofilm formation ability. Taken
together, isolates D-1, LL-1, and LL-3 of serotype 2 S. suis were more capable of forming
biofilm than serotype 4 (Figure 5).
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Figure 5. The ability of S. suis isolated from the six farms to form biofilm. Data are expressed as
means ± standard deviations. S. suis ATCC 700794 was used as the positive control, and the negative
control was culture with medium only. (a) The ability of S. suis isolated from Qiqihar pig farm to form
biofilm; (b) The ability of S. suis isolated from Harbin-1 pig farm to form biofilm; (c) The ability of
S. suis isolated from Harbin-2 pig farm to form biofilm; (d) The ability of S. suis isolated from Daqing
pig farm to form biofilm; (e) The ability of S. suis isolated from Harbin-3 pig farm to form biofilm;
(f) The ability of S. suis isolated from Suihua pig farm to form biofilm.
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3. Discussion

S. suis is one of the leading causes of infectious diseases in pig farms globally. It is
also considered as an emerging zoonotic agent for humans exposed to sick pigs or their
by-products, with potential significant impact on public health. So far, the control or
treatment of S. suis infections depends almost entirely on the use of antimicrobials. In
the case of treating S. suis, antibiotic resistance is a common phenomenon, and there is
an increasing trend of multi-drug resistance. An important approach is to focus on how
to mitigate bacterial resistance. In order to promote the rational use of drugs, this study
investigated the relationship of drug resistance and biofilm formation using a population
of twenty-nine S. suis strains isolated from Heilongjiang Province.

S. suis serotype 2 is the main serotype causing pig and human infections in China [4].
However, in recent years, S. suis serotypes 4 and 9 have been frequently isolated from
Chinese pig farms [30], and the isolation rate has gradually increased. Serotype 9 has
been frequently isolated from diseased farm animals in intensively-reared commercial
pig breeds [31], while serotype 4 has a high isolation rate from healthy pigs in China [32].
In some places in China, S. suis serotype 4 has become a dominant serotype [3,33]. Our
present data identified at least four serotypes during the experimental period (June 2017
to August 2018) in Heilongjiang Province. This study confirmed that serotypes 2, 4, and 9
were prevalent in Heilongjiang. A total of 10 strains of S. suis type 2, 15 strains of S. suis
type 4, and 1 strain of S. suis type 9 were identified; the ratios were 34.48%, 51.72%, and
3.45%, respectively. Obviously, S. suis serotype 4 was the main serotype in Heilongjiang
during the investigation period. Our study found that strains GJ1-2, S-1, and S-2, isolated
from the joints and abdomen of diseased pigs, belong to serotype 4, and exhibit strong
multidrug resistance. Simultaneously, they have strong abilities of biofilm formation,
suggesting that infections caused by serotype 4 S. suis are increasing. Although there has
been a study reporting that S. suis serotype 2 is by far the most common isolated serotype
related to disease [34], the increasing emergence of serotype 4 in infected pigs deserves
more attention.

The massive use of antibiotics in the livestock industry contributes to the emergence
of antibiotic resistance [7]. In China, the average usage of veterinary antibiotics has reached
approximately 6000 tons annually, and most of them are used as feed additives, including
tetracyclines and macrolides, among others [35]. In addition, lincosamides, macrolides,
aminoglycosides, chloramphenicol, and β-lactams are also widely used in the treatment
of S. suis [5,36]. In order to know the current drug resistance of S. suis in Heilongjiang
Province, we tested the drug resistance phenotype and resistance gene of the 29 S. suis
isolates. The detection results of the MICs of S. suis showed that the 29 clinical isolates were
resistant to a minimum of two antimicrobial agents and a maximum of eight antimicrobial
agents. Resistance to fluoroquinolones was the lowest, and the most resisted drugs were
macrolides. Fluoroquinolone was relatively sensitive due to the reduction in the usage
of fluoroquinolones in pig farms (a practice recently posed in China), while the massive
use of macrolides, lincosamides, and tetracyclines could explain the serious drug resistant
phenotype in this study.

