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Abstract: Self-resistance determinants are essential for the biosynthesis of bioactive natural products
and are closely related to drug resistance in clinical settings. The study of self-resistance mechanisms
has long moved forward on the discovery of new resistance genes and the characterization of
enzymatic reactions catalyzed by these proteins. However, as more examples of self-resistance have
been reported, it has been revealed that the enzymatic reactions contribute to self-protection are not
confined to the cellular location where the final toxic compounds are present. In this review, we
summarize representative examples of self-resistance mechanisms for bioactive natural products
functional at different cell locations to explore the models of resistance strategies involved. Moreover,
we also highlight those resistance determinants that are widespread in nature and describe the
applications of self-resistance genes in natural product mining to interrogate the landscape of self-
resistance genes in drug resistance-related new drug discovery.

Keywords: self-resistance; natural products; biosynthetic gene clusters; temporal-spatial shielding;
intracellular multi-level resistance

1. Introduction

Natural products are small chemical compounds derived from secondary metabolites
of animals, plants, and microorganisms with an array of biological activities. Since the
discovery and clinical use of penicillin and streptomycin [1,2], natural products have been
an important source of drugs and play a critical role in modern medicine and agricultural
industries [2]. However, widespread use and misuse of these small chemical compounds
has led to the rising emergence of antibiotic resistance, resulting in the gradual loss of
efficacy of antibiotics in clinic and natural environment. Antibiotic resistance has become
one of the greatest public health threats that humans will have to face in the coming
decades [3,4]. According to a report from the UK government, the death toll caused by
antibiotic resistance is estimated to be up to 10 million per year by 2050, with a cost of
drug resistance to $100 trillion [5]. Therefore, there is an urgent need for uncovering the
resistance mechanisms in pathogens and developing new compounds with novel modes of
action [6–8].

Generally, the clinical antibiotic resistance in human pathogens belongs to acquired
resistance, with only a small fraction under the category of innate resistance. The origins
of these acquired resistance genes have been traced to antibiotic-producers in natural
environments [9,10]. In antibiotic-producing microbes, self-resistance is a prerequisite for
the synthesis of antibiotics [11]. Antibiotic biosynthetic gene clusters (BGCs) contain one
or more resistance genes to achieve self-protection, and these genes are considered to be
the reservoirs of resistance genes, which may transfer to human pathogens by conjugation,
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transformation or transduction [9,10,12,13]. Consequently, the elucidation of self-resistance
mechanisms from antibiotic-producing microbes will not only reveal the action model of
antibiotics and guide the discovery of new natural products, but also provide key clues for
the studies of clinical antibiotic resistance [8,10,13,14].

To avoid suicide, antibiotic-producers have developed several mechanisms, including
efflux pumps, chemical modification, prodrugs, compound sequestration, (sub)cellular
location, target modification, and damage repair to shield the toxicity of antibiotics, thereby
achieving self-protection [6]. Different strategies are adapted depending on the structure of
antibiotics, molecular target and producer species [8]. For instance, within the enediyne
producers, apoproteins are known to afford self-protection to the producers by binding the
nine-membered enediyne chromophore, whereas the strategies of chemical modification
guided by self-sacrifice proteins and sequestration mediated by drug binding proteins are
utilized for the detoxification of ten-membered enediynes [15,16]. To prevent self-harm
from bleomycin, its producer Steptomyces verticillus employs bleomycin N-acetylation and
sequestration mechanisms to protect itself. The antitumor agent mitomycin C producer,
Steptomyces lavendulae, has developed several mechanisms, including prodrug, efflux pump,
drug sequestration, and reoxidation of the active reduced mitomycin C to ensure self-
resistance [15].

With sustained advances in the study of self-resistance mechanisms, researchers have
found that the assembly of antibiotics and self-resistance do not always occur at the same
cellular location. In some cases, self-resistance is achieved through enzymatic reaction
occurring at different timing and location [17–19]. Although the self-protection mechanisms
in antibiotic-producing microbes and application of self-resistance genes in natural product
mining have been described in previous reviews [6], the topic of self-resistance in microbes
that synthesized final active drugs at different cell locations has never before been reviewed
in its entirety. In addition, self-resistance genes that widely prevalent in nature were not
described in previous reviews. Therefore, this contribution will provide an overview of
newly-discovered self-resistance enzymes for natural products functional at different cell
locations, explore the models of resistance strategies involved, describe those resistance
determinants that are widespread in nature and the applications in natural product mining,
and interrogate the landscape of self-resistance genes in combating drug resistance and
future applications in new drug discovery. The self-resistance genes were selected as the
keywords for the search in Google Scholar from 2016 to 2022.

