Coumarin Triazoles as Potential Antimicrobial Agents
Abstract
:1. Introduction
2. Antibacterial and Antifungal Activities of Coumarin Triazole Derivatives
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
2a | 9 (nm) | B. subtilis and S. aureus | [22] | 6a | 200 (µg/mL) | C. albicans | [26] |
2b | 35 (nm) | K. pneumoniae | [22] | 6b | 25 (µg/mL) | C. albicans | [26] |
2c | 12 (nm) | B. subtilis and E. coli | [22] | 6c | 12.5 (µg/mL) | C. albicans | [26] |
2d | 19 (nm) | B. subtilis | [22] | 6d | 75 (µg/mL) | C. albicans | [26] |
2g | 8 (nm) | S. aureus | [22] | 6e | 37.5 (µg/mL) | C. albicans | [26] |
2h | 16 (nm) | B. subtilis and E. coli | [22] | Ketoconazole | 12.5 (µg/mL) | C. albicans | [26] |
2i | 10 (nm) | B. subtilis | [22] | 7a | 16 (µg/mL) | P. vulgaris, S. typhi, S. dysenteriae, and A. fumigatus | [27] |
2j | 43 (nm) | S. aureus | [22] | 7b | 32 (µg/mL) | E. coli, P. vulgaris, and S. dysenteriae | [27] |
2k | 26 (nm) | B. subtilis | [22] | 7c | 32 (µg/mL) | E. coli, P. vulgaris, S. typhi, S. dysenteriae, S. cerevisiae, and A. fumigatus | [27] |
2l | 34 (nm) | P. aeruginosa | [22] | 7d | 64 (µg/mL) | MRSA, E. coli, P. vulgaris, S. typhi, S. dysenteriae, S. cerevisiae typhi S, and A. fumigatus | [27] |
Amoxicillin | 40 (nm) | P. aeruginosa | [22] | 7e | 64 (µg/mL) | S. dysenteriae | [27] |
Gentamycin | 41 (nm) | P. aeruginosa | [22] | 7f | 64 (µg/mL) | E. coli, P. vulgaris, S. typhi, S. dysenteriae, S. cerevisiae, and A. fumigatus | [27] |
3a | 16 (nm) | C. albicans | [23] | 8a | 4 (µg/mL) | A. fumigatus | [27] |
3b | 18 (nm) | C. albicans | [23] | 8b | 32 (µg/mL) | A. fumigatus | [27] |
3c | 16 (nm) | C. albicans | [23] | 8c | 32 (µg/mL) | A. fumigatus | [27] |
3d | 14 (nm) | C. albicans | [23] | 8d | 64 (µg/mL) | MRSA B. subtilis, M. luteus, E. coli, S. dysenteriae, and A. fumigatus | [27] |
3e | 17 (nm) | C. albicans | [23] | 8e | 2 (µg/mL) | MRSA, P. vulgaris, S. cerevisiae, and A. fumigatus | [27] |
3f | 16 (nm) | S. aureus | [23] | 8f | 16 (µg/mL) | MRSA B. subtilis, M. luteus, P. vulgaris, S. typhi, S. dysenteriae, and S. cerevisiae A. fumigatus | [27] |
3g | 16 (nm) | E. coli | [23] | Enoxacin | 4 (µg/mL) | MRSA | [27] |
3h | 14 (nm) | S. aureus and C. albicans | [23] | Chloromycin | 16 (µg/mL) | MRSA | [27] |
3i | 17 (nm) | E. coli and C. albicans | [23] | Fluconazole | 128 (µg/mL) | A. fumigatus | [27] |
3j | 18 (nm) | S. aureus | [23] | 11a | >100 (µg/mL) | S. faecalis, P. aeruginosa, and E. coli, | [29] |
3j | 18 (nm) | C. albicans | [23] | 11b | >100 (µg/mL) | P. aeruginosa and E. coli, | [29] |
3k | 19 (nm) | S. aureus | [23] | 11c | 50 (µg/mL) | S. faureus, S. aureus, and C. albicans | [29] |
3l | 20 (nm) | S. aureus | [23] | 11d | >100 (µg/mL) | P. aeruginosa | [29] |
3m | 23 (nm) | S. aureus | [23] | 11e | >100 (µg/mL) | P. aeruginosa | [29] |
3n | 17 (nm) | S. aureus, E. coli | [23] | 11f | >100 (µg/mL) | P. aeruginosa | [29] |
Ciprofloxacin | 25 (nm) | S. aureus | [23] | 11g | >100 (µg/mL) | P. aeruginosa | [28] |
Ciprofloxacin | 25 (nm) | E. coli | [23] | 11h | 50 (µg/mL) | S. faureus, E. coli, and C. albicans | [29] |
4a | 17 (nm) | A. niger | [24] | 11i | 50 (µg/mL) | S. faureus, P. aeruginosa, E. coli, C. albicans, and A. niger | [29] |
4b | 23 (nm) | C. albicans | [24] | 11j | 50 (µg/mL) | S. faureus, P. aeruginosa, E. coli, C. albicans, and A. niger | [29] |
4c | 18 (nm) | C. albicans | [24] | 11k | >100 (µg/mL) | P. aeruginosa, | [29] |
4d | 22 (nm) | A. niger | [24] | 11l | >100 (µg/mL) | P. aeruginosa, | [29] |
4e | 18 (nm) | A. niger | [24] | 11m | >100 (µg/mL) | P. aeruginosa, | [29] |
4f | 18 (nm) | A. niger | [24] | Ciprofloxacin | 1 (µg/mL) | S. faureus, S. aureus, P. aeruginosa, and E. coli | [29] |
4g | 18 (nm) | C. albicans | [24] | Fluconazole | 16 (µg/mL) | C. albicans | [29] |
4h | 21 (nm) | C. albicans | [24] | 12 | 128 (µg/mL) | S. dysenteriae, P. aeruginosa, and C. mycoderma | [30] |
Norfloxacin | 22 (nm) | E. coli | [24] | Chloromycin | 16 (µg/mL) | P. aeruginosa | [30] |
Norfloxacin | 22 (nm) | B. subtilis | [24] | Norfloxacin | 4 (µg/mL) | MRSA and E. typhosa | [30] |
Griseofulvin | 26 (nm) | A. niger | [24] | Fluconazole | 4 (µg/mL) | C. mycoderma | [30] |
Griseofulvin | 26 (nm) | C. albicans | [24] | 14a | 4 (µg/mL) | C. utilis, C. albicans, and P. aeruginosa | [32] |
5b | 16 (nm) | E. coli | [25] | 14b | 4 (µg/mL) | C. albicans | [32] |
5c | 10 (nm) | E. coli | [25] | 15a | 1 (µg/mL) | C. albicans and E. coli | [32] |
5d | 7 (nm) | E. coli | [25] | 15b | 8 (µg/mL) | C. albicans | [32] |
5e | 7 (nm) | S. aureus and E. coli | [25] | Fluconazole | 1 (µg/mL) | C. albicans | [32] |
5h | 10 (nm) | C. albicans | [25] | Chloromycin | 8 (µg/mL) | M. luteus | [32] |
