Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces
Abstract
:1. Introduction
2. Results
2.1. Prevalence and Isolation of C. difficile from Fecally Contaminated Environmental Samples
2.2. Toxin-Encoding Genes of Environmental C. difficile Strains
2.3. Antimicrobial Resistance of Environmental C. difficile Strains
2.4. Standard Curves, Limit of Detection, and Detection Accuracy of qPCR for the 16S rRNA Gene
2.5. Quantification of Environmental C. difficile in Fecal Environmental Samples
2.6. Comparison of Environmental C. difficile Detection by qPCR and C. difficile Selective Enrichment Culture in Fecally Contaminated Environmental Samples
3. Discussion
4. Materials and Methods
4.1. Fecal Environmental Samples Collection
4.2. Isolation and Identification of C. difficile from Fecally Contaminated Environmental Samples
4.3. Genomic DNA Extraction from Bacterial Cells (Pure Cultures)
4.4. Molecular Identification of Environmental C. difficile Isolates via PCR
4.5. Profiling of Toxin-Encoding Genes of Environmental C. difficile Isolates by Multiplex PCR
4.6. Antimicrobial Susceptibility Testing
4.7. Preparation and DNA Extraction from Fecal Environmental Samples
4.8. Preparation of Standard Analytic Curves of C. difficile-Spiked Feces and Pure Culture for qPCR
4.9. Quantitative Real-Time PCR Assay
4.10. Quantification of Environmental C. difficile in Fecally Contaminated Environmental Samples by TaqMan-Based qPCR Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crobach, M.J.T.; Vernon, J.J.; Loo, V.G.; Kong, L.Y.; Péchiné, S.; Wilcox, M.H.; Kuijper, E.J. Understanding Clostridium difficile Colonization. Clin. Microbiol. Rev. 2018, 31, e00021-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 526–536. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile Infection. N. Engl. J. Med. 2015, 373, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingle, K.E.; Elliott, B.; Robinson, E.; Griffiths, D.; Eyre, D.W.; Stoesser, N.; Vaughan, A.; Golubchik, T.; Fawley, W.N.; Wilcox, M.H.; et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol. Evol. 2014, 6, 36–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülke, I.; Pfeifer, G.; Liese, J.; Fritz, M.; Hofmann, F.; Aktories, K.; Barth, H. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect. Immun. 2001, 69, 6004–6011. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.; Lawrence, J.; Berry, C.; Davis, G.; Yu, H.; Cai, B.; Gonzalez, E.; Prantner, I.; Kurcz, A.; Macovei, I.; et al. Risk Factors for Primary Clostridium difficile Infection; Results From the Observational Study of Risk Factors for Clostridium difficile Infection in Hospitalized Patients With Infective Diarrhea (ORCHID). Front. Public Health 2020, 8, 293. [Google Scholar] [CrossRef]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.-W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef] [Green Version]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-Associated Risk Factors for Clostridium difficile Infection. Clin. Infect. Dis. 2008, 46, S19–S31. [Google Scholar] [CrossRef] [Green Version]
- Blasi, F.; Lovito, C.; Albini, E.; Bano, L.; Dalmonte, G.; Drigo, I.; Maresca, C.; Massacci, F.R.; Orsini, S.; Primavilla, S.; et al. Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals 2021, 11, 515. [Google Scholar] [CrossRef]
- Baines, S.D.; Wilcox, M.H. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection. Antibiotics 2015, 4, 267–298. [Google Scholar] [CrossRef]
