Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter?
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity of EOs
2.1.1. Disk Diffusion Method
2.1.2. Minimum Inhibitory Concentration (MIC)
2.2. Gene Expression of the Efflux Pumps
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Essential Oils (EOs)
4.3. Antimicrobial Activity of EOs
4.3.1. Disk Diffusion Method
4.3.2. Minimum Inhibitory Concentration (MIC)
4.3.3. Minimum Bactericidal Concentration (MBC)
4.4. Gene Expression of the Efflux Pumps
4.4.1. Bacterial RNA Extraction
4.4.2. DNase Treatment
4.4.3. Reverse Transcription
4.4.4. RT-PCR (Real-Time Polymerase Chain Reaction)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas Aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Hocquet, D.; Muller, A.; Bertrand, X. What Happens in Hospitals Does Not Stay in Hospitals: Antibiotic-Resistant Bacteria in Hospital Wastewater Systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Roulová, N.; Mot’ková, P.; Brožková, I.; Pejchalová, M. Antibiotic Resistance of Pseudomonas Aeruginosa Isolated from Hospital Wastewater in the Czech Republic. J. Water Health 2022, 20, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Soriaga, L.B.; LaFave, M.C.; Akella, S.; Veyrieras, J.-B.; Barbu, E.M.; Shortridge, D.; Blanc, B.; Hannum, G.; Zambardi, G.; et al. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas Aeruginosa. mBio 2015, 6, e01796-15. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, A.; Neshani, A.; Mirhosseini, S.A.; Ghazvini, K.; Zare, H.; Sedighian, H. Synergistic Effect of Two Antimicrobial Peptides, Nisin and P10 with Conventional Antibiotics against Extensively Drug-Resistant Acinetobacter Baumannii and Colistin-Resistant Pseudomonas Aeruginosa Isolates. Microb. Pathog. 2021, 150, 104700. [Google Scholar] [CrossRef]
- Potter, R.F.; D’Souza, A.W.; Dantas, G. The Rapid Spread of Carbapenem-Resistant Enterobacteriaceae. Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer. Chemother. 2016, 29, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Meletis, G. Carbapenem Resistance: Overview of the Problem and Future Perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular Diversity of Extended-Spectrum β-Lactamases and Carbapenemases, and Antimicrobial Resistance. J. Intensive. Care 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, B.; Barış, A.; Malkoçoğlu, G.; Erdemir, D.; Kına, N. Comparison of Carba NP-Direct, Carbapenem Inactivation Method, and β-CARBA Tests for Detection of Carbapenemase Production in Enterobacteriaceae. Microb. Drug Resist. Larchmt. N 2019, 25, 97–102. [Google Scholar] [CrossRef]
- Amsalu, A.; Sapula, S.A.; De Barros Lopes, M.; Hart, B.J.; Nguyen, A.H.; Drigo, B.; Turnidge, J.; Leong, L.E.; Venter, H. Efflux Pump-Driven Antibiotic and Biocide Cross-Resistance in Pseudomonas Aeruginosa Isolated from Different Ecological Niches: A Case Study in the Development of Multidrug Resistance in Environmental Hotspots. Microorganisms 2020, 8, 1647. [Google Scholar] [CrossRef]
- Auda, I.G.; Ali Salman, I.M.; Odah, J.G. Efflux Pumps of Gram-Negative Bacteria in Brief. Gene Rep. 2020, 20, 100666. [Google Scholar] [CrossRef]