5j | 10 (nm) | C. albicans | [25] | Norfloxacin | 1 (µg/mL) | P. aeruginosa | [32] |
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
16a | 20.2 (±1.69) mm | C. albicans | [33] | Mycostatin | 20 mm | P. italicum | [35] |
16b | 21.3 (±1.90) (±) mm | A. fumigatus | [33] | 22 | 30 mm | E. coli | [37] |
16c | 18.9 (±1.34) mm | A. fumigatus | [33] | 23a | 20 mm | E. coli | [37] |
16d | 23.4 (±1.97) mm | A. fumigatus | [33] | 23b | 20 mm | Candida | [37] |
17a | 18.5 (±0.70) mm | A. fumigatus | [33] | 23c | 19 mm | Candida | [37] |
17b | 18.8 (±1.13) mm | A. fumigatus | [33] | 23d | 30 mm | E. coli | [37] |
17c | 16.9 (±1.17) mm | A. fumigatus | [33] | 23e | 25 mm | S. aureus | [37] |
17d | 18.4 (±0.63) mm | A. fumigatus | [33] | 23f | 20 mm | S. aureus | [37] |
17e | 18.2 (±1.76) mm | A. fumigatus | [33] | 23g | 24 mm | E. coli | [37] |
17f | 20.6 (±0.91) mm | A. fumigatus | [33] | 23h | 28 mm | E. coli | [37] |
17g | 19.0 (±1.41) mm | A. fumigatus | [33] | 23i | 26 mm | E. coli | [37] |
17h | 18.5 (±0.70) mm | A. fumigatus | [33] | 23j | 20 mm | E. coli | [37] |
Ciprofloxacin | 20 mm | S. epidermis | [33] | Ciprofloxcin | 40 mm | S. aureus and E. coli | [37] |
Miconazole | 19 mm | C. albicans | Fluconazole | 40 mm | Candida | [37] | |
18a | 12 mm | K. pneumonia | [34] | 24a | 64.73 mm | S. typhi | [38] |
18b | 12 mm | K. pneumonia and Aspergillus terrs | [34] | 24b | 70.31 mm | C. albicans | [38] |
18c | 16 mm | K. pneumonia | [34] | 24c | 76.44 mm | S. typhi | [38] |
18d | 16 mm | K. pneumonia | [34] | 24d | 72.96 mm | S. typhi | [38] |
18e | 16 mm | K. pneumonia | [34] | 24e | 78.32 mm | S. typhi | [38] |
Gentamycin | 18 mm | K. pneumonia | [34] | 25a | 68.13 mm | S. typhi | [38] |
Fluconazole | 13 mm | A. niger and Aspergillus terrs | [34] | 25b | 72.00 mm | S. typhi | [38] |
19a | 17 mm | F. oxysporum | [35] | 25c | 79.36 mm | S. typhi | [38] |
19b | 28 mm | S. aureus and E. coli | [35] | 25d | 76.44 mm | S. typhi | [38] |
19c | 32 mm | S. aureus | [35] | 25e | 82.05 mm | S. typhi | [38] |
19d | 35 mm | S. aureus | [35] | 25f | 65.00 mm | S. typhi | [38] |
19e | 27 mm | S. aureus and E. coli | [35] | 25g | 71.32 mm | C. albicans | [38] |
19f | 22 mm | S. aureus | [35] | 25h | 75.66 mm | S. typhi | [38] |
19g | 22 mm | E. coli | [35] | 25i | 72.22 mm | S. typhi | [38] |
19h | 25 mm | S. aureus | [35] | 25j | 80.00 mm | S. typhi | [38] |
19i | 18 mm | F. oxysporum | [35] | Gentamycine | 100 mm | E. coli, P. aeruginosa, S. typhi, S. aureus, and B. subtilis | [38] |
Amoxicillin | 30 mm | S. aureus and E. coli | [35] | Fluconazole | 100 mm | A. niger and C. albicans | [38] |
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
26a | 2 µg/mL | E. coli and P. fluorescens | [39] | 29t | 32 µg/mL | E. faecalis | [41] |
26b | 2 µg/mL | P. fluorescens | [39] | 29u | 256 µg/mL | E. faecalis | [41] |
26c | 2 µg/mL | F. devorans | [39] | 29v | 32 µg/mL | E. faecalis | [41] |
26d | 2 µg/mL | F. devorans | [39] | 29x | 16 µg/mL | E. faecalis | [41] |
26e | 4 µg/mL | B. cereus, E. coli, and F. devorans | [39] | Ceftazidime | 0.5 µg/mL | E. coli | [41] |
26f | 4 µg/mL | M. luteus, E. coli, and F. devorans | [39] | Ciprofloxacin | <0.125 µg/mL | P. aeurigonsa, E. coli, and A. baumanni | [41] |
27a | 2 µg/mL | E. coli, P. fluorescens, and F. devorans | [39] | 31a | 62.5 µg/mL | E. coli | [42] |
27b | 4 µg/mL | M. luteus, B. cereus, E. coli, and P. fluorescens | [39] | 31b | 100 µg/mL | S. aureus | [42] |
27c | 4 µg/mL | M. luteus, E. coli, F. devorans, and A. niger | [39] | 31c | 100 µg/mL | E. coli | [42] |
27d | 4 µg/mL | M. luteus | [39] | 31d | 100 µg/mL | E. coli | [42] |
27e | 4 µg/mL | M. luteus, E. coli, and F. devorans | [39] | 31e | 62.5 µg/mL | E. coli | [42] |
Ampicillin | 2 µg/mL | B. cereus, and P. fluorescens | [39] | 31f | 125 µg/mL | E. coli | [42] |
Kanamycin | 2 µg/mL | S. aureus, M. luteus, B. cereus, E. coli, P. fluorescens, and F. devorans | [39] | 31g | 125 µg/mL | B. subtilis and S. aureus | [42] |
Chloramphenicol | 2 µg/mL | S. aureus, M. luteus, B. cereus, E. coli, P. fluorescens, and F. devorans | [39] | 31h | 250 µg/mL | B. subtilis, S. aureus, and E. coli | [42] |
Miconazole | 16 µg/mL | A. niger, P. chrysogenum, and C. lunata | [39] | 31i | 250 µg/mL | E. coli | [42] |
Amphotericin B | 2 µg/mL | A. niger | [39] | 31j | 62.5 µg/mL | E. coli | [42] |
Fluconazole | 2 µg/mL | A. niger and P. chrysogenum | [39] | 31k | 62.5 µg/mL | S. aureus | [42] |
28a | 50 µg/mL | C. albicans and A. niger | [40] | 31l | 200 µg/mL | B. subtilis | [42] |
28b | 50 µg/mL | C. albicans | [40] | Ampicillin | 100 µg/mL | E. coli and S. typhi | [42] |