- O’Grady, K.; Knight, D.R.; Riley, T.V. Antimicrobial resistance in Clostridioides difficile. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2459–2478. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P.; Mastrantonio, P.; Barbanti, F. Antibiotic Resistances of Clostridium difficile. Adv. Exp. Med. Biol. 2018, 1050, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Camorlinga, M.; Sanchez-Rojas, M.; Torres, J.; Romo-Castillo, M. Phenotypic Characterization of Non-toxigenic Clostridioides difficile Strains Isolated From Patients in Mexico. Front. Microbiol. 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Fraga, E.G.; Nicodemo, A.C.; Sampaio, J.L.M. Antimicrobial susceptibility of Brazilian Clostridium difficile strains determined by agar dilution and disk diffusion. Braz. J. Infect. Dis. 2016, 20, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Aspevall, O.; Lundberg, A.; Burman, L.G.; Akerlund, T.; Svenungsson, B. Antimicrobial susceptibility pattern of Clostridium difficile and its relation to PCR ribotypes in a Swedish university hospital. Antimicrob. Agents Chemother. 2006, 50, 1890–1892. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Messelhäusser, U.; Hörmansdorfer, S.; Sauter-Louis, C.; Mansfeld, R. Occurrence of zoonotic clostridia and Yersinia in healthy cattle. J. Food Prot. 2013, 76, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, B.G.; Vinithakumari, A.A.; Sponseller, B.; Tangudu, C.; Mooyottu, S. Prevalence, Colonization, Epidemiology, and Public Health Significance of Clostridioides difficile in Companion Animals. Front. Vet. Sci. 2020, 7, 512551. [Google Scholar] [CrossRef]
- Shivaperumal, N.; Chang, B.J.; Riley, T.V. High Prevalence of Clostridium difficile in Home Gardens in Western Australia. Appl. Environ. Microbiol. 2020, 87, e01572-20. [Google Scholar] [CrossRef]
- Janezic, S.; Potocnik, M.; Zidaric, V.; Rupnik, M. Highly Divergent Clostridium difficile Strains Isolated from the Environment. PLoS ONE 2016, 11, e0167101. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Diaz, C.; Seyboldt, C.; Rupnik, M. Non-human C. difficile Reservoirs and Sources: Animals, Food, Environment. Adv. Exp. Med. Biol. 2018, 1050, 227–243. [Google Scholar] [CrossRef]
- Dharmasena, M.; Jiang, X. Isolation of Toxigenic Clostridium difficile from Animal Manure and Composts Being Used as Biological Soil Amendments. Appl. Environ. Microbiol. 2018, 84, e00738-18. [Google Scholar] [CrossRef] [Green Version]
- Frentrup, M.; Thiel, N.; Junker, V.; Behrens, W.; Münch, S.; Siller, P.; Kabelitz, T.; Faust, M.; Indra, A.; Baumgartner, S.; et al. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ. Microbiol. 2021, 23, 7591–7602. [Google Scholar] [CrossRef] [PubMed]
- Baghani, A.; Alimohammadi, M.; Aliramezani, A.; Talebi, M.; Mesdaghinia, A.; Douraghi, M. Isolation and characterization of a multidrug-resistant Clostridioides difficile toxinotype V from municipal wastewater treatment plant. J. Environ. Health Sci. Eng. 2020, 18, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Penders, J.; Vink, C.; Driessen, C.; London, N.; Thijs, C.; Stobberingh, E.E. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 2005, 243, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelj, P.; Logar, K.; Usenik, A.M.; Vengust, M.; Ocepek, M. An improved qPCR protocol for rapid detection and quantification of Clostridium difficile in cattle feces. FEMS Microbiol. Lett. 2013, 341, 115–121. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, L.K.; Broukhanski, G.; Simor, A.; Johnstone, J.; Mubareka, S.; McGeer, A.; Daneman, N.; Garber, G.; Brown, K.A. Comparison of qPCR versus culture for the detection and quantification of Clostridium difficile environmental contamination. PLoS ONE 2018, 13, e0201569. [Google Scholar] [CrossRef]
- Brown, K.A.; MacDougall, L.K.; Valenta, K.; Simor, A.; Johnstone, J.; Mubareka, S.; Broukhanski, G.; Garber, G.; McGeer, A.; Daneman, N. Increased environmental sample area and recovery of Clostridium difficile spores from hospital surfaces by quantitative PCR and enrichment culture. Infect. Control Hosp. Epidemiol. 2018, 39, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Kubota, H.; Sakai, T.; Gawad, A.; Makino, H.; Akiyama, T.; Ishikawa, E.; Oishi, K. Development of TaqMan-Based Quantitative PCR for Sensitive and Selective Detection of Toxigenic Clostridium difficile in Human Stools. PLoS ONE 2014, 9, e111684. [Google Scholar] [CrossRef]