- Fernández, L.; Hancock, R.E.W. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermani, A.A.; Macdonald, C.B.; Gundepudi, R.; Stockbridge, R.B. Guanidinium Export Is the Primal Function of SMR Family Transporters. Proc. Natl. Acad. Sci. 2018, 115, 3060–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Batra, A.; Schulenburg, H.; Dagan, T. Gene Sharing among Plasmids and Chromosomes Reveals Barriers for Antibiotic Resistance Gene Transfer. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20200467. [Google Scholar] [CrossRef] [PubMed]
- López, C.A.; Travers, T.; Pos, K.M.; Zgurskaya, H.I.; Gnanakaran, S. Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface. Sci. Rep. 2017, 7, 16521. [Google Scholar] [CrossRef] [Green Version]
- Mesaros, N.; Glupczynski, Y.; Avrain, L.; Caceres, N.E.; Tulkens, P.M.; Van Bambeke, F. A Combined Phenotypic and Genotypic Method for the Detection of Mex Efflux Pumps in Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2007, 59, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, M.; Martins, M.; Couto, I.; Rodrigues, L.; Spengler, G.; Martins, A.; Kristiansen, J.E.; Molnar, J.; Amaral, L. New Methods for the Identification of Efflux Mediated MDR Bacteria, Genetic Assessment of Regulators and Efflux Pump Constituents, Characterization of Efflux Systems and Screening for Inhibitors of Efflux Pumps. Curr. Drug Targets 2008, 9, 760–778. [Google Scholar] [CrossRef]
- Zahedi Bialvaei, A.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Mardani Dashti, Y.; Soleiman-Meigooni, S. Expression of RND Efflux Pumps Mediated Antibiotic Resistance in Pseudomonas Aeruginosa Clinical Strains. Microb. Pathog. 2021, 153, 104789. [Google Scholar] [CrossRef]
- Makabenta, J.M.V.; Nabawy, A.; Li, C.-H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-Based Therapeutics for Antibiotic-Resistant Bacterial Infections. Nat. Rev. Microbiol. 2021, 19, 23–36. [Google Scholar] [CrossRef]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Thakare, R.; Kesharwani, P.; Dasgupta, A.; Srinivas, N.; Chopra, S. Chapter 1—Antibiotics: Past, Present, and Future. In Drug Discovery Targeting Drug-Resistant Bacteria; Kesharwani, P., Chopra, S., Dasgupta, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–8. ISBN 978-0-12-818480-6. [Google Scholar]
- Freitas, I.R.; Cattelan, M.G. Chapter 15—Antimicrobial and Antioxidant Properties of Essential Oils in Food Systems—An Overview. In Microbial Contamination and Food Degradation; Holban, A.M., Grumezescu, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 443–470. ISBN 978-0-12-811515-2. [Google Scholar]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Artini, M.; Patsilinakos, A.; Papa, R.; Božović, M.; Sabatino, M.; Garzoli, S.; Vrenna, G.; Tilotta, M.; Pepi, F.; Ragno, R.; et al. Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas Aeruginosa. Molecules 2018, 23, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The Progress of Essential Oils as Potential Therapeutic Agents: A Review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Akhtar, M.S. Antimicrobial Activity of Essential Oils Extracted from Medicinal Plants against the Pathogenic Microorganisms: A Review. Issues Biol. Sci. Pharm. Res. 2014, 2, 1–7. [Google Scholar]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Yao, L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019 (accessed on 17 December 2022).
