Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid
Abstract
:1. Introduction
2. Results
2.1. Biofilm Production Assay
2.2. Distribution of Biofilm-Producing ESBL/pAmpC E. coli along the Poultry Production Pyramid
2.3. Genetic Characteristic of Biofilm-Producing ESBL/pAmpC E. coli
2.4. Analysis of Virulence Genes Associated with Biofilm Formation
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Microtitre Plate Assay for the Detection and Quantification of Biofilm Formation
4.3. Statistical Analysis and Comparative Genomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brolund, A.; Sandegren, L. Characterization of ESBL Disseminating Plasmids. Infect. Dis. 2016, 48, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, M.; Ahmad, I.; Althubiani, A.S. Multidrug Resistance and Transferability of BlaCTX-M among Extended-Spectrum β-Lactamase-Producing Enteric Bacteria in Biofilm. J. Glob. Antimicrob. Resist. 2016, 6, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Van Meervenne, E.; De Weirdt, R.; Van Coillie, E.; Devlieghere, F.; Herman, L.; Boon, N. Biofilm Models for the Food Industry: Hot Spots for Plasmid Transfer? Pathog. Dis. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hu, X.; Guo, D.; Shi, C.; Zhang, C.; Peng, X.; Yang, H.; Xia, X. Disinfectant Resistance Profiles and Biofilm Formation Capacity of Escherichia Coli Isolated from Retail Chicken. Microb. Drug Resist. 2019, 25, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do Human Extraintestinal Escherichia Coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate from Food-Producing Animals? A Systematic Review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Silagyi, K.; Kim, S.H.; Martin Lo, Y.; Wei, C.-i. Production of Biofilm and Quorum Sensing by Escherichia Coli O157:H7 and Its Transfer from Contact Surfaces to Meat, Poultry, Ready-to-Eat Deli, and Produce Products. Food Microbiol. 2009, 26, 514–519. [Google Scholar] [CrossRef]
- Subramanian, P.; Umadevi, S.; Kumar, S.; Stephen, S. Determination of Correlation between Biofilm and Extended Spectrum β Lactamases Producers of Enterobacteriaceae. Sch. Res. J. 2012, 2, 2. [Google Scholar] [CrossRef]
- Neupane, S.; Pant, N.D.; Khatiwada, S.; Chaudhary, R.; Banjara, M.R. Correlation between Biofilm Formation and Resistance toward Different Commonly Used Antibiotics along with Extended Spectrum Beta Lactamase Production in Uropathogenic Escherichia Coli Isolated from the Patients Suspected of Urinary Tract Infections Visit. Antimicrob. Resist. Infect. Control 2016, 5, 5. [Google Scholar] [CrossRef]
- Apostolakos, I.; Mughini-Gras, L.; Fasolato, L.; Piccirillo, A. Assessing the Occurrence and Transfer Dynamics of ESBL/PAmpC-Producing Escherichia Coli across the Broiler Production Pyramid. PLoS One 2019, 14, e0217174. [Google Scholar] [CrossRef] [Green Version]
- Dame-Korevaar, A.; Fischer, E.A.J.; van der Goot, J.; Stegeman, A.; Mevius, D. Transmission Routes of ESBL/PAmpC Producing Bacteria in the Broiler Production Pyramid, a Literature Review. Prev. Vet. Med. 2019, 162, 136–150. [Google Scholar] [CrossRef]
- Surgers, L.; Boyd, A.; Girard, P.M.; Arlet, G.; Decré, D. Biofilm Formation by ESBL-Producing Strains of Escherichia Coli and Klebsiella Pneumoniae. Int. J. Med. Microbiol. 2019, 309, 13–18. [Google Scholar] [CrossRef]