In this review, we focus on new representative examples (Figure 1) of self-resistance
mechanisms of bioactive natural products, aiming to provide a perspective on the ties
between toxic antibiotics and self-resistance from timing and location. We present two mod-
els of self-resistance strategies: temporal-spatial shielding and non-spatial shielding–
intracellular multi-level resistance. As for the intracellular multi-level resistance model,
both of the enzymatic reactions catalyzed by resistance proteins and the assembly of toxic
natural products occur inside cells. Instead, in the temporal-spatial shielding model, the
final toxic compounds are produced extracellularly by secreted proteins, and self-resistance
is achieved through enzymatic reactions occurring at different timing and location. More-
over, we also highlight those resistance determinants that are widely spread in bacteria and
describe examples of the use of self-resistance genes to guide the discovery of new natural
products. Taken together, we expect to provide some new insight on the role of resistance
genes in natural product biosynthesis and in response to clinical resistance.
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lowed by activation with enzymatic reactions catalyzed by secreted proteins, which con-
tributes to the spatial shielding of drug activity. Moreover, cytosol-located resistance pro-
teins will immediately inactivate the pharmacophore of synthetic intermediate or detoxify 
the final active drug that entered into the cell via passive diffusion, thus protecting the 
antibiotic producing microorganisms from timing. In fact, similar space shielding patterns 
are occasionally adopted to biosynthesize some aminoglycoside, macrolide and nonribo-
somal peptide antibiotics [11,20,21]. In those cases, the activation of chemically modified 
prodrugs is catalyzed by membrane-bound enzymes via the hydrolysis of the modified 
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protection system in naphthyridinomycin (NDM, 1) biosynthesis, in which NapU is re-
sponsible for extracellular activation and NapW contributes to intracellular detoxification 
[17,18]. NDM, a member of tetrahydroisoquinoline alkaloids with complex hexacyclic 
structure, exhibits excellent antitumor and antimicrobial activities [22,23]. Its prominent 
biological activity is derived from the formation of electrophilic iminium species by elim-
inating C-7 hydroxyl, which covalently alkylates the N2 residue of guanine residing in the 

Figure 1. Representative natural products that employ temporal-spatial shielding or intracellular
multi-level resistance model during biosynthesis.

2. Temporal-Spatial Shielding Resistance

A drug molecule does not function unless it binds to its target. Microbes that synthesize
antibiotics have developed a defensive strategy characterized as temporal-spatial shielding
in order to prevent their own cytotoxic molecules binding to the target within the cells.
The temporal-spatial shielding is a derivative of a common prodrug strategy, and the
most significant difference between them is the presence or absence of secreted protein
responsible for inert drug activation. In temporal-spatial shielding mode, antibiotics are
synthesized as inert drugs and then transported to the extracellular space, followed by
activation with enzymatic reactions catalyzed by secreted proteins, which contributes to
the spatial shielding of drug activity. Moreover, cytosol-located resistance proteins will
immediately inactivate the pharmacophore of synthetic intermediate or detoxify the final
active drug that entered into the cell via passive diffusion, thus protecting the antibiotic
producing microorganisms from timing. In fact, similar space shielding patterns are
occasionally adopted to biosynthesize some aminoglycoside, macrolide and nonribosomal
peptide antibiotics [11,20,21]. In those cases, the activation of chemically modified prodrugs
is catalyzed by membrane-bound enzymes via the hydrolysis of the modified groups such
as phosphate groups and leader peptides. However, in the temporal-spatial shielding
model, the inert prodrugs are transported across the membrane and further activated by
the secreted proteins in extracellular space.

