Impact of Infection Control on Prevalence of Surgical Site Infections in a Large Tertiary Care Hospital in Haiphong City
Abstract
:1. Introduction
2. Results
2.1. Point Prevalence Survey (PPS)
2.2. Risk Factors Associated with SSIs
2.3. Implementation of IC and ASP
3. Discussion
4. Materials and Methods
4.1. Setting
4.2. Point Prevalence Survey and Antimicrobial Use
4.3. Implementation of Infection Control
4.4. Antibiotic Stewardship (ASP)
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M.A. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries, systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Surgical Site Infection (SSI) 2022. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 27 April 2022).
- Curcio, D.; Cane, A.; Fernández, F.; Correa, J. Surgical site infection in elective clean and clean-contaminated surgeries in developing countries. Int. J. Infect. Dis. 2019, 80, 34–45. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Guidelines for the Prevention of Surgical Site Infection; WHO: Geneva, Switzerland, 2019; Volume 122. [Google Scholar]
- Huddleston, P.M.; Clyburn, T.A.; Evans, R.P.; Moucha, C.S.; Prokuski, L.J.; Joseph, J.; Sale, K. Surgical site infection prevention and control, An emerging paradigm. J. Bone Jt. Surg. Ser. A 2009, 91, 2–9. [Google Scholar] [CrossRef]
- Krishnan, R.J.; Crawford, E.J.; Syed, I.; Kim, P.; Rampersaud, Y.R.; Martin, J. Is the Risk of Infection Lower with Sutures than with Staples for Skin Closure after Orthopaedic Surgery? A Meta-analysis of Randomized Trials. Clin. Orthop. Relat. Res. 2019, 477, 922–937. [Google Scholar] [CrossRef]
- Berriós-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Kamel, C.; McGahan, L.; Mierzwinski-Urban, M.; Embil, J. Preoperative Skin Antiseptic Preparations and Application Techniques for Preventing Surgical Site Infections, A Systematic Review of the Clinical Evidence and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2011. [Google Scholar]
- Gravel, D.; Taylor, G.; Ofner, M.; Johnston, L.; Loeb, M.; Roth, V.R.; Stegenga, J.; Bryce, E.; The Canadian Nosocomial Infection Surveillance Program; Matlow, A. Point prevalence survey for healthcare-associated infections within Canadian adult acute-care hospitals. J. Hosp. Infect. 2007, 66, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Ustun, C.; Hosoglu, S.; Geyik, M.F.; Parlak, Z.; Ayaz, C. The accuracy and validity of a weekly point-prevalence survey for evaluating the trend of hospital-acquired infections in a university hospital in Turkey. Int. J. Infect. Dis. 2011, 15, E684–E687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.L.; Saguil, E.; Chakravarthy, M.; Lee, K.Y.; Ling, M.L.; Morikane, K.; Spencer, M.; Danker, W.; Yu, N.Y.C.; Edminston, C.E., Jr. Improving surgical site infection prevention in Asia-Pacific through appropriate surveillance programs, Challenges and recommendation. Infect. Dis. Health 2021, 26, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Hung, N.V.; Thu, T.A.; Rosenthal, V.D.; Thanh, D.T.; Anh, N.Q.; Bao Tien, N.L.; Quang, N.N. Surgical site infection rates in seven cities in Vietnam, Findings of the international nosocomial infection control consortium. Surg. Infect. 2016, 17, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M. Study on the efficacy of nosocomial infection control (Senic project), Results and implications for the future. Chemotherapy 1988, 34, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.L.; Apisarnthanarak, A.; Abbas, A.; Morikane, K.; Lee, K.Y.; Warrier, A.; Yamada, K. APSIC guidelines for the prevention of surgical site infections. Antimicrob. Resist. Infect. Control 2019, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.E.; Bergh, I.; Karlsson, J.; Eriksson, B.I.; Nilsson, K. Traffic flow in the operating room, An explorative and descriptive study on air quality during orthopedic trauma implant surgery. Am. J. Infect. Control 2012, 40, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Coste, C.; Pissard-Gibollet, R.; Toupet, G.; Fleury, É.; Lucet, J.C.; Birgand, G. Tracking Clinical Staff Behaviors in an Operating Room. Sensors 2019, 19, 2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripabelli, G.; Salzo, A.; Mariano, A.; Sammarco, M.L.; Tamburro, M. Healthcare-associated infections point prevalence survey and antimicrobials use in acute care hospitals (PPS 2016–2017) and long-term care facilities (HALT-3): A comprehensive report of the first experience in Molise Region, Central Italy, and targeted intervention strategies. J. Infect. Public Health 2019, 12, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Aiken, A.M.; Zeynep Kubilay, N.; Nthumba, P.; Barasa, J.; Okumu, G.; Mugarura, R.; Elobu, A.; Jombwe, J.; Maimbo, M.; et al. A multimodal infection control and patient safety intervention to reduce surgical site infections in Africa: A multicentre, before–after, cohort study. Lancet Infect. Dis. 2018, 18, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweigner, J.; Magiorakos, A.-P.; Haag, L.-M.; Gebhardt, S.; Meyer, E.; Gastmeier, P. Systematic Review and Evidence-Based Guidance on Perioperative Antibiotic Prophylaxis; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2013. [Google Scholar]