- Coșeriu, R.L.; Vintilă, C.; Mare, A.D.; Ciurea, C.N.; Togănel, R.O.; Cighir, A.; Simion, A.; Man, A. Epidemiology, Evolution of Antimicrobial Profile and Genomic Fingerprints of Pseudomonas Aeruginosa before and during COVID-19: Transition from Resistance to Susceptibility. Life 2022, 12, 2049. [Google Scholar] [CrossRef]
- Çopur Çiçek, A.; Ertürk, A.; Ejder, N.; Rakici, E.; Kostakoğlu, U.; Esen Yıldız, İ.; Özyurt, S.; Sönmez, E. Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas Aeruginosa Infections. Infect. Drug Resist. 2021, 14, 1517–1526. [Google Scholar] [CrossRef]
- Gill, M.M.; Usman, J.; Kaleem, F.; Hassan, A.; Khalid, A.; Anjum, R.; Fahim, Q. Frequency and Antibiogram of Multi-Drug Resistant Pseudomonas Aeruginosa. J. Coll. Physicians Surg.-Pak. JCPSP 2011, 21, 531–534. [Google Scholar]
- Vega, S.; Dowzicky, M.J. Antimicrobial Susceptibility among Gram-Positive and Gram-Negative Organisms Collected from the Latin American Region between 2004 and 2015 as Part of the Tigecycline Evaluation and Surveillance Trial. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, L.; Memon, Z.; Ismail, M.O.; Sadiq, S. Frequency and Antibiogram of Multi-Drug Resistant Pseudomonas Aeruginosa in a Tertiary Care Hospital of Pakistan. Pak. J. Med. Sci. 2019, 35, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas Aeruginosa in the Middle East and North Africa Region. mSphere 2021, 6, e00202-21. [Google Scholar] [CrossRef]
- Akkerman, A.E.; Kuyvenhoven, M.M.; van der Wouden, J.C.; Verheij, T.J. Prescribing Antibiotics for Respiratory Tract Infections by GPs: Management and Prescriber Characteristics. Br. J. Gen. Pract. 2005, 55, 114–118. [Google Scholar]
- Core Elements of Hospital Antibiotic Stewardship Programs |Antibiotic Use| CDC. Available online: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html (accessed on 17 December 2022).
- Fridkin, S.; Baggs, J.; Fagan, R.; Magill, S.; Pollack, L.A.; Malpiedi, P.; Slayton, R.; Khader, K.; Rubin, M.A.; Jones, M.; et al. Vital Signs: Improving Antibiotic Use Among Hospitalized Patients. Morb. Mortal. Wkly. Rep. 2014, 63, 194–200. [Google Scholar]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial Activity of Cinnamon Essential Oils and Their Synergistic Potential with Antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63–67. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Guenther, E.; Althausen, D. The Essential Oils; Van Nostrand: New York, NY, USA, 1948; Volume 1. [Google Scholar]
- Carson, C.F.; Hammer, K.A. Chemistry and Bioactivity of Essential Oils. Lipids Essent Oils Antimicrob Agents 2011, 25, 203–238. [Google Scholar]
- Ríos, J.-L. Chapter 1Essential Oils: What They Are and How the Terms Are Used and Defined. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 3–10. ISBN 978-0-12-416641-7. [Google Scholar]
- Mekem Sonwa, M. Isolation and Structure Elucidation of Essential Oil Constituents: Comparative Study of the Oils of Cyperus Alopecuroides, Cyperus Papyrus, and Cyperus Rotundus. Ph.D. Thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, Hamburg, Germany, 2000. Available online: https://ediss.sub.uni-hamburg.de/handle/ediss/2156 (accessed on 2 January 2023).
- Fine, D.H.; Furgang, D.; Sinatra, K.; Charles, C.; McGuire, A.; Kumar, L.D. In Vivo Antimicrobial Effectiveness of an Essential Oil-Containing Mouth Rinse 12 h after a Single Use and 14 Days’ Use. J. Clin. Periodontol. 2005, 32, 335–340. [Google Scholar] [CrossRef]
- Rajendran, N.; Crosby, L. Inhalation Study of the In Vivo Toxicity of Essential Oils. FDA. 2018. Available online: https://www.fda.gov/tobacco-products/research/inhalation-study-in-vivo-toxicity-essential-oils (accessed on 2 January 2023).