28c | 25 µg/mL | C. albicans and A. flavus | [40] | Chloramphenicol | 50 µg/mL | B. subtilis, S. aureus, E. coli, and S. typhi | [42] |
28d | 25 µg/mL | C. albicans and F. oxysporum | [40] | Norfloxacin | 10 µg/mL | S. aureus, E. coli, and S. typhi | [42] |
28e | 12.5 µg/mL | F. oxysporum | [40] | Griseofulvin | 100 µg/mL | A. niger | [42] |
28f | 12.5 µg/mL | C. albicans | [40] | Nystatin | 100 µg/mL | A. niger and C. albicans | [42] |
28g | 50 µg/mL | C. albicans and F. oxysporum | [40] | 32a | 18 mm | P. aeruginosa | [43] |
28h | 25 µg/mL | C. albicans | [40] | 32b | 14 mm | S. aureus and K. pneumoniae | [43] |
Miconazole | 12.5 µg/mL | A. flavus | [40] | 32c | 15 mm | S. aureus | [43] |
Fluconazole | 6.25 µg/mL | F. oxysporum and A. flavus | [40] | 32e | 13 mm | E. coli | [43] |
29g | 128 µg/mL | E. faecalis | [41] | 32f | 13 mm | K. pneumoniae | [43] |
29i | 256 µg/mL | E. faecalis | [41] | 33a | 15 mm | S. aureus | [43] |
29l | 256 µg/mL | E. faecalis | [41] | 33e | 15 mm | K. pneumoniae | [43] |
29m | 64 µg/mL | E. faecalis | [41] | 33g | 17 mm | E. coli | [43] |
29n | 8 µg/mL | E. faecalis | [41] | 33h | 13 mm | S. aureus | [43] |
29o | 16 µg/mL | E. faecalis | [41] | 33j | 16 mm | P. aeruginosa | [43] |
29p | 64 µg/mL | E. faecalis | [41] | 33k | 15 mm | E. coli | [43] |
29q | 64 µg/mL | E. faecalis | [41] | Pefloxacin | 36 mm | S. aureus | [43] |
29s | 64 µg/mL | E. faecalis | [41] |
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
35a | 25 (10) µg/mL | B. subtilis and E. coli | [45] | 42f | 12 µg/mL | S. aureus | [48] |
35b | 25 (13) µg/mL | S. aureus and E. coli | [45] | 42g | 11 µg/mL | S. aureus | [48] |
35c | 12.5 (12) µg/mL | B. subtilis | [45] | 42h | 9 µg/mL | S. aureus | [48] |
35d | 6.25 (15) µg/mL | S. aureus | [45] | 42i | 12 µg/mL | E. coli | [48] |
35e | 6.25(15) µg/mL | B. subtilis, S. aureus, and P. vulgaris | [45] | 42j | 7 µg/mL | S. aureus | [48] |
35f | 25(12) µg/mL | S. aureus and E. coli | [45] | 42k | 11 µg/mL | S. aureus and E. coli | [48] |
35g | 12.5 (12) µg/mL | B. subtilis and S. aureus | [45] | 42l | 18 µg/mL | E. coli | [48] |
35h | 6.25 (15) µg/mL | S. aureus and E. coli | [45] | 43a | 7.5 µg/mL | E. coli and P. aeruginosa | [49] |
35i | 6.25 (15) µg/mL | B. subtilis, S. aureus, and E. coli | [45] | 43b | 5.5 µg/mL | E. coli | [49] |
35j | 3.125 (19) µg/mL | B. subtilis, S. aureus, and E. coli | [45] | 43c | 6.5 µg/mL | E. coli | [49] |
Gentamicin | 1.56 (31) µg/mL | B. subtilis, S. aureus, and E. coli | [45] | Ciprofloxacin | 4.5 µg/mL | K. pneumoniae | [49] |
Fluconazole | 3.125 (25) µg/mL | A. niger and C. albicans | [45] | 44a | 0.8 µg/mL | M. tuberculosis | [50] |
36a | 50 µg/mL | E. faecalis | [46] | 44b | 1.6 µg/mL | M. tuberculosis | [50] |
36b | 12.5 µg/mL | E. faecalis | [46] | 44c | 1.6 µg/mL | M. tuberculosis | [50] |
36c | 100 µg/mL | E. faecalis | [46] | 44d | 1.6 µg/mL | M. tuberculosis | [50] |
36d | 200 µg/mL | E. faecalis | [46] | 44e | 1.6 µg/mL | M. tuberculosis | [50] |
36e | 100 µg/mL | E. faecalis | [46] | 44f | 3.12 µg/mL | M. tuberculosis | [50] |
36f | 50 µg/mL | E. faecalis | [46] | 44g | 6.25 µg/mL | M. tuberculosis | [50] |
36g | 100 µg/mL | E. faecalis | [46] | 44h | 1.6 µg/mL | M. tuberculosis | [50] |
36h | 400 µg/mL | S. aureus and E. faecalis | [46] | 44i | 12.5 µg/mL | M. tuberculosis | [50] |
36i | 200 µg/mL | E. faecalis | [46] | Pyrazinamide | 3.12 µg/mL | M. tuberculosis | [50] |
36j | 800 µg/mL | S. aureus and E. faecalis | [46] | Streptomycin | 6.25 µg/mL | M. tuberculosis | [50] |
36k | 400 µg/mL | E. faecalis | [46] | Ciprofloxacin | 3.12 µg/mL | M. tuberculosis | [50] |
36l | 400 µg/mL | E. faecalis | [46] | 45a | 2.5 ± 0.2 cm | Penicillium sp. | [51] |
37a | 400 µg/mL | E. faecalis | [46] | 45b | 2.5 ± 0.5 cm | S. aureus | [51] |
37b | 800 µg/mL | E. faecalis and K. pneumoniae | [46] | 45c | 2.1 ± 0.4 cm | S. aureus | [51] |
37c | 400 µg/mL | E. faecalis | [46] | 45d | 1.7 ± 0.6 cm | S. aureus | [51] |
37d | 100 µg/mL | E. faecalis | [46] | 45e | 1.8 ± 0.4 cm | Penicillium sp. | [51] |
37e | 100 µg/mL | E. faecalis | [46] | 45f | 1.4 ± 0.3 cm | Penicillium sp. | [51] |
37f | 200 µg/mL | C. albicans | [46] | 45g | 1.2 ± 0.6 cm | Penicillium sp. | [51] |
37g | 200 µg/mL | S. aureus | [46] | 46a | 1.7 ± 0.4 cm | Penicillium sp. | [51] |
37h | 50 µg/mL | E. faecalis | [46] | 46b | 1.3 ± 0.6 cm | Penicillium sp. | [51] |
37i | 100 µg/mL | E. faecalis | [46] | 46c | 1.5 ± 0.4 cm | Penicillium sp. | [51] |
37j | 800 µg/mL | S. aureus and E. faecalis | [46] | 46d | 1.0 ± 0.4 cm | Penicillium sp. | [51] |
37k | 50 µg/mL | E. faecalis | [46] | 46e | 1.1 ± 0.3 cm | S. enterica | [51] |
37l | 800 µg/mL | E. faecalis | [46] | 46f | 0.7 ± 0.1 cm | S. enterica | [51] |