The study indicated that all the isolated S. suis were 100% resistant to macrolides,
which have been widely reported as a commonly used antibiotic in pig farms [37]. Drug
resistant bacteria exhibit four drug resistance mechanisms, including target modification, ac-
tive efflux, mutations in ribosomal L4 and L22, and production of inactivated enzymes [38].
Both erm and mef are acquired resistance genes. They are located in the transposon or
carried by the plasmid, and can be transmitted between bacteria [39]. In a previous study,
erythromycin and lincomycin developed cross-resistance due to modification of the same
drug target site, which has been confirmed in their clinical isolates [40]. In our study, it was
observed that 79.31% of the ermB genes detected in tylosin-resistant strains isolated from six
farms were also resistant to lincomycin. This may be one of the reasons for the resistance
to macrolides and lincomycin. Many drug resistance genes are located on integrative
conjugative element (ICE), which can be passed through horizontal gene transfer to a new
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host cell, thus presenting a serious challenge to the pig industry. Transferable 89K-subtype
ICEs, carrying ermB- and tetO genes, can disseminate tetracycline and macrolide resistance
genes in different swine and bovine farms of China [41]. Although not determined in
this study, ICEs may lead to the resistance of the strains to macrolides and tetracycline in
our research.

It is well known that biofilm formation by pathogens can significantly increase their
tolerance to antibiotics [42]. Interestingly, S. suis tend to increase biofilm formation once
exposed to sub-MICs of commonly used antimicrobials, including amoxicillin, enrofloxacin,
oxytetracycline, and lincomycin. However, macrolides could inhibit the formation of S. suis
biofilm in sub-MIC [43,44]. It is likely that some bacterial cells in biofilm are exposed to
antibiotics of sub-MIC levels during antimicrobial chemotherapy, due to falling concentra-
tions by dilution, or diffusion gradients for antibiotics in biofilm. Antibiotics of sub-MICs
can provide a selective pressure, under which bacteria tend to mutate and become resistant
to other antibiotics [24,42]. In our study, the reason for the stronger biofilm formation
ability of LL-1, LL-3, and D-1 could be the long term administration of multi-antimicrobials
in the pig farms in Qiqihar, which leads to biofilm formation. It has been reported that
growing S. suis in the presence of sub-MIC of norfloxacin, doxycycline, and gentamicin is
associated with increased biofilm formation ability, which promotes antibiotic tolerance [45].
Antimicrobials at sub-MIC can induce the production of extracellular polymeric substance
(EPS) and further promote the resistance of biofilm. In this study, AH94-2 and AH94-4
were the same serotype S. suis isolated from the same farm (Harbin-1). Although the MIC
of AH94-2 and AH94-4 to lincomycin were at the resistance level, and the gene lnu(B) was
amplified, they showed different sensitivities to β-lactams. AH94-2 strain is more resistant
to β-lactams than strain AH94-4. Meanwhile, isolates LL-3 and LQ-5 were obtained from a
farm which used lincomycin, yet LL-3 showed stronger resistance to β-lactam drugs than
LQ-5. We found that AH 94-2 and LL-3 exhibited stronger biofilm formation capacity than
