Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls
Abstract
:1. Introduction
2. Results
2.1. Associations between ARGs and ISs in a Mouse Model
2.2. Associations between ARGs and ISs in a Real Agricultural Context
3. Discussion
4. Conclusions
5. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Public Health Agency of Canada. Canadian Antimicrobial Resistance Surveillance System Report (CARSS); Public Health Agency of Canada: Ottawa, ON, Canada, 2021; pp. 1–90.
- Diarra, M.S.; Malouin, F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 2014, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Adjiri-Awere, A.; Van Lunen, T.A. Subtherapeutic use of antibiotics in pork production: Risks and alternatives. Can. J. Anim. Sci. 2005, 85, 117–130. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Zhou, Z.; Liu, B.; Wu, Z. A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Front. Microbiol. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E.P.C. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 2020, 11, 3602. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P.; Gourbeyre, E.; Varani, A.; Ton-Hoang, B.; Chandler, M. Everyman’s guide to bacterial insertion sequences. Microbiol. Spectr. 2015, 3, MDNA3-0030-2014. [Google Scholar] [PubMed] [Green Version]
- Razavi, M.; Kristiansson, E.; Flach, C.F.; Larsson, D.J. The association between insertion sequences and antibiotic resistance genes. Msphere 2020, 5, e00418-20. [Google Scholar] [CrossRef]
- Vandecraen, J.; Chandler, M.; Aertsen, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 2017, 43, 709–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, D.J.; Penumutchu, S.; Reinhart, E.M.; Zhang, C.; Korry, B.J.; Wurster, J.I. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 2019, 30, 800–823.e7. [Google Scholar] [CrossRef] [PubMed]
- Rovira, P.; McAllister, T.; Lakin, S.M.; Cook, S.R.; Doster, E.; Noyes, N.R. Characterization of the microbial resistome in conventional and “raised without antibiotics” beef and dairy production systems. Front. Microbiol. 2019, 10, 1980. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference center for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Ammor, M.S.; Flórez, A.B.; Álvarez-Martín, P.; Margolles, A.; Mayo, B. Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. J. Antimicrob. Chemother. 2008, 62, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacheyrou, M.; Normand, A.-C.; Guyot, P.; Cassagne, C.; Piarroux, R.; Bouton, Y. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 2011, 146, 253–262. [Google Scholar] [CrossRef]
- Lipszyc, A.; Szuplewska, M.; Bartosik, D. How do transposable elements activate expression of transcriptionally silent antibiotic resistance genes? Int. J. Mol. Sci. 2022, 23, 8063. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, X.; Li, J.; Lv, N.; Liu, F.; Wu, J.; Lin, I.Y.; Wu, N.; Weimer, B.C.; Gao, G.F.; et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl. Environ. Microbiol. 2016, 82, 6672–6681. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, R.; Nagaoka, K.; Nishimura, N.; Koike, S.; Takahashi, E.; Niimi, K.; Murase, H.; Kinjo, T.; Tsukahara, T.; Inoue, R. Comparison of the fecal microbiota of two monogastric herbivorous and five omnivorous mammals. Anim. Sci. J. 2020, 91, e13366. [Google Scholar] [CrossRef] [Green Version]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef]
- Peona, V.; Blom, M.P.K.; Xu, L.; Burri, R.; Sullivan, S.; Bunikis, I.; Liachko, I.; Haryoko, T.; Jønsson, K.A.; Zhou, Q.; et al. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. Resour. 2021, 21, 263–286. [Google Scholar] [CrossRef]
- Brown, C.L.; Keenum, I.M.; Dai, D. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Sci. Rep. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Beaulaurier, J.; Zhu, S.; Deikus, G.; Mogno, I.; Zhang, X.S.; Davis-Richardson, A.; Canepa, R.; Triplett, E.W.; Faith, J.J.; Sebra, R.; et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 2018, 36, 61–69. [Google Scholar] [CrossRef]
- Tourancheau, A.; Mead, E.A.; Zhang, X.S.; Fang, G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat. Methods. 2021, 18, 491–498. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 16, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, 517–525. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwager, E.; Bielski, C.; George, W. Ccrepe: Ccrepe_and_nc. Score. 2019 R Package Version 1.18.1. Available online: https://github.com/biobakery/biobakery (accessed on 1 August 2022).
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Menzel, P.; Ng, K.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef] [PubMed]
IS | Family | Score | p-Value | Bacteria |
---|---|---|---|---|
ISCce2 | IS256 | 0.856 | 3.54 × 10−11 | Clostridium cellulolyticum |
ISRgn3 | IS1380 | 0.845 | 6.97 × 10−10 | Ruminococcus gnavus |
ISStin10 | IS200/IS605 | 0.828 | 4.52 × 10−10 | Streptococcus iniae |
ISDha13 | IS200/IS605 | 0.797 | 7.59 × 10−8 | Desulfitobacterium hafniense |
ISBf7 | IS1380 | 0.791 | 6.64 × 10−9 | Bacteroides fragilis |
ISUnb4 | IS1595 | 0.777 | 5.87 × 10−9 | unclassified Bacteria |
ISBian1 | IS5 | 0.770 | 4.09 × 10−9 | Bifidobacterium animalis |
ISBvu1 | IS1380 | 0.764 | 2.31 × 10−9 | Bacteroides vulgatus |
ISCth10 | IS200/IS605 | 0.756 | 1.27 × 10−7 | Clostridium thermocellum |
ISPaes3 | IS256 | −0.753 | 9.52 × 10−8 | Paracoccus aestuarii |
ISPye36 | IS3 | −0.757 | 4.01 × 10−7 | Paracoccus yeei |
ISPye14 | IS66 | −0.757 | 1.5 × 10−7 | Paracoccus yeei |
ISPkr1 | IS21 | −0.759 | 7.3 × 10−8 | Paracoccus koreensis |
ISRsp12 | Tn3 | −0.765 | 1.66 × 10−7 | Rhizhobium sp. |
IS1396 | ISL3 | −0.774 | 2.71 × 10−8 | Serratia marcescens |
ISPbe1 | IS3 | −0.802 | 1.01 × 10−8 | Paracoccus bengalensis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiot, L.; Monger, X.C.; Vincent, A.T. Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls. Antibiotics 2023, 12, 175. https://doi.org/10.3390/antibiotics12010175
Galiot L, Monger XC, Vincent AT. Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls. Antibiotics. 2023; 12(1):175. https://doi.org/10.3390/antibiotics12010175
Chicago/Turabian StyleGaliot, Lucie, Xavier C. Monger, and Antony T. Vincent. 2023. "Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls" Antibiotics 12, no. 1: 175. https://doi.org/10.3390/antibiotics12010175
APA StyleGaliot, L., Monger, X. C., & Vincent, A. T. (2023). Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls. Antibiotics, 12(1), 175. https://doi.org/10.3390/antibiotics12010175