Chloramphenicol | 1.2 µg/mL | E. coli | [46] | 46g | 0.5 ± 0.1 cm | E. coli | [51] |
Ketoconazole | 8 µg/mL | C. albicans | [46] | 47a | 1.1 ± 0.2 cm | S. enterica | [51] |
38a | 31.25 µg/mL | S. aureus and B. subtilis | [47] | 47b | 0.6 ± 0.1 cm | S. aureus | [51] |
38b | 16 µg/mL | S. aureus | [47] | 47c | 0.5 ± 0.2 cm | S. aureus | [51] |
39a | 16 µg/mL | B. subtilis and B. cereus | [47] | 47d | 1.1 ± 0.1 cm | S. enterica | [51] |
39b | 31.25 µg/mL | B. subtilis | [47] | 47e | 0.7 ± 0.2 cm | F. oxysporum | [51] |
39c | 8 µg/mL | S. aureus | [47] | 47f | 0.6 ± 0.1 cm | M. smegmatis | [51] |
39d | 8 µg/mL | B. subtilis | [47] | 47g | 0.5 ± 0.1 cm | E. coli | [51] |
39e | 4 µg/mL | S. aureus | [47] | 48a | >1000 µg/mL | S. aureus | [52] |
39f | 31.25 µg/mL | S. aureus | [47] | 48b | 416.7 ± 60.09 µg/mL | S. aureus | [52] |
39g | 8 µg/mL | S. aureus and B. subtilis | [47] | 48c | 0.16 ± 0.08 µg/mL | S. aureus | [52] |
39h | 4 µg/mL | S. aureus | [47] | Ceftriaxonum | 0.97 ± 0.02 µg/mL | S. aureus | [52] |
39i | 8 µg/mL | S. aureus | [47] | Streptomycin | 1.89 ± 0.08 µg/mL | S. aureus | [52] |
39j | 1 µg/mL | S. aureus and P. aeruginosa | [47] | 62a | 250 ± 20.41 µg/mL | S. aureus | [52] |
39k | 16 µg/mL | S. aureus | [47] | 62b | 425 ± 47.87 µg/mL | S. aureus | [52] |
40a | 16 µg/mL | P. aeruginosa | [47] | 62c | 51.25 ± 3.15 µg/mL | S. aureus | [52] |
40b | 16 µg/mL | P. aeruginosa | [47] | 63a | >1000 µg/mL | S. aureus | [52] |
40c | 16 µg/mL | S. aureus | [47] | 63b | >1000 µg/mL | S. aureus | [52] |
40d | 8 µg/mL | S. aureus and B. subtilis | [47] | 63c | 0.31 ± 0.23 µg/mL | S. aureus | [52] |
40e | 8 µg/mL | S. aureus and P. aeruginosa | [47] | 64a | 0.03 µg/mL | C. albicans | [53] |
40f | 4 µg/mL | S. aureus and P. aeruginosa | [47] | 64b | 0.015 µg/mL | C. albicans and C. parapsilosis | [53] |
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
65a | 23 mm | B. subtilis | [54] | 67i | 50 μg/mL | P. aeruginosa | [56] |
65b | 16 mm | B. subtilis | [54] | 67k | 5 μg/mL | S. aureus | [56] |
65c | 18 mm | S. aureus | [54] | 67l | 25 μg/mL | P. aeruginosa | [56] |
65d | 23 mm | S. aureus | [54] | 67m | 10 μg/mL | P. aeruginosa | [56] |
65e | 16 mm | S. aureus | [54] | 67p | 50 μg/mL | B. subtilis | [56] |
65f | 19 mm | S. aureus | [54] | 67s | 50 μg/mL | B. subtilis | [56] |
65g | 24 mm | S. aureus | [54] | 67t | 75 μg/mL | P. aeruginosa | [56] |
65h | 16 mm | B. subtilis | [54] | Ciprofloxacin | 0.2 μg/mL | S. aureus | [56] |
65i | 19 mm | B. subtilis | [54] | Fluconazole | 10 μg/mL | A. flavus | [56] |
65j | 27 mm | B. subtilis | [54] | 68a | 12.5 μg/mL | A. niger | [57] |
65k | 19 mm | S. aureus | [54] | 68b | 12.5 μg/mL | A. niger and C. neoformans | [57] |
65l | 19 mm | S. aureus | [54] | 68c | 12.5 μg/mL | C. albicans | [57] |
Gatifloxacin | 20 mm | S. aureus and B. subtilis | [54] | 68d | 12.5 μg/mL | A. flavus and A. niger | [57] |
66b | 10.44 mm | P. aeruginosa | [55] | 68e | 12.5 μg/mL | C. albicans and A. niger | [57] |
66c | 18.97 mm | P. aeruginosa | [55] | 68f | 25 μg/mL | A. niger and C. neoformans | [57] |
66d | 14.96 mm | C. albicans | [55] | 68g | 25 μg/mL | C. albicans and F. oxysporum | [57] |
66e | 4.35 mm | C. albicans | [55] | 69a | 25 μg/mL | F. oxysporum, A. flavus, and C. neoformans | [57] |
66f | 17.78 mm | P. aeruginosa | [55] | 69b | 12.5 μg/mL | C. albicans, A. flavus, A. niger, and C. neoformans | [57] |
66g | 11.11 mm | P. aeruginosa | [55] | 69c | 12.5 μg/mL | F. oxysporum and A. niger | [57] |
66h | 12.11 mm | P. aeruginosa | [55] | 69d | 12.5 μg/mL | A. flavus | [57] |
66i | 21.65 mm | C. albicans | [55] | 69e | 12.5 μg/mL | C. albicans, F. oxysporum, A. flavus, and A. niger | [57] |
66j | 9.42 mm | C. albicans | [55] | 69f | 12.5 μg/mL | F. oxysporum, A. flavus, and A. niger | [57] |
66k | 7.32 mm | P. aeruginosa | [55] | 69g | 12.5 μg/mL | C. neoformans | [57] |
66l | 16.37 mm | P. aeruginosa | [55] | 70a | 16 μg/mL | S. aureus | [58] |
66m | 7.74 mm | P. aeruginosa | [55] | 70b | 31.25 μg/mL | S. aureus and E. coli | [58] |
66n | 6.66 mm | P. aeruginosa | [55] | 70c | 4 μg/mL | S. aureus | [58] |
66o | 8.47 mm | P. aeruginosa | [55] | 70d | 4 μg/mL | S. aureus | [58] |
67a | 50 μg/mL | B. subtilis | [56] | 70e | 8 μg/mL | S. aureus and P. aeruginosa | [58] |
67f | 10 μg/mL | E. coli, S. aureus, and P. aeruginosa | [56] | 70f | 16 μg/mL | S. aureus | [58] |
67g | 10 μg/mL | E. coli, S. aureus, P. aeruginosa and B. subtilis | [56] | 70g | 16 μg/mL | S. aureus | [58] |
Compound | Activity Observed | Bacteria/Fungal | Ref. | Compound | Activity Observed | Bacteria/Fungal | Ref. |
---|---|---|---|---|---|---|---|
74a | 10 ± 0.3 mm | S. aureus | [60] | 79b | 60 μg/mL | P. citranum | [65] |