A well-studied example of temporal-spatial shielding mode is the NapW/NapU
self-protection system in naphthyridinomycin (NDM, 1) biosynthesis, in which NapU is
responsible for extracellular activation and NapW contributes to intracellular detoxifica-
tion [17,18]. NDM, a member of tetrahydroisoquinoline alkaloids with complex hexacyclic
structure, exhibits excellent antitumor and antimicrobial activities [22,23]. Its prominent
biological activity is derived from the formation of electrophilic iminium species by elim-
inating C-7 hydroxyl, which covalently alkylates the N2 residue of guanine residing in
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the minor groove, forming DNA lesions that threaten cellular livelihood (Figure 2A). In
the NDM biosynthetic pathway, cytosol-located short-chain dehydrogenase/reductase
NapW is responsible for reducing the hemiaminal pharmacophore of intermediate 2 to
generate the non-toxic 3 (Figure 2A), which ensures the harmlessness of following products
and facilitates the biosynthetic process [18]. The resulting intermediate 3 is treated with a
membrane protease NapG to produce the matured prodrug 4, which is then transported out
of the cell and activated by the secreted oxidoreductase NapU to generate the final product
NDM (Figure 2A). Moreover, NapU catalyzes the overoxidative inactivation of NDM into
5 to control the extracellular concentration of antibiotic and reduce damage to the producer
cell [17]. Beyond that, the re-entered final active drug NDM is also inactivated with the
reductive reaction of NapW (Figure 2A) [18]. The mechanism of NDM inactivation is
completely different between intracellular and extracellular. The intracellular detoxification
is achieved by reduction reaction and the extracellular by oxidation [17,18], suggesting that
new enzyme reactions are involved in pharmacophore modification beyond hydrolysis.
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Figure 2. Examples of temporal-spatial shielding resistance model. (A) Self-resistance mechanisms
of NDM producer Streptomyces lusitanus. Cytosol-located short-chain dehydrogenase/reductase
NapW confers temporal shielding of NDM cytotoxicity by detoxification of biosynthetic intermediate
and inactivation of re-entered final product. The membrane protease NapG couples with the secreted
oxidoreductase NapU contributes to spatial shielding of NDM activity by prodrug maturation, NDM
activation and inactivation. (B) Self-resistance mechanisms of A26771B producer Penicillium turba-
tum. Activation of the final product A26771B in extracellular space by the secreted oxidoreductase
BerkD ensures the safety of producer via spatial shielding. Intracellular A26771B inactivation by
cytoplasmic short-chain reductase BerkC and the subsequent recycling of the products control the
self-harm of its producer from time.

Compared to prokaryotes, the compartmentalized biosynthesis of natural products is
more frequently used by eukaryotes to isolate the toxicity of substances, because the latter
have discrete organelles to partition biosynthetic components orderly and efficiently [24].
An excellent example is the compartmentalized biosynthesis of fungal mycophenolic acid,
which sequesters the inhibition of mycophenolic acid on inosine-5-monophosphate de-
hydrogenase away from the nucleus of fungi, thereby ensuring the normal synthesis of
DNA [24,25]. However, there are few reports on self-resistance mediated by enzyme-
catalyzed temporal-spatial shielding in the biosynthesis of eukaryotic natural products.
Recent studies of self-protection strategies against fungal macrolides revealed that this self-
resistance mode is involved in the biosynthesis of A26771B [19]. A26771B is a 16-membered
fungal macrolide antibiotic isolated from Penicillium turbatum, and contains a succinate
moiety and an unusual γ-keto-α,β-unsaturated carboxyl, among which the γ-keto group is
the pharmacophore (Figure 2B) [26–28]. It exhibits prominent biological activity against
Gram-positive bacteria and fungi, although with an unknown mode of action [26]. To
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biosynthesize A26771B efficiently, its producer utilizes a strategy of intracellular reduction
and extracellular oxidation for reversible conversion between ketone and alcohol, thus
protecting itself from the cytotoxic effect of A26771B (Figure 2B) [19]. Intracellular acyl-
transferase BerkF catalyzes monosuccinylation of biosynthetic intermediate Berklactone C
to generate the mature non-toxic prodrug Berkeleylactone E, which is then exported out
of the cell and oxidized by secreted oxidoreductase BerkD to form the target antibiotic
A26771B. Moreover, cytoplasmic short-chain reductase BerkC will reduce the γ-keto group
of antibiotic A26771B immediately once it enters into the host cell (Figure 2B). Therefore,
the producer employs enzymatic reactions occurring at different timing and location to
avoid self-destruction, which is appeared for the first time in fungal antibiotic biosynthesis.
Given that the γ-keto-α,β-unsaturated carboxyl serves as the pharmacophore for many
fungal macrolide antibiotics, this reversible conversion between ketone and alcohol might
be a generic self-resistance strategy in fungal macrolides biosynthesis. However, no more
examples are currently available and therefore further studies will be necessary to verify
this hypothesis.