- Selvakumar, P.; Karthik, V.; Kumar, P.S.; Asaithambi, P.; Kavitha, S.; Sivashanmugam, P. Enhancement of Ultrasound Assisted Aqueous Extraction of Polyphenols from Waste Fruit Peel Using Dimethyl Sulfoxide as Surfactant: Assessment of Kinetic Models. Chemosphere 2021, 263, 128071. [Google Scholar] [CrossRef]
- Sieniawska, E.; Świątek, Ł.; Wota, M.; Rajtar, B.; Polz-Dacewicz, M. Microemulsions of Essentials Oils—Increase of Solubility and Antioxidant Activity or Cytotoxicity? Food Chem. Toxicol. 2019, 129, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, O.; Silcock, P.; Beauchamp, J.; Buettner, A.; Everett, D.W. Emulsifying Properties of Legume Proteins Compared to β-Lactoglobulin and Tween 20 and the Volatile Release from Oil-in-Water Emulsions. J. Food Sci. 2014, 79, E2014–E2022. [Google Scholar] [CrossRef] [PubMed]
- Elcocks, E.; Spencer-Phillips, P.; Adukwu, E. Rapid bactericidal effect of cinnamon bark essential oil against Pseudomonas aeruginosa. J. Appl. Microbiol. 2019, 128, 1025–1037. [Google Scholar] [CrossRef]
- Wijesinghe, G.K.; Feiria, S.B.; Maia, F.C.; Oliveira, T.R.; Joia, F.; Barbosa, J.P.; Boni, G.C.; Höfling, J.F. In-Vitro Antibacterial and Antibiofilm Activity of Cinnamomum verum Leaf Oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. An. Acad. Bras. Ciênc. 2021, 93, e20201507. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.C.; Tavares, T.D.; Teixeira, M.A.; Teixeira, M.O.; Homem, N.C.; Amorim, M.T.P.; Felgueiras, H.P. Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus Aureus or Pseudomonas Aeruginosa from Infected Microenvironments. Pharmaceutics 2021, 13, 195. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, E.Q.; Liang, C.; Chen, J.; Tran, M.N.; Hong, C.H.; Jang, Y.; Park, K.L.; Bae, K.; Kim, Y.H.; et al. Discrimination of Cinnamon Bark and Cinnamon Twig Samples Sourced from Various Countries Using HPLC-Based Fingerprint Analysis. Food Chem. 2011, 127, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Haahtela, K.; Vuorela, P. Antimicrobial Activity of Some Coumarin Containing Herbal Plants Growing in Finland. J. Ethnopharmacol. 2000, 73, 299–305. [Google Scholar] [CrossRef]
- Widelski, J.; Luca, S.V.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J.-L.; Skalicka-Wozniak, K. Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum Luxurians Tamamsch. Molecules 2018, 23, 1222. [Google Scholar] [CrossRef] [Green Version]
- Doyle, A.A.; Stephens, J.C. A Review of Cinnamaldehyde and Its Derivatives as Antibacterial Agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef]
- Niu, A.; Wu, H.; Ma, F.; Tan, S.; Wang, G.; Qiu, W. The Antifungal Activity of Cinnamaldehyde in Vapor Phase against Aspergillus Niger Isolated from Spoiled Paddy. LWT 2022, 159, 113181. [Google Scholar] [CrossRef]
- Pereira, W.A.; Pereira, C.D.S.; Assunção, R.G.; da Silva, I.S.C.; Rego, F.S.; Alves, L.S.R.; Santos, J.S.; Nogueira, F.J.R.; Zagmignan, A.; Thomsen, T.T.; et al. New Insights into the Antimicrobial Action of Cinnamaldehyde towards Escherichia Coli and Its Effects on Intestinal Colonization of Mice. Biomolecules 2021, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Renuka, N.; Vivek, H.K.; Pavithra, G.; Ajay Kumar, K. Synthesis of Coumarin Appended Pyrazolyl-1,3,4-Oxadiazoles and Pyrazolyl-1,3,4-Thiadiazoles: Evaluation of Their in Vitro Antimicrobial and Antioxidant Activities and Molecular Docking Studies. Russ. J. Bioorganic Chem. 2017, 43, 197–210. [Google Scholar] [CrossRef]
- Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Curr. Med. Chem. 2005, 12, 887–916. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas Fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-K.; Yusoff, K.; Ajat, M.; Wee, C.-Y.; Yap, P.-S.-X.; Lim, S.-H.-E.; Lai, K.-S. Combinatorial Antimicrobial Efficacy and Mechanism of Linalool Against Clinically Relevant Klebsiella Pneumoniae. Front. Microbiol. 2021, 12, 635016. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial Activity and Mechanism of Linalool against Pseudomonas Aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- He, R.; Chen, W.; Chen, H.; Zhong, Q.; Zhang, H.; Zhang, M.; Chen, W. Antibacterial Mechanism of Linalool against L. Monocytogenes, a Metabolomic Study. Food Control. 2022, 132, 108533. [Google Scholar] [CrossRef]
- Mauriello, E.; Ferrari, G.; Donsì, F. Effect of Formulation on Properties, Stability, Carvacrol Release and Antimicrobial Activity of Carvacrol Emulsions. Colloids Surf. B Biointerfaces 2021, 197, 111424. [Google Scholar] [CrossRef]
- Nostro, A.; Papalia, T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Patents Anti-Infect. Drug Disc. 2012, 7, 28–35. [Google Scholar] [CrossRef]
- Addo, K.A.; Li, H.; Yu, Y.; Xiao, X. Unraveling the Mechanism of the Synergistic Antimicrobial Effect of Cineole and Carvacrol on Escherichia Coli O157:H7 Inhibition and Its Application on Fresh-Cut Cucumbers. Food Control. 2023, 144, 109339. [Google Scholar] [CrossRef]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and Multibeneficial Bioactivities of Carvacrol (4-Isopropyl-2-Methylphenol), a Component of Essential Oils Produced by Aromatic Plants and Spices. J. Agric. Food Chem. 2014, 62, 7652–7670. [Google Scholar] [CrossRef] [PubMed]
- Powers, C. On GuardⓇ! Antimicrobial Activity of a Proprietary Essential Oil Blend against Skin Microbes. Undergrad. J. Exp. Microbiol. Immunol. 2022, 8, 1–10. [Google Scholar]
- Coutinho, H.D.M.; Matias, E.F.F.; Santos, K.K.A.; Tintino, S.R.; Souza, C.E.S.; Guedes, G.M.M.; Santos, F.A.D.; Costa, J.G.M.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the Norfloxacin Antibiotic Activity by Gaseous Contact with the Essential Oil of Croton Zehntneri. J. Young Pharm. 2010, 2, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Agreles, M.A.A.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. The Role of Essential Oils in the Inhibition of Efflux Pumps and Reversion of Bacterial Resistance to Antimicrobials. Curr. Microbiol. 2021, 78, 3609–3619. [Google Scholar] [CrossRef]
- Fadli, M.; Chevalier, J.; Saad, A.; Mezrioui, N.-E.; Hassani, L.; Pages, J.-M. Essential Oils from Moroccan Plants as Potential Chemosensitisers Restoring Antibiotic Activity in Resistant Gram-Negative Bacteria. Int. J. Antimicrob. Agents 2011, 38, 325–330. [Google Scholar] [CrossRef]
- Iman Islamieh, D.; Goudarzi, H.; Khaledi, A.; Afshar, D.; Esmaeili, D. Reduced Efflux Pumps Expression of Pseudomonas Aeruginosa with Satureja Khuzistanica Essential Oil. Iran. J. Med. Sci. 2020, 45, 463–468. [Google Scholar] [CrossRef]
- LAUDY, A.E. Non-Antibiotics, Efflux Pumps and Drug Resistance of Gram-Negative Rods. Pol. J. Microbiol. 2018, 67, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Eucast: MIC Determination. Available online: https://www.eucast.org/ast_of_bacteria/mic_determination (accessed on 5 January 2023).
- Eucast: Disk Diffusion Methodology. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 5 January 2023).