- Mathew, P.; Ranjalkar, J.; Chandy, S.J. Challenges in Implementing Antimicrobial Stewardship Programmes at Secondary Level Hospitals in India, An Exploratory Study. Front. Public Health 2020, 8, 493904. [Google Scholar] [CrossRef] [PubMed]
- Center for Infectious Diseases. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 2004, 32, 470–485. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
Total | PPS1 (n = 51) | PPS2 (n = 37) | p Value PPS1 vs. PPS2 | |
---|---|---|---|---|
Number of patients (n, %) | 88 | 51 | 37 | |
Sex male (n, %) | 66 (75.0) | 41 (80.4) | 25 (67.6) | 0.2149 |
Age (years) (median, min–max) | 45, min: 14–max: 74 | 47, min: 17–max: 77 | ||
BMI (kg/m2) (median, min–max) | 20.9, min: 15.9–max: 28.4 | 21.6, min: 16.6–max: 27.3 | ||
ASA score (mean ± SD) | 1.73 ± 0.57 | 1.56 ± 0.76 | 0.29 | |
Emergency surgery (n, %) | 72 (81.8) | 45 (88.2) | 27 (73.0) | 0.09 |
Diabetes mellitus (n, %) | 8 (9.1) | 1 (2.0) | 7 (18.9) | <0.0001 |
NNIS score (mean ± SD) | 1.15 ± 0.63 | 0.64 ± 0.6 | 0.0025 | |
Surgical Site Infections (n, %) | 6 (6.8) | 4 (7.8) | 2 (5.4) | 0.70 |
Open wound (n, %) | 72 (81.8) | 25 (49.0) | 37 (100) | <0.0001 |
Drain (n, %) | 42 (47.7) | 26 (51.0) | 16 (43.2) | 0.52 |
Scheduled surgery (n, %) | 43 (48.9) | 17 (33.3) | 26 (70.3) | 0.032 |
General anesthesia (n, %) | 12 (13.6) | 6 (11.8) | 6 (16.2) | 0.75 |
Antibiotic used before surgery (n, %) | 84 (95.5) | 50 (98.0) | 34 (91.9) | 0.30 |
Prophylactic antibiotics (n, %) | 84 (95.5) | 50 (98.0) | 34 (91.9) | 0.30 |
Prophylactic antibiotics (>48 h) (n, %) | 79 (89.8) | 51 (100) | 28 (75.7) | 0.0002 |
Cumulative antibiotics (n, %) | 31 (35.2) | 19 (37.3) | 12 (32.4) | 0.66 |
No SSI (n = 82) | SSI (n = 6) | p Value | |
---|---|---|---|
Emergency trauma (%) | 66 (80.5) | 6 (100) | 0.391 |
Average NNIS Score | 0.93 | 1 | 0.9893 |
Open wound (%) | 59 (71.9) | 3 (50) | 0.355 |
Drain (%) | 33 (40.2) | 4 (66.7) | 0.4192 |
General anesthesia (%) | 8 (9.8) | 3 (50) | 0.024 |
Antibiotic used before surgery (%) | 72 (87.8) | 6 (100) | 0.99 |
Prophylactic antibiotics (%) | 74 (90.2) | 6 (100) | 0.99 |
Assessment 1 (n = 19) | Assessment 2 (n = 17) | |
---|---|---|
Preoperative washing | 21.1% (n = 4/19) | 70.6% (n = 12/17) |
Alcohol hand rubbing before putting on gloves | 22.2% (n = 4/18) | 50% (n = 8/16) |
Debridement | 42.1% (n = 8/19) | 71.4% (n = 10/14) |
Rinsing | 42.1% (n = 8/19) | 71.4% (n = 10/14) |
Drying | 38.9% (n = 7/18) | 60% (n = 9/15) |
First antiseptic application | 100% (n = 18/18) | 100% (n = 17/17) |
Second antiseptic application | 73.7% (n = 14/19) | 70.6% (n = 12/17) |
Compliance with the criteria assessed | 54.4% (n = 80/147) | 70.5% (n = 91/129) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ory, J.; Le Minh, Q.; Phan Tien, H.; Vu Hai, V.; Careno, E.; Price, T.; Andrieux, A.; Crouzet, J.; Dunyach-Rémy, C.; Laureillard, D.; et al. Impact of Infection Control on Prevalence of Surgical Site Infections in a Large Tertiary Care Hospital in Haiphong City. Antibiotics 2023, 12, 23. https://doi.org/10.3390/antibiotics12010023
Ory J, Le Minh Q, Phan Tien H, Vu Hai V, Careno E, Price T, Andrieux A, Crouzet J, Dunyach-Rémy C, Laureillard D, et al. Impact of Infection Control on Prevalence of Surgical Site Infections in a Large Tertiary Care Hospital in Haiphong City. Antibiotics. 2023; 12(1):23. https://doi.org/10.3390/antibiotics12010023
Chicago/Turabian StyleOry, Jérôme, Quang Le Minh, Hung Phan Tien, Vinh Vu Hai, Elodie Careno, Tatiana Price, Alexandre Andrieux, Julien Crouzet, Catherine Dunyach-Rémy, Didier Laureillard, and et al. 2023. "Impact of Infection Control on Prevalence of Surgical Site Infections in a Large Tertiary Care Hospital in Haiphong City" Antibiotics 12, no. 1: 23. https://doi.org/10.3390/antibiotics12010023
APA StyleOry, J., Le Minh, Q., Phan Tien, H., Vu Hai, V., Careno, E., Price, T., Andrieux, A., Crouzet, J., Dunyach-Rémy, C., Laureillard, D., Lavigne, J. -P., & Sotto, A. (2023). Impact of Infection Control on Prevalence of Surgical Site Infections in a Large Tertiary Care Hospital in Haiphong City. Antibiotics, 12(1), 23. https://doi.org/10.3390/antibiotics12010023