- Barnhart, M.M.; Chapman, M.R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Brombacher, E.; Baratto, A.; Dorel, C.; Landini, P. Gene Expression Regulation by the Curli Activator CsgD Protein: Modulation of Cellulose Biosynthesis and Control of Negative Determinants for Microbial Adhesion. J. Bacteriol 2006, 188, 2027–2037. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Brauner, A.; Li, Y.; Normark, S. Expression of and Cytokine Activation by Escherichia Coli Curli Fibers in Human Sepsis. J. Infect. Dis. 2000, 181, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Olsén, A.; Herwald, H.; Wikström, M.; Persson, K.; Mattsson, E.; Björck, L. Identification of Two Protein-Binding and Functional Regions of Curli, a Surface Organelle and Virulence Determinant of Escherichia Coli. J. Biol. Chem. 2002, 277, 34568–34572. [Google Scholar] [CrossRef] [Green Version]
- Olsén, A.; Wick, M.J.; Mörgelin, M.; Björck, L. Curli, Fibrous Surface Proteins of Escherichia Coli, Interact with Major Histocompatibility Complex Class I Molecules. Infect. Immun. 1998, 66, 944–949. [Google Scholar] [CrossRef] [Green Version]
- Lehti, T.A.; Bauchart, P.; Heikkinen, J.; Hacker, J.; Korhonen, T.K.; Dobrindt, U.; Westerlund-Wikström, B. Mat Fimbriae Promote Biofilm Formation by Meningitis-Associated Escherichia Coli. Microbiology 2010, 156, 2408–2417. [Google Scholar] [CrossRef] [Green Version]
- Sjöström, A.E.; Sondén, B.; Müller, C.; Rydström, A.; Dobrindt, U.; Wai, S.N.; Uhlin, B.E. Analysis of the SfaXII Locus in the Escherichia Coli Meningitis Isolate IHE3034 Reveals Two Novel Regulatory Genes within the Promoter-Distal Region of the Main S Fimbrial Operon. Microb. Pathog. 2009, 46, 150–158. [Google Scholar] [CrossRef]
- Blumer, C.; Kleefeld, A.; Lehnen, D.; Heintz, M.; Dobrindt, U.; Nagy, G.; Michaelis, K.; Emödy, L.; Polen, T.; Rachel, R.; et al. Regulation of Type 1 Fimbriae Synthesis and Biofilm Formation by the Transcriptional Regulator LrhA of Escherichia Coli. Microbiology 2005, 151, 3287–3298. [Google Scholar] [CrossRef] [Green Version]
- Paracuellos, P.; Öhman, A.; Sauer-Eriksson, A.E.; Uhlin, B.E. Expression and Purification of SfaXII, a Protein Involved in Regulating Adhesion and Motility Genes in Extraintestinal Pathogenic Escherichia Coli. Protein Expr. Purif. 2012, 86, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Hammad, A.M.; Escalona, N.G.; El Tahan, A.; Abbas, N.H.; Koenig, S.S.K.; Guardia, A.A.; Eppinger, M.; Hoffmann, M. Pathogenome Comparison and Global Phylogeny of Escherichia Coli ST1485 Strains. Sci. Rep. 2022, 12, 18495. [Google Scholar] [CrossRef]
- Dozois, C.M.; Dho-Moulin, M.; Brée, A.; Fairbrother, J.M.; Desautels, C.; Curtiss, R. Relationship between the Tsh Autotransporter and Pathogenicity of Avian Escherichia Coli and Localization and Analysis of the Tsh Genetic Region. Infect. Immun. 2000, 68, 4145–4154. [Google Scholar] [CrossRef] [Green Version]
- Crecencio, R.B.; Brisola, M.C.; Bitner, D.; Frigo, A.; Rampazzo, L.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; Moraes, H.L.S.; Faria, G.A.; et al. Antimicrobial Susceptibility, Biofilm Formation and Genetic Profiles of Escherichia Coli Isolated from Retail Chicken Meat. Infect. Genet. Evol. 2020, 84, 104355. [Google Scholar] [CrossRef]
- Naves, P.; Del Prado, G.; Huelves, L.; Gracia, M.; Ruiz, V.; Blanco, J.; Rodríguez-Cerrato, V.; Ponte, M.C.; Soriano, F. Measurement of Biofilm Formation by Clinical Isolates of Escherichia Coli Is Method-Dependent. J. Appl. Microbiol. 2008, 105, 585–590. [Google Scholar] [CrossRef]
- Burmølle, M.; Bahl, M.I.; Jensen, L.B.; Sørensen, S.J.; Hansen, L.H. Type 3 Fimbriae, Encoded by the Conjugative Plasmid POLA52, Enhance Biofilm Formation and Transfer Frequencies in Enterobacteriaceae Strains. Microbiology 2008, 154, 187–195. [Google Scholar] [CrossRef] [Green Version]
- García-Contreras, R.; Zhang, X.S.; Kim, Y.; Wood, T.K. Protein Translation and Cell Death: The Role of Rare TRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes. PLoS One 2008, 3, e2394. [Google Scholar] [CrossRef]
- CLSI Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; Volume 18, pp. 461–466.