AH94-4 and LQ-5, which could reduce sensitivity to β-lactam antibiotics. That may explain
the reason why AH 94-2 and LL-3 were more resistant than AH 94-4 and LQ-5, respectively.
Another study also reported that biofilm-grown S. suis cells were much more resistant
to penicillin G than planktonic cells [46]. Grenier also reported that the biofilm-grown
S. suis was significantly more resistant to both penicillin G and ampicillin than planktonic
cells [47]. It is possible that the EPS matrix forms a physical protective barrier for bacteria,
which can prevent antimicrobials from penetrating into bacteria and ensure their normal
growth [48]. In addition, the antibiotic degrading enzymes could be accumulated in the
process of antibiotic penetration, which could inactivate the antibiotics and protect the
bacteria within the biofilm [49]. Moreover, related resistance genes could not be amplified
in macrolides resistant strain 2–5, aminoglycoside resistant strains B9-1, AY18-2, GJ1-2, and
LL-1, and tetracycline resistant strains LL-1, G-3, DZ001-2, ZL695-2, Y10-2, AY18-2, and
AHD-110-6-2, which indicates that the enhancement of biofilm formation may be related
to the sensitivity of antimicrobial drugs. In addition, there is another possibility: that the
PCR system was not able to detect all drug resistance genes. Notably, strain LL-1 did not
contain resistance genes to tetracycline or aminoglycoside, yet exhibited resistance to both
antimicrobials, which might be related to the strong biofilm formation ability. Biofilm
grown cells may induce different physiological characteristics than the same isolate grown
as colonies on the petri plate, and may have slightly different drug resistance phenotypes.
Related studies have revealed that biofilm formation in bacteria could lead to the restriction
of drug transport, which is the phase of positively charged antibiotics and a negatively
charged EPS matrix [45]. Besides the EPS matrix and peptidoglycan, there are also other
cell membrane components that could block the penetration of antibiotics. Bacteria could
acquire more time from the delay of antibiotic penetration to achieve adaptive stress re-
sponse [50]. The multi-speciation and heterogeneity of the bacterial community within the
biofilm could cause a high probability of gene mutation, which will change the original
gene structure and produce resistance via reducing or preventing binding of antibiotics
to the target protein [29]. Interestingly, strain G3 contained resistance genes to aminogly-
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coside, yet did not exhibit resistance to aminoglycoside. It is possible that biofilm grown
S. suis develops tolerance to antimicrobials, which enables S. suis to survive the MIC. One
of the reasons for the development of bacteria tolerance is the slow growth of bacteria
after biofilm formation, which causes the bacteria to enter into a growth quiescent period,
thus reducing the susceptibility of biofilm to antibiotics [28]. Fridman et al. also reported
that Escherichia coli cells spontaneously exhibited tolerance after repeated treatments of
ampicillin [51]. Biofilm formation could provide bacteria with protection against host
defense systems or antimicrobial agents, which leads to multidrug resistance and chronic
infection of bacteria. Therefore, the biofilm formation is an important reason for the drug
resistance of S. suis infections.