- Kohler, C.M.; Ana, G.; Randall, T.H.; Margolis, E.B. Real-time quantitative PCR method for detection and quantification of Clostridioides difficile cells and spores. J. Microbiol. Methods 2022, 196, 106458. [Google Scholar] [CrossRef]
- Jeske, J.T.; Gallert, C. Mechanisms Driving Microbial Community Composition in Anaerobic Co-Digestion of Waste-Activated Sewage Sludge. Bioengineering 2021, 8, 197. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; English, C.A.; Burns, M.J.; Keer, J.T. Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, P.; Whitaker, J.; Flaxman, C.; Brown, N.; Buckleton, J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 2000, 112, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Ganji, L.; Azimirad, M.; Farzi, N.; Alebouyeh, M.; Shirazi, M.H.; Eshraghi, S.S.; Mirshafiey, A.; Daryani, N.E.; Zali, M.R. Comparison of the Detection Limits of the Culture and PCR Methods for the Detection of Clostridium difficile, Clostridium perfringens, Campylobacter jejuni, and Yersinia enterocolitica in Human Stool. Arch. Pediatr. Infect. Dis. 2016, 5, e38888. [Google Scholar] [CrossRef] [Green Version]
- Janezic, S.; Mlakar, S.; Rupnik, M. Dissemination of Clostridium difficile spores between environment and households: Dog paws and shoes. Zoonoses Public Health 2018, 65, 669–674. [Google Scholar] [CrossRef]
- Janezic, S.; Ocepek, M.; Zidaric, V.; Rupnik, M. Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol. 2012, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Redding, L.; Huang, E.; Ryave, J.; Webb, T.; Barnhart, D.; Baker, L.; Bender, J.; Kristula, M.; Kelly, D. Clostridioides difficile on dairy farms and potential risk to dairy farm workers. Anaerobe 2021, 69, 102353. [Google Scholar] [CrossRef]
- Thitaram, S.N.; Frank, J.F.; Siragusa, G.R.; Bailey, J.S.; Dargatz, D.A.; Lombard, J.E.; Haley, C.A.; Lyon, S.A.; Fedorka-Cray, P.J. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms. Int. J. Food Microbiol. 2016, 227, 1–5. [Google Scholar] [CrossRef]
- Thitaram, S.N.; Frank, J.F.; Lyon, S.A.; Siragusa, G.R.; Bailey, J.S.; Lombard, J.E.; Haley, C.A.; Wagner, B.A.; Dargatz, D.A.; Fedorka-Cray, P.J. Clostridium difficile from healthy food animals: Optimized isolation and prevalence. J. Food Prot. 2011, 74, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Weese, J.S.; Flemming, C.; Odumeru, J.; Warriner, K. Fate of Clostridium difficile during wastewater treatment and incidence in Southern Ontario watersheds. J. Appl. Microbiol. 2014, 117, 891–904. [Google Scholar] [CrossRef]
- Lim, S.-C.; Androga, G.O.; Knight, D.R.; Moono, P.; Foster, N.F.; Riley, T.V. Antimicrobial susceptibility of Clostridium difficile isolated from food and environmental sources in Western Australia. Int. J. Antimicrob. Agents 2018, 52, 411–415. [Google Scholar] [CrossRef]
- Bakri, M.M.; Brown, D.J.; Butcher, J.P.; Sutherland, A.D. Clostridium difficile in ready-to-eat salads, Scotland. Emerg. Infect. Dis. 2009, 15, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Simango, C. Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Båverud, V.; Gustafsson, A.; Franklin, A.; Aspán, A.; Gunnarsson, A. Clostridium difficile: Prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet. J. 2003, 35, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Romano, V.; Pasquale, V.; Krovacek, K.; Mauri, F.; Demarta, A.; Dumontet, S. Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland. Appl. Environ. Microbiol. 2012, 78, 6643–6646. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, M.d.; Rodríguez, E.; Vargas, P. Diversity of mesophilic clostridia in Costa Rican soils. Anaerobe 2005, 11, 322–326. [Google Scholar] [CrossRef]