- Apostolakos, I.; Feudi, C.; Eichhorn, I.; Palmieri, N.; Fasolato, L.; Schwarz, S.; Piccirillo, A. High-Resolution Characterisation of ESBL/PAmpC-Producing Escherichia Coli Isolated from the Broiler Production Pyramid. Sci. Rep. 2020, 10, 11123. [Google Scholar] [CrossRef]
- Apostolakos, I.; Laconi, A.; Mughini-Gras, L.; Yapicier, Ö.Ş.; Piccirillo, A. Occurrence of Colibacillosis in Broilers and Its Relationship with Avian Pathogenic Escherichia Coli (APEC) Population Structure and Molecular Characteristics. Front. Vet. Sci. 2021, 8, 737720. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
Non-Biofilm Producers | Weak Producers | Moderate Producers | Strong Producers | |||||
---|---|---|---|---|---|---|---|---|
Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | |
Chain | ||||||||
Chain A (n = 37) | 0.00% | 0.00% | 54.05% | 37.21–70.90% | 40.54% | 23.94–57.14% | 5.41% | 00.00–13.05% |
Chain B (n = 33) | 3.03% | 0.00–9.20% | 57.58% | 39.78–75.37% | 30.30% | 13.75–46.85% | 9.09% | 0.00–19.44% |
Chain C (n = 32) | 0.00% | 0.00% | 75.00% | 59.14–90.86% | 18.75% | 4.45–33.05% | 6.25% | 0.00–15.12% |
Production stage | ||||||||
Breeder chicks (n = 5) | 0.00% | 0.00% | 80.00% | 24.47–100% | 20.00% | 0.00–75.53% | 0.00% | 0.00% |
Breeders (n = 10) | 0.00% | 0.00% | 50.00% | 12.30–87.70% | 40.00% | 3.06–76.94% | 10.00% | 0.00–32.62% |
Broiler chicks (n = 26) | 3.85% | 0.00–11.77% | 69.23% | 50.22–88.24% | 23.08% | 5.72–40.43% | 3.85% | 0.00–11.77% |
Broilers (n = 28) | 0.00% | 0.00% | 50.00% | 30.26–69.74% | 35.71% | 16.79–54.64% | 14.29% | 0.47–28.10% |
Carcasses (n = 33) | 0.00% | 0.00% | 66.67% | 49.69–83.64% | 30.30% | 13.75–46.85% | 3.03% | 0.00–9.20% |
Non-Biofilm Producer | Weak Producers | Moderate Producers | Strong Producers | |||||
---|---|---|---|---|---|---|---|---|
Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | Percentage (%) | 95% (CI) | |
Phylogroup | ||||||||
Phylogroup A (n = 22) | 4.55% | 0.00–14.00% | 77.27% | 58.25–96.29% | 18.18% | 0.68–35.68% | 0.00% | 0.00% |
Phylogroup B1 (n = 18) | 0.00% | 0.00% | 38.89% | 13.94–63.83% | 50.00% | 24.41–75.59% | 11.11% | 0.00–27.19% |
Phylogroup B2 (n = 12) | 0.00% | 0.00% | 91.67% | 73.33–100.0% | 8.33% | 0.00–26.67% | 0.00% | 0.00% |
Phylogroup C (n = 2) | 0.00% | 0.00% | 100.00% | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Phylogroup D (n = 9) | 0.00% | 0.00% | 55.56% | 15.04–96.07% | 33.33% | 0.00–71.77% | 11.11% | 0.00–36.73% |
Phylogroup E (n = 9) | 0.00% | 0.00% | 44.44% | 3.93–84.86% | 33.33% | 0.00–71.77% | 22.22% | 0.00–56.12% |
Phylogroup F (n = 30) | 0.00% | 0.00% | 56.67% | 37.85–75.49% | 36.67% | 18.36–54.97% | 6.67% | 0.00–16.14% |
ESBL/pAmpC | ||||||||
blaCMY-2 (n = 30) | 3.33% | 0.00–10.15% | 76.67% | 60.60–92.73% | 20.00% | 4.81–35.19% | 0.00% | 0.00% |
blaCTX-M-type (n = 49) | 0.00% | 0.00% | 51.02% | 36.51–65.53% | 40.82% | 26.55–55.08% | 8.16% | 0.22–16.11% |
blaSHV (n = 20) | 0.00% | 0.00% | 70.00% | 48.00–92.00% | 20.00% | 0.79–39.21% | 10.00% | 0.00–24.41% |
blaTEM-52B (n = 2) | 0.00% | 0.00% | 0.00% | 0.00% | 50.00% | 0.00–100.00% | 50.00% | 0.00–100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laconi, A.; Tolosi, R.; Apostolakos, I.; Piccirillo, A. Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics 2023, 12, 155. https://doi.org/10.3390/antibiotics12010155
Laconi A, Tolosi R, Apostolakos I, Piccirillo A. Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics. 2023; 12(1):155. https://doi.org/10.3390/antibiotics12010155
Chicago/Turabian StyleLaconi, Andrea, Roberta Tolosi, Ilias Apostolakos, and Alessandra Piccirillo. 2023. "Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid" Antibiotics 12, no. 1: 155. https://doi.org/10.3390/antibiotics12010155
APA StyleLaconi, A., Tolosi, R., Apostolakos, I., & Piccirillo, A. (2023). Biofilm Formation Ability of ESBL/pAmpC-Producing Escherichia coli Isolated from the Broiler Production Pyramid. Antibiotics, 12(1), 155. https://doi.org/10.3390/antibiotics12010155