The self-resistance strategy involving temporal-spatial shielding is widely recognized
to apply a secreted protein that located in the extracellular space to catalyze the maturation
of prodrugs, thereby sequestering the toxicity of the final products away from their intra-
cellular targets. This spatial compartmentalization of biosynthetic steps is similar to the
compartmentalized biosynthesis of fungal natural products, for which the cell membrane
acts as the shield in isolation of toxic substances [24]. Fungal cells comprise an additional
endo-membrane system, whereas prokaryotes only contain an exo-membrane system.
Therefore, in order to minimize the potential toxicity of natural products and control the
efficiency of biosynthetic machinery, prokaryotes employ secreted proteins to complete
the biosynthesis of final toxic products outside the cell. In addition, this temporal-spatial
shielding mode of self-protection represents an evolutionary advantage and has been
occasionally adopted by fungi to reduce the consumption of endogenous resources [19].

3. Intracellular Multi-Level Resistance

Aside from synthesized in the form of prodrugs, which are subsequently generated to
active compounds during or after excretion, natural products are often directly synthesized
in active forms inside the cell. Therefore, some producers would generate a multi-level
resistance strategy composed of several resistance mechanisms to protect themselves from
the toxicity of intracellular antibiotics. Here, we enumerate some recently reported exam-
ples, including bacteria that produce yatakemycin (YTM), azinomycin B (AZB), trioxacarcin
A (TXNA)/LL-D49194 (LLD), capreomycin (CMN), and colibactins (Figure 3).

YTM is a potent genotoxic agent belonging to the spirocyclopropylcyclohexadienone
(SCPCHD) family natural products with remarkable cytotoxicity against various tumor
cells and pathogenic fungi due to its DNA alkylating activity towards N3 position of
adenine nucleobase and non-covalent CH-π interaction with deoxyribose group in DNA
duplex [29–33].To counter its toxicity, the YTM-producer Streptomyces sp. TP-3056 has
developed a multi-level resistance strategy for self-protection, including efflux and chem-
ical modification of YTM and repair of DNA (Figure 3A). YtkR6 is homologous to the
drug-resistance transporter ChaT1 [34], and thereby considered to perform the efflux of
YTM to extracellular space, and serve as the primary detoxification mechanism. In addition,
GyrI-like protein YtkR7 will eliminate the DNA alkylating activity through hydrolysis
of cyclopropane warhead to minimize the YTM concentration inside cell [35]. Despite
this, the active alkylating agent YTM can still covalently bind to the AT rich of DNA,
thereby interrupting normal cellular process. DNA glycosylase YtkR2 is responsible for
the remove of the 3-yatakemycinyladenine nucleobases through hydrolyzing the glyco-
sidic bonds of YTM-DNA adducts, initiating the base excision repair pathway to complete
the damage repair [36,37]. Structural analysis has revealed that, similar to Bacillus cereus
AlkD [33,38], the DNA glycosylase YtkR2 adopts a non-base-flipping mechanism to excise
3-yatakemycinyladenine nucleobase [33,37]. The resulting AP site (apurinic/apyrimidinic
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site) is proposed to be processed by proteins TtkR3, TtkR4, and TtkR5, which are homol-
ogous to the enzymes involved in the BER system, including xanthine phosphoribosyl-
transferase, mental-dependent TatD family of DNase and AP endonuclease, respectively
[39,40]. Together, these six proteins form a multiple self-defense network to protect the
producer from YTM toxicity. Given that the homologs of YtkR2 and YtkR7 were found in
the producing strain of CC-1065 [35,37], another compound in SCPCHD family, it is likely
that this self-defense network is a generic self-resistance strategy for SCPCHD natural
product biosynthesis.
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Figure 3. Examples of intracellular multi-level resistance model. (A) Self-resistance strategies em-
ployed by yatakemycin (YTM) producing strain Streptomyces sp. TP-3056. The producer is known 
to be protected by seven resistance genes that function in efflux pumps, chemical modification and 
damage repair. (B) Self-protection mechanisms of azinomycin B (AZB) producing strain Streptomy-