- Candel-Pérez, C.; Ros-Berruezo, G.; Martínez-Graciá, C. A review of Clostridioides Clostridium difficile occurrence through the food chain. Food Microbiol. 2019, 77, 118–129. [Google Scholar] [CrossRef]
- Bauer, M.P.; Kuijper, E.J. Potential sources of Clostridium difficile in human infection. Infect. Dis. Clin. N. Am. 2015, 29, 29–35. [Google Scholar] [CrossRef]
- Gould, L.H.; Limbago, B. Clostridium difficile in Food and Domestic Animals: A New Foodborne Pathogen? Clin. Infect. Dis. 2010, 51, 577–582. [Google Scholar] [CrossRef]
- Al Saif, N.; Brazier, J.S. The distribution of Clostridium difficile in the environment of South Wales. J. Med. Microbiol. 1996, 45, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Wickramage, I.; Spigaglia, P.; Sun, X. Mechanisms of antibiotic resistance of Clostridioides difficile. J. Antimicrob. Chemother. 2021, 76, 3077–3090. [Google Scholar] [CrossRef]
- Mullany, P.; Allan, E.; Roberts, A.P. Mobile genetic elements in Clostridium difficile and their role in genome function. Res. Microbiol. 2015, 166, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, W.K.; Roseboom, A.M.; Corver, J. Plasmids of Clostridioides difficile. Curr. Opin. Microbiol. 2022, 65, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kartalidis, P.; Skoulakis, A.; Tsilipounidaki, K.; Florou, Z.; Petinaki, E.; Fthenakis, G.C. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021, 9, 1383. [Google Scholar] [CrossRef] [PubMed]
- Naaber, P.; Stsepetova, J.; Smidt, I.; Rätsep, M.; Kõljalg, S.; Lõivukene, K.; Jaanimäe, L.; Löhr, I.H.; Natås, O.B.; Truusalu, K.; et al. Quantification of Clostridium difficile in antibiotic-associated-diarrhea patients. J. Clin. Microbiol. 2011, 49, 3656–3658. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, R.; Balaji, V.; Ramakrishna, B.S. Estimation of faecal carriage of Clostridium difficile in patients with ulcerative colitis using real time polymerase chain reaction. Indian J. Med. Res. 2008, 127, 472–477. [Google Scholar]
- Rinttilä, T.; Kassinen, A.; Malinen, E.; Krogius, L.; Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 2004, 97, 1166–1177. [Google Scholar] [CrossRef]
- Bélanger, S.D.; Boissinot, M.; Clairoux, N.; Picard, F.J.; Bergeron, M.G. Rapid detection of Clostridium difficile in feces by real-time PCR. J. Clin. Microbiol. 2003, 41, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Pestana, E.A. Early, Rapid and Sensitive Veterinary Molecular Diagnostics–Real Time PCR Applications; Springer: Dordrecht, The Netherlands; Springer: London, UK, 2010; ISBN 978-90-481-3131-0. [Google Scholar]
- Lemee, L.; Dhalluin, A.; Testelin, S.; Mattrat, M.-A.; Maillard, K.; Lemeland, J.-F.; Pons, J.-L. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (Toxin A), and tcdB (Toxin B) genes for toxigenic culture of Clostridium difficile. J. Clin. Microbiol. 2004, 42, 5710–5714. [Google Scholar] [CrossRef] [Green Version]
- Persson, S.; Torpdahl, M.; Olsen, K.E.P. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008, 14, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Berger, F.K.; Mellmann, A.; von Müller, L.; Bischoff, M.; Gärtner, B.C. Quality assurance for genotyping and resistance testing of Clostridium (Clostridioides) difficile isolates–Experiences from the first inter-laboratory ring trial in four German speaking countries. Anaerobe 2020, 61, 102093. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 13th ed.; CLSI Supplement M100; CLSI: Annapolis Junction, MD, USA, 2021. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility. Clinical Breakpoints-Bacteria (Version 12.0); EUCAST: Växjö, Sweden, 2022. [Google Scholar]
- Members of the SFM Antibiogram Committee. Comite’ de l’Antibiogramme de la Socie´te´ Francaise de Microbiologie (V.1.1 Avril); SFM: Paris, France, 2020.