74b | 26 ± 0.9 mm | S. aureus | [60] | 79c | 60 μg/mL | A. niger | [65] |
74c | 28 ± 1.2 mm | S. aureus | [60] | 79d | 40 μg/mL | A. niger and P. citranum | [65] |
74d | 24 ± 1.1 mm | S. aureus | [60] | 79e | 60 μg/mL | P. citranum | [65] |
74e | 25 ± 1.0 mm | S. aureus | [60] | 79f | 40 μg/mL | A. niger | [65] |
74f | 16 ± 0.7 mm | S. aureus | [60] | 79g | 60 μg/mL | C. albicans | [65] |
74g | 20 ± 0.9 mm | S. aureus | [60] | 79h | 80 μg/mL | C. albicans | [65] |
76a | 25.0 ± 0.50 μg/mL | E. coli | [62] | 79i | 60 μg/mL | A. niger and P. citranum | [65] |
76b | 12.5 ± 0.45 μg/mL | S. aureus | [62] | 79j | 40 μg/mL | A. niger | [65] |
76c | >100.0 μg/mL | S. aureus, E. coli, P. aeruginosa, and C. albicans | [62] | 79k | 60 μg/mL | P. citranum | [65] |
76d | 37.5 ± 0.80 μg/mL | S. aureus | [62] | 79l | 60 μg/mL | P. citranum | [65] |
76e | 25.0 ± 0.85 μg/mL | P. aeruginosa | [62] | 79m | 40 μg/mL | A. niger | [65] |
76f | 37.5 ± 1.60 μg/mL | E. coli | [62] | 79n | 60 μg/mL | A. niger | [65] |
76g | 6.5 ± 0.40 μg/mL | P. aeruginosa | [62] | Fluconazole | 40 μg/mL | A. niger, C. albicans, and P. citranum | [65] |
76h | >100.0 μg/mL | S. aureus, E. coli, P. aeruginosa, and C. albicans | [62] | 80a | 18.75 μg/mL | B. subtilis | [66] |
76i | >100.0 μg/mL | S. aureus, E. coli, and P. aeruginosa | [62] | 80b | 18.75 μg/mL | S. aureus | [66] |
Ciprofloxacin | 12.5 ± 0.35 μg/mL | P. aeruginosa | 80c | >75 μg/mL | S. aureus, B. subtilis, and K. pneumonia | [66] | |
Nystatin | 25.0 ± 0.45 | C. albicans | 80d | >75 μg/mL | S. aureus, B. subtilis, and K. pneumonia | [66] | |
77a | 44.00 (11) mm | C. albicans | [63] | 80e | >75 μg/mL | S. aureus | [66] |
77b | 32.00 (08) mm | C. albicans | [63] | 80f | 9.3 μg/mL | S. aureus, B. subtilis, and E. coli | [66] |
77c | 44.00 (11) mm | P. aeruginosa | [63] | 80g | 9.3 μg/mL | B. subtilis and M. luteus | [66] |
77d | 38.46 (10) mm | E. coli | [63] | 80h | 9.3 μg/mL | B. subtilis and M. luteus | [66] |
77e | 44.44 (12) mm | S. aureus and A. flavus | [63] | 80i | >75 μg/mL | B. subtilis | [66] |
Strepto-mycin | 100 (25) mm | P. aeruginosa and S. typhi | [63] | 80j | >75 μg/mL | B. subtilis | [66] |
Greseo-fulvin | 100 (25) mm | C. albicans | [63] | Ampicillin | 4.6 μg/mL | S. aureus, B. subtilis, M. luteus, and K. pneumonia | [66] |
79a | 40 μg/mL | A. niger | [65] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padiyara, P.; Inoue, H.; Sprenger, M. Global Governance Mechanisms to Address Antimicrobial Resistance. Infect. Dis. Res. Treat. 2018, 11, 1178633718767887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, M.K.; Chakraborty, R.; Grossart, H.P.; Reddy, G.S.; Jagannadham, M.V. Antibiotic resistance of bacteria. BioMed Res. Int. 2015, 2015, 501658. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Schillaci, D.; Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.; Cascioferro, S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J. Med. Chem. 2017, 60, 8268–8297. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Clafey, J.; Deally, A.; Hogan, M.; Gleeson, B.; Menéndez Méndez, L.M.; Müller-Bunz, H.; Paradisi, F.; Tacke, M. Synthesis, cytotoxicity and antibacterial studies of p-methoxybenzyl-substituted and benzyl-substituted N-heterocyclic carbene-silver complexes. Eur. J. Inorg. Chem. 2010, 2010, 1020–1031. [Google Scholar] [CrossRef]
- Patil, S.; Deally, A.; Gleeson, B.; Muller-Bunz, H.; Paradisi, F.; Tacke, M. Novel benzyl-substituted N-heterocyclic carbene-silver acetate complexes: Synthesis, cytotoxicity and antibacterial studies. Metallomics 2011, 3, 74–88. [Google Scholar] [CrossRef]
- Patil, S.A.; Patil, S.A.; Patil, R.; Keri, R.S.; Budagumpi, S.; Balakrishna, G.R.; Tacke, M. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs. Future Med. Chem. 2015, 7, 1305–1333. [Google Scholar] [CrossRef] [PubMed]
- Shahini, C.R.; Achar, G.; Budagumpi, S.; Müller–Bunz, H.; Tacke, M.; Patil, S.A. Benzoxazole and dioxolane substituted benzimidazole–based N–heterocyclic carbene–silver(I) complexes: Synthesis, structural characterization and in vitro antimicrobial activity. J. Organomet. Chem. 2018, 868, 1–13. [Google Scholar] [CrossRef]
- Shahini, C.R.; Achar, G.; Budagumpi, S.; Tacke, M.; Patil, S.A. Non-symmetrically p-nitrobenzyl-substituted N-heterocyclic carbene-silver(I) complexes as metallopharmaceutical agents. Appl. Organomet. Chem. 2017, 31, e3819. [Google Scholar] [CrossRef]
- Shahini, C.R.; Achar, G.; Budagumpi, S.; Tacke, M.; Patil, S.A. Synthesis, structural investigation and antibacterial studies of non–symmetrically p–nitrobenzyl substituted benzimidazole N–heterocyclic carbene–silver(I) complexes. Inorg. Chim. Acta 2017, 466, 432–441. [Google Scholar] [CrossRef]