- Li, X.-Z.; Barré, N.; Poole, K. Influence of the MexA-MexB-OprM Multidrug Efflux System on Expression of the MexC-MexD-OprJ and MexE-MexF-OprN Multidrug Efflux Systems in Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2000, 46, 885–893. [Google Scholar] [CrossRef]
- Savli, H.; Karadenizli, A.; Kolayli, F.; Gundes, S.; Ozbek, U.; Vahaboglu, H. Expression Stability of Six Housekeeping Genes: A Proposal for Resistance Gene Quantification Studies of Pseudomonas Aeruginosa by Real-Time Quantitative RT-PCR. J. Med. Microbiol. 2003, 52, 403–408. [Google Scholar] [CrossRef] [PubMed]
Essential Oils | Chemical Composition | % |
---|---|---|
Cinnamon | trans-cinnamaldehyde | 55.14% |
trans cinnamyl acetate | 11.97% | |
β-phellandrene | 5.19% | |
Basil | linalool | 47.66% |
1,8-cineole | 10.2% | |
trans-α-bergamotene | 5.82% | |
Clove | eugenol | 80.43% |
eugenyl acetate | 12.56% | |
β-caryophyllene | 5.16% | |
Hawaiian Sandal | cis-α-santalol | 43.21% |
cis-β-santalol | 18.14% | |
cis-lanceol | 8.24% | |
Lavender | linalool | 34.24% |
linalyl acetate | 30.49% | |
lavandulyl acetate | 4.89% | |
Lemon eucalyptus | Citronellal | 72.96% |
Citronellol | 10.09% | |
neo-Isopulegol | 4.66% | |
Marjoram | terpinen-4-ol | 24.86% |
γ-terpinene | 13.92% | |
trans-sabiene-hydrate | 12.73% | |
Tea tree | terpinen-4-ol | 37.65% |
γ-terpinene | 19.64% | |
α-terpinene | 10.44% | |
Oregano | carvacrol | 65.19% |
para-cymene | 8.65% | |
thymol | 8.47% | |
Patchouli | patchouli alcohol | 38.04% |
α-bulnesene | 16.28% | |
α-guaiene | 11.71% | |
Peppermint | menthol | 35.45% |
menthone | 25.63% | |
menthyl acetate | 6.74% | |
Rosemary | 1,8-cineole | 45.27% |
α-pinene | 12.69% | |
camphor | 10.83% | |
Turmeric | ar-turmerone | 38.25% |
α-turmerone | 12.32% | |
α-curcumene | 5.1% | |
Thyme | thymol | 33.03% |
para-Cymene | 24.92% | |
γ-terpinene | 14.09% |
EO | MIC (% v/v) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Samples (% of Total No. of Isolates) | 25 | 12.5 | 6.25 | 3.13 | 1.56 | 0.78 | 0.39 | 0.2 | 0.1 | 0.05 | 0.025 | 0.0125 | |
Cinnamon | 72 (100%) | - | - | - | - | - | - | - | - | - | 30.55% n = 22 | 33.33% n = 24 | 47.22% n = 34 |
Thyme | 27 (37.5%) | 88.88% n = 24 | 3.7% n = 1 | - | - | 3.70% n = 1 | - | 3.70% n = 1 | - | - | - | - | - |
Turmeric | 1 (1.38%) | - | 100% n = 1 | - | - | - | - | - | - | - | - | - | - |
Peppermint | 4 (5.55%) | 75% n = 3 | - | - | - | - | - | - | 25% n = 1 | - | - | - | - |
Basil | 6 (8.33%) | 16.66% n = 1 | - | - | - | - | - | 33.33% n = 2 | 50% n = 3 | - | - | - | - |
Clove | 6 (12.5%) | 100% n = 6 | - | - | - | - | - | - | - | - | - | - | - |
Lavender | 9 (12.5%) | 55.55% n = 5 | - | 11.11% n = 1 | - | 11.11% n = 1 | - | 11.11% n = 1 | - | - | 11.11% n = 1 | - | - |
Plant Family | EO Plant Species (Lot Number) | |
---|---|---|
Pure EO (n = 14) | Lamiaceae | Rosmarinus officinalis (Rosemary) 2019711Y) |