- Kouassi, K.A.; Dadie, A.T.; N’Guessan, K.F.; Dje, K.M.; Loukou, Y.G. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d’Ivoire and their antimicrobial susceptibility. Anaerobe 2014, 28, 90–94. [Google Scholar] [CrossRef] [PubMed]
Farm No./Sample ID | Number of Samples | Description/Medication | Sample Source | Age (Days) | Presence of C. difficile |
---|---|---|---|---|---|
Farm 1 | 3 | Spectinomycin and Lincomycin | Calf feces | 120 | +(1/3) |
Farm 2 | 3 | Amoxicillin and Colistin | Calf feces | 90 | −(0/3) |
Farm 3 | 3 | Sulphanilamide and Neomycin | Calf feces | 90 | −(0/3) |
Farm 4 | 3 | Paromomycin | Calf feces | 90 | +(3/3) |
Farm 5 | 2 | Biogas plant | - | +(2/2) | |
Farm 6 | 3 | Amoxicillin and Colistin | Calf feces | 90 | +(3/3) |
Farm 7 | 3 | Paromomycin | Calf feces | 90 | +(3/3) |
Farm 8 | 4 | Pooled cow feces | Cow feces | adult | −(0/4) |
3 | Pooled calf feces | Calf feces | 180 | −(0/3) | |
3 | Pooled calf feces | Calf feces | 90 | −(0/3) | |
2 | Calves feeding with cow or artificial milk | Calf feces | 90 | −(0/2) | |
2 | Mixed storage manure | Mixed manure | - | −(0/2) | |
1 | Grass silage | - | −(0/1) | ||
1 | Maize silage | - | −(0/1) | ||
Farm 9 | 2 | Cow manure (storage for 2 days) | Cow feces | adult | −(0/2) |
2 | Cow manure (storage for 24 months) | Cow manure | adult | −(0/2) | |
3 | Pooled calf feces | Calf feces | 120–240 | −(0/3) | |
1 | Calf feces | 42 | −(0/1) | ||
1 | Calf feces | 90 | −(0/1) | ||
1 | Amoxicillin | Calf feces | 30 | −(0/1) | |
2 | Soil (collected from cattle farm) | Soil | - | +(1/2) | |
WWTP samples | 4 | Raw sewage (influent) | +(4/4) | ||
3 | Treated sewage (effluent) | −(0/3) | |||
4 | Raw sewage sludge | +(3/4) | |||
4 | Digested sewage sludge | +(4/4) | |||
1 | Activated sewage sludge | +(1/1) | |||
S-DSD | 1 | S-DSD1: Soil treated for 10 years with digested sewage sludge, dried for one year | +(3/3) | ||
1 | S-DSD2: Soil treated with digested sludge for 10 years but had not yet been dried | ||||
1 | S-DSD3: Soil was in the process of being treated with digested sewage sludge | ||||
TD-1 | 2 | Thermophilic digester for treating sewage sludge | +(1/2) | ||
TDB-1 | 1 | Thermophilic digester for treating biowaste | +(1/1) | ||
Control (C) | 1 | Anaerobic lab-scale bioreactor for thermophilic digestion of sewage sludge a | +(1/1) | ||
Experiment (E) | 1 | Anaerobic lab-scale bioreactor for thermophilic digestion of sewage sludge + canola lecithin a | +(1/1) | ||
HF | 9 | Horse feces | −(0/9) | ||
Total | 81 | 32 (39.50%) |
Isolate No. | Sample Source | Sampling Time | Toxin Genes | Binary Toxins | Antibiotic Resistance Profile 1 |
---|---|---|---|---|---|
C. difficile (RSS1, RSS2, RSS3, RSS4, RSS5, RSS6, RSS7, and RSS10) | Raw sewage sludge | July 2021 | tcdA, tcdB | ||
C. difficile (RSS11 and RSS12) | CIP, CLIN | ||||
C. difficile RSS13 | tcdA, tcdB | cdtAB | |||
C. difficile (RSS37 and RSS52) | Raw sewage sludge | April 2021 | CIP, CLIN | ||
C. difficile RSS38 | tcdA, tcdB | CIP | |||
C. difficile RSS39 | tcdA, tcdB | CIP, CLIN, MXF | |||
C. difficile RSS61 and RSS68 | December 2021 | tcdA, tcdB | ctdAB | ||
C. difficile (RSS62, RSS63, RSS64, and RSS66) | tcdA, tcdB | ctdAB | CLIN | ||
C. difficile RSS65 | tcdA, tcdB | ctdAB | CIP | ||