In conclusion, 29 clinical S. suis strains were isolated, and serotypes 2, 4, and 9 of
S. suis were identified to be prevalent in Heilongjiang Province in this study. Among the
isolated strains, the resistance rate of fluoroquinolones was the lowest, while the resistance
rate of macrolides was 100%, indicating the serious situation of multi-drug resistance of
S. suis in Heilongjiang Province. Resistant genes ermB and aph (3′)-IIIa were highly dis-
tributed among the 29 isolates. The inconsistency of the resistance genotypes and phe-
notypes of S. suis was due to the formation of biofilm, or could have been because the
PCR/primer systems used in this study did not detect some drug resistant genes. In
addition, this study did not measure drug resistance from biofilm grown isolates, only
from colonies on petri plates. The physiological difference in growth conditions could
also provide a reason for inconsistency in genotype and phenotype. The study pro-
vides us with detailed information on the prevalence and antimicrobial susceptibilities of
S. suis in Heilongjiang Province from 2017 to 2018, which will enhance our knowledge in
understanding how to prevent and control the problem of multi-drug resistance caused by
S. suis in pig farms.

4. Materials and Methods
4.1. Samples

332 swabs were collected from 332 pigs of six swine farms in different regions of
Heilongjiang Province (one sample/pig), during June 2017 to August 2018. The pigs were
housed at the six farms under the same housing, feed, and environmental conditions. The
room temperature is 22 ◦C, the room humidity is 55%, and the pigs were fed three times a
day. The majority of the isolates were obtained from the nasal mucosa of asymptomatic
pigs and others were obtained from the lungs, joints and abdomens of diseased pigs.
Samples collected in Daqing, Qiqihar, and Harbin-3 are from animals that were treated
with some antibiotics to cure the disease, while the samples from the other three farms
are from animals that did not receive any antibiotic therapy (Supplementary Table S3).
Of the available farm data, six farms accounted for twenty-nine isolates (Table 2). In the
Harbin-1 farm, 40 samples were collected and 6 S. suis were isolated. In the Harbin-2
farm, 26 samples were collected and 3 S. suis were isolated. In the Harbin-3 farm, 44
samples were collected and 9 S. suis were isolated. In the Suihua farm, 4 samples were
collected and 1 S. suis was isolated. In the Daqing farm, 40 samples were collected and 3
S. suis were isolated. In the Qiqihar farm, 178 samples were collected and 7 S. suis were
isolated. These samples were approved and conducted in accordance with the guidelines
of the Animal Welfare and Research Ethics Committee of Northeast Agricultural University.
Welfare-related assessments and interventions that were carried out prior to, during, and
after the experiment under the strict guidance of the committee.
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Table 2. Number of isolates and sites of regions used in the study.

Isolation Site Number of Samples Isolation S. suis

Harbin-1 40 6
Harbin-2 26 3
Harbin-3 44 9
Suihua 4 1
Daqing 40 3
Qiqihar 178 7

4.2. S. suis Isolation and Serotypes Identification

Swabs were used to take nasal mucosa or fresh tissues from the pigs. Samples were
plated onto Sheep Blood Agar (SBA) (Oxoid, Thermo Fisher Scientific, Waltham, MA,
USA), and incubated at 37 ◦C for 24 h to 48 h. Isolates that showed alpha hemolysis on
SBA were suspected to be S. suis. All suspected S. suis strains were further identified by
classical biochemical methods, such as Gram staining (Solarbio, Beijing, China). Bacterial
genome extraction (Takara, Dalian, China) was performed according to the manufacturer’s
instructions. The amplification and sequencing of glutamate dehydrogenase (gdh) genes
were conducted to further molecularly identify the suspected isolates [52]. The S. suis
serotype 2 strain ATCC 700794 was used as a positive control for PCR amplifications. In
previous research, 33 serotypes of S. suis have been identified based on antigenic differences
in the capsular polysaccharide. Serotypes 2, 4, 7, and 9 are common epidemic strains;
serotypes of the 29 S. suis isolates were determined by PCR as previously described [53]
(Supplementary Table S4).

4.3. MIC Testing

All isolates were subjected to antimicrobial susceptibility testing using 18 antimicrobial
agents via broth microdilution according to the procedure described by the Clinical Labora-
tory Standards Institute (CLSI). MIC results were categorized as susceptible, intermediate,
and resistant, using the clinical interpretation criteria specified in CLSI performance stan-
dard VET01-S3 (CLSI, 2015a). If the interpretation criteria were not present in VET01-S3,
CLSI performance standard M100-S25 was used (CLSI, 2015b). Staphylococcus aureus ATCC
29213 was used as a control strain according to CLSI VET01-S3. The antimicrobial agents
tested were as follows: erythromycin (ERY), tylosin (TYL), lincomycin (LMY), kanamycin
(KAN), gentamicin (GEN), oxytetracycline (OTET), tetracycline (TET), chlortetracycline
(CTET), chloramphenicol (CHL), florfenicol (FFC), ceftiofur (CEF), cefquinome (CEQ),
amoxicillin (AML), penicillin K (PK), ofloxacin (OFX), ciprofloxacin (CIP), enrofloxacin
(ENR), and dafloxacin (DAN) (Yongkiettrakul et al. 2019). Since the CLSI did not give the
MIC breakpoint values of these antibiotics (tylosin, lincomycin, kanamycin, oxytetracycline,
chlortetracycline, cefquinome, amoxicillin, ofloxacin, ciprofloxacin, and dafloxacin), the
MIC50 and MIC90 were used for drug sensitivity statistics [54]. The antibiotic drugs were
purchased from China Institute of Veterinary Drugs Control (Beijing, China).