- Sharkey, M.A.; O’Gara, J.P.; Gordon, S.V.; Hackenberg, F.; Healy, C.; Paradisi, F.; Patil, S.; Schaible, B.; Tacke, M. Investigations into the Antibacterial Activity of the Silver-Based Antibiotic Drug Candidate SBC3. Antibiotics 2012, 1, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Subramanya Prasad, T.V.; Shahini, C.R.; Patil, S.A.; Huang, X.; Bugarin, A.; Patil, S.A. Non-symmetrically p-nitrobenzyl- and p-cyanobenzyl-substituted N-heterocyclic carbene-silver(I) complexes: Synthesis, characterization and antibacterial studies. J. Coord. Chem. 2017, 70, 600–614. [Google Scholar] [CrossRef]
- Patil, M.; Noonikara-Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. New Urea Derivatives as Potential Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies. Antibiotics 2019, 8, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.A.; Patil, S.A.; Fariyike, T.; Marichev, K.O.; Martinez, H.M.H.; Bugarin, A. Medicinal applications of coumarins bearing azetidinone and thiazolidinone moieties. Future Med. Chem. 2021, 13, 1907–1934. [Google Scholar] [CrossRef]
- Patil, S.A.; Kandathil, V.; Sobha, A.; Somappa, S.B.; Feldman, M.R.; Bugarin, A.; Patil, S.A. Comprehensive Review on Medicinal Applications of Coumarin-Derived Imine–Metal Complexes. Molecules 2022, 27, 5220. [Google Scholar] [CrossRef]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef]
- Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals 2021, 14, 224. [Google Scholar] [CrossRef]
- Zoidis, G.; Kritsi, E.; Lecinska, P.; Ivanov, M.; Zoumpoulakis, P.; Sokovic, M.; Catto, M. The Triazole Ring as a Privileged Scaffold for Putative Antifungals: Synthesis and Evaluation of a Series of New Analogues. ChemMedChem 2020, 16, 134–144. [Google Scholar] [CrossRef]
- Kumari, M.; Tahlan, S.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Kakkar, S. Synthesis and biological evaluation of heterocyclic 1,2,4-triazole scaffolds as promising pharmacological agents. BMC Chem. 2021, 15, 5. [Google Scholar] [CrossRef]
- Cacic, M.; Trkovnik, M.; Cacic, F.; Has-Schon, E. Synthesis and Antimicrobial Activity of Some Derivatives on the Basis (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic Acid Hydrazide. Molecules 2006, 11, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayashree, B.S.; Sahu, A.R.; Murthy, M.S.; Venugopala, K.N. Synthesis, characterization and determination of partition coefficient of some triazole derivatives of coumarins for their antimicrobial activity. Asian J. Chem. 2007, 19, 73–78. [Google Scholar]
- Bhat, M.A.; Siddiqui, N.; Khan, S.A.; Mohamed, M.I. Synthesis of triazolothiazolidinone derivatives of coumarin with antimicrobial activity. Acta Pol. Pharm.-Drug Res. 2010, 66, 625–632. [Google Scholar]
- Lamani, K.S.S.; Kotresh, O.; Phaniband, M.S.A.; Kadakol, J.C. Synthesis, Characterization and Antimicrobial Properties of Schiff Bases Derived from Condensation of 8-Formyl-7-hydroxy-4-methylcoumarin and Substituted Triazole Derivatives. E-J. Chem. 2009, 6, S239–S246. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Ravi, T.; Chawla, R.; Bhuvana, S.; Sonia, G.; Gopalakrishnan, S. Microwave assisted synthesis and biological activity of novel coumarinyltriazolothiadiazoles. Indian J. Pharm. Sci. 2010, 72, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokil, G.R.; Rewatkar, P.V.; Gosain, S.; Aggarwal, S.; Verma, A.; Kalra, A.; Thareja, S. Synthesis and in vitro evaluation of novel 1, 2, 4-triazole derivatives as antifungal agents. Lett. Drug Des. Discov. 2010, 7, 46–49. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, C.-H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2011, 21, 956–960. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, C.-H.; Zhou, X.-D.; Geng, R.-X.; Ji, Q.-G. Synthesis and antimicrobial evaluation of coumarin-based benzotriazoles and their synergistic effects with chloromycin and fluconazole. Yao Xue Xue Bao = Acta Pharm. Sin. 2011, 46, 798–810. [Google Scholar]
- Naik, R.J.; Kulkarni, M.V.; Pai, K.S.R.; Nayak, P.G. Click Chemistry Approach for Bis-Chromenyl Triazole Hybrids and Their Antitubercular Activity. Chem. Biol. Drug Des. 2012, 80, 516–523. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Damu, G.L.V.; Wan, K.; Zhang, H.; Zhou, C. Synthesis and biological activities of thio-triazole derivatives as novel potential antibacterial and antifungal agents. Sci. China Chem. 2012, 55, 2134–2153. [Google Scholar] [CrossRef]
- Jakhar, K.; Makrandi, J.K. A green synthesis and antibacterial activity of 2-aryl-5-(coumarin-3-Yl)-thiazolo [3, 2-b][1, 2, 4] triazoles. Indian J. Chem. Sect. B 2012, 51, 1511–1516. [Google Scholar]