C. difficile RSS67 | tcdA, tcdB | ctdAB | CIP, CLIN | ||
C. difficile (RS8, RS14, and RS16) | Raw sewage | July 2021 | tcdA, tcdB | ||
C. difficile RS9 | CIP | ||||
C. difficile RS15 | tcdA, tcdB | cdtAB | CIP, CLIN, TE | ||
C. difficile RS17 | tcdA, tcdB | CIP | |||
C. difficile RS32 | March 2021 | tcdA, tcdB | CIP | ||
C. difficile (RS35 and RS36) | tcdA, tcdB | CIP, CLIN | |||
C. difficile (RS43 and RS44) | April 2021 | tcdA, tcdB | CIP | ||
C. difficile (RS147, RS149, RS150, RS151, RS152, and RS165) | May 2022 | CIP, CLIN | |||
C. difficile RS148 | tcdA, tcdB | CIP | |||
C. difficile (RS153 and RS154) | tcdA, tcdB | CIP, CLIN | |||
C. difficile RS164 | CIP, CLIN, TE | ||||
C. difficile DSS18 | Digested sewage sludge | July 2021 | tcdA, tcdB | CIP | |
C. difficile DSS19 | CIP | ||||
C. difficile (DSS26, DSS27, DSS29, and DSS31) | March 2021 | tcdA, tcdB | |||
C. difficile (DSS28 and DSS30) | tcdA, tcdB | CIP | |||
C. difficile DSS41 | April 2021 | tcdA, tcdB | CIP | ||
C. difficile (DSS183, DSS184, DSS185, DSS186, DSS187, DSS188, and DSS189) | June 2022 | tcdA, tcdB | CIP, CLIN | ||
C. difficile DSS190 and DSS191 | tcdA, tcdB | CIP | |||
C. difficile DSS202 | CIP, CLIN | ||||
C. difficile ASS20 | Activated sewage sludge | March 2021 | tcdA, tcdB | CIP, CLIN | |
C. difficile (ASS21 and ASS22) | tcdA, tcdB | CIP | |||
C. difficile (ASS23, ASS24, and ASS25) | tcdA, tcdB | cdtAB | CIP | ||
C. difficile S45 | Soil | August 2021 | tcdA, tcdB | ||
C. difficile (CF69, CF70, CF76, CF77, CF83, CF107, CF129, CF193, CF195, and CF196) | Feces of calves | December 2021 | tcdA, tcdB | ctdAB | CIP |
C. difficile (CF72, CF74, CF78, CF81, CF88, CF89, CF90, CF91, CF101, CF102, CF113, and CF132) | tcdA, tcdB | ctdAB | |||
C. difficile (CF73, CF75, CF109, CF114, CF192, and CF194) | tcdA, tcdB | ctdAB | CIP, CLIN | ||
C. difficile (CF79 and CF80) | tcdA, tcdB | ctdAB | CLIN | ||
C. difficile (CF82, CF84, CF85, CF86, CF87, CF95, and CF97) | Feces of calves | December 2021 | tcdA, tcdB | ctdAB | CIP, MXF |
C. difficile CF99 | tcdA, tcdB | ctdAB | CIP, CLIN, MXF | ||
C. difficile CF92 | tcdA, tcdB | ctdAB | TE | ||
C. difficile CF103 | tcdA, tcdB | ctdAB | CLIN, TE | ||
C. difficile (BP71 and BP197) | Biogas plant | December 2021 | tcdA, tcdB | ctdAB | CIP |
C. difficile (BP198, BP199, and BP201) | tcdA, tcdB | ctdAB | CIP, CLIN | ||
C. difficile (TDS115, TDS116, TDS120, and TDS121) | Thermophilic digester for treating sewage sludge | November 2021 | tcdA, tcdB | ||
C. difficile (TDS119 and TDS122) | tcdA, tcdB | CIP, CLIN | |||
C. difficile TDS117 | tcdA, tcdB | CIP | |||
C. difficile TDS118 | tcdA, tcdB | CIP, CLIN, MXF | |||
C. difficile TDS128 | tcdA, tcdB | ctdAB | CIP | ||
C. difficile (TDB123, TDB125, TDB126, TDB130, and TDB131) | Thermophilic digester for treating biowaste | November 2021 | tcdA, tcdB | ||
C. difficile (TDB124 and TDB127) | tcdA, tcdB | ctdAB | |||
C. difficile (ARC134, ARC135, and ARC 182) | Anaerobic lab-scale bioreactors treating sewage sludge/control | April 2022 | tcdA, tcdB | CIP | |
C. difficile (ARC139 and ARC166) | tcdA, tcdB | CIP, CLIN, MXF | |||
C. difficile ARC140, ARC141, and ARC168) | tcdA, tcdB | CIP, CLIN | |||
C. difficile ARC 167 | tcdA, tcdB | TE | |||
C. difficile ARE136 | Anaerobic lab-scale bioreactors treating sewage sludge/experiment | April 2022 | tcdA, tcdB | CIP | |