Origanum majorana (Marjoram) (2017512Y) | ||
Thymus vulgaris (Thyme) (190219Y) | ||
Ocimum basilicum (Basil) (201414Y) | ||
Pogostemon cablin (Patchouli) (202842Y) | ||
Origanum vulgare (Oregano) (192497Y) | ||
Lavandula angustifolia (Lavender) (212161Y) | ||
Mentha piperita (Peppermint) (211651Y) | ||
Myrtaceae | Melaleuca alternifolia (Tea tree) (2025211Y) | |
Eucalyptus citriodora (Lemon eucalyptus) (213505Y) | ||
Eugenia caryophyllata (Clove) (201748Y) | ||
Lauraceae | Cinnamomum zeylanicum (Cinnamon) (211124Y) | |
Santalaceae | Santalum paniculatum (Hawaiian sandal) (202469Y) | |
Zingiberaceae | Curcuma longa (Turmeric) (2034311Y) | |
Combined EO formulations (n = 2) | Combination A (OnGuard©) | Capparis mitchellii (Wild orange) Eugenia caryophyllata (Clove) Cinnamomum zeylanicum (Cinnamon) Eucalyptus citriodora (Lemon eucalyptus) Rosmarinus officinalis (Rosemary) |
Combination B (DDR Prime©) | Myrtus communis (Myrtle) Capparis mitchellii (Wild orange) Litsea cubeba (Mountain pepper) Thymus vulgaris (Thyme) Eugenia caryophyllata (Clove) Melaleuca quinquenervia (Niaouli) Philadelphus coronarius (Mock-orange) |
Efflux Pump Gene | Primer Sequence (5′ > 3′) | Amplicon Length bp (Base Pair) |
---|---|---|
mexA-Fw | ACCTACGAGGCCGACTACCAGA | 252 bp |
mexA-Rw | GTTGGTCACCAGGGCGCCTTC | |
mexB-Fw | GTGTTCGGCTCGCAGTACTCGA | 244 bp |
mexB-Rw | AACCGTCGGGATTGACCTTGAGC | |
mexC-Fw | ACGTCGGCGAACTGCAACG | 374 bp |
mexC-Rw | AGCCAGCAGGACTTCGATACCG | |
mexE-Fw | TCATCCCACTTCTCCTGGCGC | 151 bp |
mexE-Rw | CGTCCCACTCGTTCAGCGG | |
mexX-Fw | CCAGCAGGAATAGGGCGACCA | 82 bp |
mexX-Rw | AATCGAGGGACACCCATGCACATC | |
rpoD-Fw | GCGGATGATGTCTTCCACCTGTTCC | 132 bp |
rpoD-Rw | GCGCAACAGCAATCTCGTCTGAAAGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coșeriu, R.L.; Vintilă, C.; Pribac, M.; Mare, A.D.; Ciurea, C.N.; Togănel, R.O.; Cighir, A.; Simion, A.; Man, A. Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter? Antibiotics 2023, 12, 163. https://doi.org/10.3390/antibiotics12010163
Coșeriu RL, Vintilă C, Pribac M, Mare AD, Ciurea CN, Togănel RO, Cighir A, Simion A, Man A. Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter? Antibiotics. 2023; 12(1):163. https://doi.org/10.3390/antibiotics12010163
Chicago/Turabian StyleCoșeriu, Răzvan Lucian, Camelia Vintilă, Mirela Pribac, Anca Delia Mare, Cristina Nicoleta Ciurea, Radu Ovidiu Togănel, Anca Cighir, Anastasia Simion, and Adrian Man. 2023. "Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter?" Antibiotics 12, no. 1: 163. https://doi.org/10.3390/antibiotics12010163
APA StyleCoșeriu, R. L., Vintilă, C., Pribac, M., Mare, A. D., Ciurea, C. N., Togănel, R. O., Cighir, A., Simion, A., & Man, A. (2023). Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter? Antibiotics, 12(1), 163. https://doi.org/10.3390/antibiotics12010163