- Damu, G.L.; Cui, S.-F.; Peng, X.-M.; Wen, Q.-M.; Cai, G.-X.; Zhou, C.-H. Synthesis and bioactive evaluation of a novel series of coumarinazoles. Bioorg. Med. Chem. Lett. 2014, 24, 3605–3608. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, K.; Kaushik, N.; Lata; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett. 2014, 24, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Mamatha, R.; Babu, M.S.S.; Kumar, K.S.; Jayaveera, K.N.; Narayanaswamy, G. Synthesis and Antimicrobial Activities of Some Triazole, Thiadiazole, and Oxadiazole Substituted Coumarins. J. Heterocycl. Chem. 2013, 51, 132–137. [Google Scholar] [CrossRef]
- Dongamanti, A.; Bommidi, V.L.; Arram, G.; Sidda, R. Microwave-assisted synthesis of (e)-7-[(1-benzyl-1h-1, 2, 3-triazol-4-Yl) methoxy]-8-(3-arylacryloyl)-4-methyl-2h-chromen-2-ones and their antimicrobial activity. Heterocycl. Commun. 2014, 20, 293–298. [Google Scholar] [CrossRef]
- Joshi, P.; Tripathi, M.; Rawat, D.S. Synthesis and characterization of novel 1, 2, 3-triazole-linked theophylline and coumarin s-triazines. Indian J. Chem. Sect. B 2014, 53, 311–318. [Google Scholar]
- Elbastawesy, M.; Youssif, B.; Abdelrahman, M.H.; Hayallah, A. Synthesis and biological evaluation of some new coumarin derivatives as potential antimicrobial, analgesic and anti-inflammatory agents. Der Pharma Chem. 2015, 7, 337–349. [Google Scholar]
- Kalwania, G.S.; Bajroliya, S. Synthesis, characterization and antimicrobial activities of 1, 2, 4-triazole-coumarin schiff bases and their Mn (II), Co (II) complexes. Asian J. Chem. 2015, 27, 3956. [Google Scholar] [CrossRef]
- Shaikh, M.H.; Subhedar, D.D.; Shingate, B.B.; Khan, F.A.K.; Sangshetti, J.N.; Khedkar, V.M.; Nawale, L.; Sarkar, D.; Navale, G.R.; Shinde, S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res. 2016, 25, 790–804. [Google Scholar] [CrossRef]
- Shaikh, M.H.; Subhedar, D.D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin. Chem. Lett. 2016, 27, 295–301. [Google Scholar] [CrossRef]
- Kraljević, T.G.; Harej, A.; Sedić, M.; Pavelić, S.K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole–coumarin hybrids. Eur. J. Med. Chem. 2016, 124, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.S.; Patel, N.J.; Shaikh, P.V.; Brahmbhatt, D. A novel one pot facile synthesis of 1,2,4-triazolo-1,3,4-thiadiazepino fused coumarins and their antimicrobial and antituberculosis activity studies. Der Pharma Chem. 2017, 9, 10–15. [Google Scholar]
- Pal, S.; Kuntala, N.; Telu, J.R.; Banothu, V.; Anireddy, J.S. Synthesis, characterization, antibacterial and anticancer activity of some novel triazolyl chromenone derivatives. Der Pharma Chem. 2017, 9, 1–7. [Google Scholar]
- Jin, X.; Xu, Y.; Yang, X.; Chen, X.; Wu, M.; Guan, J.; Feng, L. Design, Synthesis and In Vitro Anti-microbial Evaluation of Ethylene/ Propylene-1H-1,2,3-Triazole-4-Methylene-tethered Isatin-coumarin Hybrids. Curr. Top. Med. Chem. 2018, 17, 3213–3218. [Google Scholar] [CrossRef] [PubMed]
- Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct. 2018, 1157, 312–321. [Google Scholar] [CrossRef]
- Lopez-Rojas, P.; Janeczko, M.; Kubinski, K.; Amesty, A.; Maslyk, M.; Estevez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules 2018, 23, 199. [Google Scholar] [CrossRef] [Green Version]
- Savanur, H.M.; Naik, K.N.; Ganapathi, S.M.; Kim, K.M.; Kalkhambkar, R.G. Click Chemistry Inspired Design, Synthesis and Molecular Docking Studies of Coumarin, Quinolinone Linked 1,2,3-Triazoles as Promising Anti-Microbial Agents. Chemistryselect 2018, 3, 5296–5303. [Google Scholar] [CrossRef]
- Kolichala, N.; Thummala, B.; Karkala, V.K.P. Regioselective Synthesis and Antibacterial Activity Studies of 1,2,3-Triazol-4-YL]-4-methyl-2H-chromen-2-ones. J. Heterocycl. Chem. 2018, 55, 1398–1402. [Google Scholar] [CrossRef]
- Chityala, Y.; Mesram, M.K.; Reddy, A.R. Synthesis, antibacterial and antioxidant activity of 1, 4-disubstituted naphthyloxymethyl-N-alkyl naphthimido and coumarine-1, 2, 3-triazoles. J. Appl. Chem. 2018, 7, 790–805. [Google Scholar]
- Shaikh, F.; Shastri, S.L.; Naik, N.S.; Kulkarni, R.; Madar, J.M.; Shastri, L.A.; Joshi, S.D.; Sunagar, V. Synthesis, Antitubercular and Antimicrobial Activity of 1,2,4-Triazolidine-3-thione Functionalized Coumarin and Phenyl Derivatives and Molecular Docking Studies. Chemistryselect 2019, 4, 105–115. [Google Scholar] [CrossRef]
- Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; et al. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega 2019, 4, 8720–8730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipeeva, A.V.; Zakharov, D.O.; Burova, L.G.; Frolova, T.S.; Baev, D.S.; Shirokikh, I.V.; Evstropov, A.N.; Sinitsyna, O.I.; Tolsikova, T.G.; Shults, E.E. Design, Synthesis and Antibacterial Activity of Coumarin-1,2,3-triazole Hybrids Obtained from Natural Furocoumarin Peucedanin. Molecules 2019, 24, 2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem. 2019, 179, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Dharavath, R.; Nagaraju, N.; Ram Reddy, M.; Ashok, D.; Sarasija, M.; Vijjulatha, M.; Vani, T.K.; Prashanthi, G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarinbased 1,2,3-triazoles. RSC Adv. 2020, 10, 11615. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, S.; Awolade, P.; Kisten, P.; Cele, N.; Pillay, A.-S.; Saha, S.T.; Kaur, M.; Jonnalagadda, S.B.; Singh, P. Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged β-lactam triazole hybrid. Chem. Biodivers. 2020, 17, e1900462. [Google Scholar] [CrossRef] [Green Version]
- Joy, M.N.; Bodke, Y.D.; Telkar, S.; Bakulev, V.A. Synthesis of coumarins linked with 1,2,3-triazoles under microwave irradiation and evaluation of their antimicrobial and antioxidant activity. J. Mex. Chem. Soc. 2020, 64, 53–73. [Google Scholar]
- Akolkar, S.V.; Nagargoje, A.A.; Shaikh, M.H.; Warshagha, M.Z.A.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. New N-phenylacetamide-linked 1,2,3-triazole-tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Arch. Pharm. 2020, 353, e2000164. [Google Scholar] [CrossRef]
- Sutar, S.M.; Savanur, H.M.; Patil, C.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Kalkhambkar, R.G. Synthesis, molecular modelling studies and antimicrobial activity of Coumarin and 1-Azacoumarin linked 1,2,3-Triazole. Chem. Data Collect. 2020, 28, 100480. [Google Scholar] [CrossRef]
- Sovari, S.N.; Vojnovic, S.; Bogojevic, S.S.; Crochet, A.; Pavic, A.; Nikodinovic-Runic, J.; Zobi, F. Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2020, 205, 112533. [Google Scholar] [CrossRef]
- Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc. 2019, 24, 251–266. [Google Scholar] [CrossRef]
- Nesaragi, A.R.; Kamble, R.R.; Bayannavar, P.K.; Metre, T.V.; Kariduraganavar, M.Y.; Margankop, S.B.; Joshi, S.D.; Kumbar, V.M. Microwave facilitated one-pot three component synthesis of coumarin-benzoxazole clubbed 1,2,3-triazoles: Antimicrobial evaluation, molecular docking and in silico ADME studies. Synth. Commun. 2021, 51, 3460–3472. [Google Scholar] [CrossRef]
- Channabasappa, V.; Kumara, K.; Kariyappa, A.K. Design, synthesis of coumarin tethered 1,2,3-triazoles analogues, evaluation of their antimicrobial and α-amylase inhibition activities. J. Chem. Sci. 2021, 133, 130. [Google Scholar] [CrossRef]
- Bhirud, J.D.; More, Y.B.; Baviskar, P.D.; Narkhede, H.P. Synthesis and biological activity of 7-(2-(1H-1,2,4-triazol-1-yl)ethoxy)-4-(styryl/4-substituted styryl)-2H-chromen-2-one. Indian J. Chem. B 2021, 60, 1097–1102. [Google Scholar]
- Sokol, I.; Toma, M.; Krnić, M.; Macan, A.M.; Drenjančević, D.; Liekens, S.; Raić-Malić, S.; Gazivoda Kraljević, T. Transition metal-catalyzed synthesis of new 3-substituted coumarin derivatives as antibacterial and cytostatic agents. Future Med. Chem. 2021, 13, 1865–1884. [Google Scholar] [CrossRef] [PubMed]
- Hoolageri, S.R.; Nesaragi, A.R.; Kamble, R.R.; Dixit, S.; Vootla, S.; Joshi, S.D.; Shaikh, S.J. Green Synthesis of Novel Triazolothiadiazine-Coumarins Catalyzed by Agro Waste Extract: An Approach towards In-Silico and In-Vitro Anti-Fungal Activity. Chemistryselect 2022, 7, e202200077. [Google Scholar] [CrossRef]
- Yesudass, S.C.; Ranjan, P.; Suresh, H.P. Synthesis, antimicrobial/radical scavenging, and in-silico investigations of a novel class of 4-[(4′-hydroxymethylphenyl)-1H-1′,2′,3′-triazol-1-yl-methyl]-2H-chromen-2-ones. J. Heterocycl. Chem. 2022, 59, 309–318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.A.; Nesaragi, A.R.; Rodríguez-Berrios, R.R.; Hampton, S.M.; Bugarin, A.; Patil, S.A. Coumarin Triazoles as Potential Antimicrobial Agents. Antibiotics 2023, 12, 160. https://doi.org/10.3390/antibiotics12010160
Patil SA, Nesaragi AR, Rodríguez-Berrios RR, Hampton SM, Bugarin A, Patil SA. Coumarin Triazoles as Potential Antimicrobial Agents. Antibiotics. 2023; 12(1):160. https://doi.org/10.3390/antibiotics12010160
Chicago/Turabian StylePatil, Siddappa A., Aravind R. Nesaragi, Raúl R. Rodríguez-Berrios, Sydney M. Hampton, Alejandro Bugarin, and Shivaputra A. Patil. 2023. "Coumarin Triazoles as Potential Antimicrobial Agents" Antibiotics 12, no. 1: 160. https://doi.org/10.3390/antibiotics12010160
APA StylePatil, S. A., Nesaragi, A. R., Rodríguez-Berrios, R. R., Hampton, S. M., Bugarin, A., & Patil, S. A. (2023). Coumarin Triazoles as Potential Antimicrobial Agents. Antibiotics, 12(1), 160. https://doi.org/10.3390/antibiotics12010160