C. difficile (ARE137 and ARE170) | tcdA, tcdB | CIP, CLIN | |||
C. difficile (ARE138, ARE143, and ARE144) | tcdA, tcdB | CLIN | |||
C. difficile ARE 145 | CIP | ||||
C. difficile ARE 146 | CIP, CLIN | ||||
C. difficile (DS155, DS156, and DS175) | Digested sludge-amended soils | May 2022 | tcdA, tcdB | ctdAB | CIP, CLIN |
C. difficile DS157 | tcdA, tcdB | CIP, CLIN, MXF | |||
C. difficile (DS158, DS159, DS162, DS173, DS177, and DS181) | tcdA, tcdB | ctdAB | CIP, CLIN, MXF | ||
C. difficile (DS160 and DS172) | CIP, CLIN | ||||
C. difficile DS161 | tcdA, tcdB | CIP, CLIN, MXF, TE | |||
C. difficile (DS163, DS169, and DS178) | tcdA, tcdB | CIP, CLIN | |||
C. difficile DS171 | tcdA, tcdB | ctdAB | MXF | ||
C. difficile DS174 | tcdA, tcdB | ctdAB | CIP, MXF | ||
C. difficile DS176 | tcdA, tcdB | ctdAB | CIP | ||
C. difficile (DS179 and DS180) | tcdA, tcdB | ctdAB | CIP, CLIN, TE |
Sample Source | No. of CD Cells per g or mL | Sample Source | No. of CD Cells per g or mL |
---|---|---|---|
Digested sludge-amended soils | 4.4 × 101–2.67 × 102 | Thermophilic digester for treating biowaste | ND |
Digested sewage sludge | 1.2 × 102–7.61 × 102 a | Thermophilic digester for treating sewage sludge | 4.7 × 101–2.08 × 102 a |
Raw sewage | 0.18–1.44 | Soil (collected from cattle farm) | 1.49 × 101–3.75 × 102 a |
Treated sewage | 0.044–0.49 | Mixed storage cow manure | 1.5 × 101–1.96 × 101 |
Raw sewage sludge | 1.6 × 101–2.03 × 101 (8.2 × 102 a) | Biogas plant | ND |
Activated sewage sludge | 3.4 × 101 | Adult cow feces | ND |
Anaerobic lab-scale bioreactor digested sewage sludge | 2.48 × 101–3.06 × 101 | Grass and maize silage | 0.49–1.12 |
Feces of claves | 8.15–9.68 × 101 (1.75 × 103 a) | Horse feces | 1.63 × 101–6.39 × 101 |
Enrichment Culture Results | No. (%) of Samples with qPCR Results |
---|---|
Positive 32 (39.50%) | Positive 24 (75%) |
Negative 8 (25%) | |
Negative 49 (60.50%) | Positive 21 (42.86%) |
Negative 28 (57.14%) | |
Total of samples 81 (100%) | - |
Detected by CSEC but Not via qPCR | Detected by qPCR but Not with CSEC |
---|---|
|
|
Target Gene | Amplicon Size (bp) | Primer Name | Sequence (5′-3′) |
---|---|---|---|
tcdA | 629 | tcdA-F3345 | GCATGATAAGGCAACTTCAGTGGTA |
tcdA-R3969 | AGTTCCTCCTGCTCCATCAAATG | ||
tcdB | 410 | tcdB-F5670 | CCAAARTGGAGTGTTACAAACAGGTG |
tcdB-R6079 | GCATTTCTCCATTCTCAGCAAAGTA | ||
cdtA | 221 | cdtA-F739 | GGGAAGCACTATATTAAAGCAGAAGC |
cdtA-R958 | CTGGGTTAGGATTATTTACTGGACCA | ||
cdtB | 262 | cdtB-F617 | TTGACCCAAAGTTGATGTCTGATTG |
cdtB-R878 | CGGATCTCTTGCTTCAGTCTTTATAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blau, K.; Gallert, C. Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics 2023, 12, 162. https://doi.org/10.3390/antibiotics12010162
Blau K, Gallert C. Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics. 2023; 12(1):162. https://doi.org/10.3390/antibiotics12010162
Chicago/Turabian StyleBlau, Khald, and Claudia Gallert. 2023. "Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces" Antibiotics 12, no. 1: 162. https://doi.org/10.3390/antibiotics12010162
APA StyleBlau, K., & Gallert, C. (2023). Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics, 12(1), 162. https://doi.org/10.3390/antibiotics12010162