4.4. Detection of Antimicrobial Resistance Genes

qPCR was conducted for the identification of resistance genes to macrolides (ermA,
ermB, mefA, mefE, ermTR, and msrD), tetracyclines (tetO and tetM), aminoglycosides (aph
(3′)-IIIa) and lincosamide (lnu(B)) (Supplementary Table S5). Bacterial genome extraction
(Takara, Dalian, China) was carried out according to the manufacturer’s instructions [5].
The reaction conditions of PCRs were as follows: 94 ◦C for 30 s, followed by 30 cycles of
amplification at 94 ◦C for 30 s, and 60 ◦C for 30 s (Takara, Dalian, China).

4.5. Biofilm Formation

We used a 96-well plate to examine the formation of bacterial biofilm. The plates
for biofilm cultivation should be sterile, flat-bottomed, 96-well polystyrene tissue culture
treated microtiter plates with a lid. The S. suis strains were subcultured on Todd Hewitt
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Broth (THB) agar plates under sterile conditions for purification separation. A single colony
was selected from the THB agar plates and inoculated in sterile THB liquid test tubes. The
incubation was seeded in three wells using 200 µL of each sample. Negative control wells
contained broth only. The test for each strain was repeated three times. After incubation at
37 ◦C for 72 h without shaking, the medium was removed by aspiration and the wells were
washed twice with distilled water. The remaining attached bacteria were fixed with 200 µL
of 99% methanol (Guoyao Ltd., China) per well, and the plates were emptied after 5 min
and left to dry. Then, the plates were stained with 200 µL of 2% crystal violet (Guoyao Ltd.,
Shanghai, China) per well for another 5 min. The excess stain was rinsed off by placing
the plate under running tap water. After the plates were air dried, the dye bound to the
adherent cells was resolubilized with 200 µL of 33% (v/v) glacial acetic acid (Guoyao Ltd.,
China) per well. The amount of released stain was quantified by measuring the absorbance
at 595 nm with a microplate reader (DG5033A, Huadong Ltd., Nanjing, China) [55]. The
experiments were performed in triplicate, and the mean values of three measurements
were reported.

4.6. Statistical Analysis

Statistical analysis of in vitro experiments was performed using GraphPad software.
An unpaired t test was performed on qRT-PCR results. Values of p < 0.05 were considered
significant, and all data were expressed as mean ± SD. *** p < 0.001; ** p < 0.01; * p < 0.05.
In order to calculate the ability of biofilm formation accurately, the cut-off value (ODc)
was required to be established to separate biofilm producing strains from non-biofilm-
producing strains. The cut-off value (ODc) was defined as five standard deviations (SD)
above the mean OD of the negative control. ODc = average OD of negative control +
(5 × SD of negative control). Final OD value of a tested strain is expressed as average
OD value of the strain reduced by ODc value (OD = average OD of a strain-ODc). ODc
value is calculated for each microtiter plate separately. If a negative value is obtained, it
should be presented as zero, while any positive value indicates biofilm production. Biofilm
formation ability was classified according to the values of the ODs obtained: OD ≤ ODc,
non-adherent; ODc < OD ≤ 2 × ODc, weak biofilm formation; 2 × ODc < OD ≤ 4 × ODc,
moderate biofilm formation; and 4 × ODc < OD, strong biofilm formation [56,57]. Controls
included THB medium alone (negative) and culture with S. suis ATCC 700794 (positive).

5. Conclusions

In this study, 29 clinical S. suis strains were isolated, and serotypes 2, 4 and 9 of S. suis
were identified to be prevalent in Heilongjiang Province. Among the isolated strains, the
resistance rate of fluoroquinolones was the lowest, while the resistance rate of macrolides
was 100%, indicating the serious situation of multi-drug resistance of S. suis in Heilongjiang
Province. In conclusion, the study provides us with detailed information on the prevalence
and antimicrobial susceptibilities of S. suis in Heilongjiang Province from 2017 to 2018,
which will enhance our knowledge in understanding how to prevent and control the
problem of multi-drug resistance caused by S. suis in pig farms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12010132/s1, Table S1: The different serotypes of
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August 2018; Table S3: Isolation and Identification of Streptococcus suis; Table S4: Primers used for
PCR analysis; Table S5: Primers used for drug resistance gene PCR analysis.
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