Figure 3. Examples of intracellular multi-level resistance model. (A) Self-resistance strategies
employed by yatakemycin (YTM) producing strain Streptomyces sp. TP-3056. The producer is known
to be protected by seven resistance genes that function in efflux pumps, chemical modification and
damage repair. (B) Self-protection mechanisms of azinomycin B (AZB) producing strain Streptomyces
sahachiroi. The drug-bind protein AziR, transmembrane export protein AziE, DNA damage repair
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enzymes AlkZ and AziN confer resistance to AZB in Streptomyces sahachiroi via drug sequestration, ef-
flux pumps, target protection and damage repair, respectively. (C) Self-resistance strategies employed
by trioxacarcin A (TXNA) producer Streptomyces bottropensis. To withstand the genotoxicity of TXN,
the producer has evolved drug efflux pump and DNA damage repair mechanisms. (D) Multi-level
resistance mechanism in capreomycin (CMN)-producing strain Saccharothrix mutabilis subsp. capreolus.
N-acetyltransferase Cac is responsible for inactivating CMN IIA and IIB via acetylation, methyl-
transferase CmnU confers resistance to CMN by methylating 16S rRNA, phosphotransferase Cph
plays role in the phosphorylation of CMN IA and IIA, and it also serves as an antibiotic sequester to
inactivate CMN IIB by physical sequestration. (E) Multi-level resistance mechanism in colibactin-770-
producing strain Escherichia coli (pks+). Nonribosomal peptide synthetases ClbN and ClbB prevent the
formation of the active imine moiety during early stage of colibactin biosynthesis, inner-membrane
transporter ClbM and peptidase ClbP are responsible for prodrug maturation and efflux. Moreover,
the intracellular cyclopropane hydrolase ClbS abrogates cytotoxicity of the offloaded intermediates
or re-entered colibactin.

AZB, isolated from the culture medium of Streptomyces sahachiroi, is a genotoxic
antibiotic that displays excellent antibacterial and antitumor activity by forming interstrand
crosslinks (ICLs) in the duplex DNA sequence 5′-d(GNPy)-3′ via alkylating the N7 nitrogen
of purine residues [41]. The AZB-producer S. sahachiroi is known to be protected by at least
four proteins encoded by resistance genes, aziR, aziE, alkZ, and aziN, via drug sequestration,
efflux, target protection and DNA damage repair, respectively (Figure 3B) [42–45]. Among
them, alkZ plays a dominant role because it is essential for AZB production [43]. AziR,
which is a drug-binding protein switched from aminoglycoside phosphotransferase, is
responsible for binding to AZB to shield the drug activity [42]. The transmembrane
export protein encoded by aziE couples with the drug-binding protein AziR to form an
effective efflux system to transport AZB outside of the cell, thereby maintaining a low
concentration of the toxic compound [43,45]. Despite this, the intracellular residual drug
might still cause DNA methylation to form AZB-adducts. In this case, glycosylase AlkZ of
HTH_42 superfamily will confer the AZB resistance through target site protection and DNA
damage repair. First, AlkZ nonspecifically binds to intact DNA with its helix-turn-helix
motifs to block target sites. Upon the DNA ICLs are formed by AZB alkylation, glycosylase
AlkZ binds to the damage sites structure-specifically and catalyzes the hydrolysis of N-
glycosidic bond of AZB-adducts to remove the alkylated nucleobase, triggering the BER
pathway to repair DNA damage [43]. This is the first proposal of DNA glycosylase involved
in the ICLs damage repair in prokaryotes. Although it is evolutionarily unrelated to the
glycosylases AlkD/YtkR2, which is responsible for excision of bulky lesions, the crystal
structure revealed that the glycosylase AlkZ uses a similar DNA-binding architecture
and non-base-flipping mechanism to excise AZB-adducts [44]. In addition to BER repair,
later in 2020, He et al. discovered that the AZB-mediated ICLs can also be repaired by
the structure-specific endonuclease AziN via triggering a nucleotide excision repair-like
pathway [45]. To be clear, knocking out aziN does not completely abolish the production of
AZB, indicating that the repair pathway mediated by endonuclease AziN plays a secondary
role compared with the BER pathway triggered by AlkZ. However, it is unclear when and
how to recruit the endonuclease AziN to the damaged sites. In addition, whether there are
direct or indirect interactions between the four resistance mechanisms remains unclear.

TXNA and LLD, two representative antibiotics of trioxacarcin family, are genotoxic
polyketide natural products with prominent antimalarial, antibacterial, and antitumor
activity [46,47]. To withstand the genotoxicity of TXNA and LLD [48,49], their producing
bacteria have evolved drug efflux system and DNA damage repair proteins (Figure 3C),
which are encode by genes in the txn and lld biosynthetic clusters [50–54]. The hypothetical
MSF transmembrane export proteins encoded by txnRr1 and txnRr2 are supposed to play
roles in the efflux of TXNA, and the DNA glycosylases encoded by txnU2 and txnU4 act
on the TXNA-guanine adducts to trigger the BER pathway, providing self-protection to
TXN toxicity [54]. Similarly, the homologs of TxnRr1/Rr2 and TxnU2/U4 encoded by the
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biosynthesis gene cluster lld provide resistance to LLD for the producer [54]. Intriguingly,
although both TxnU/LldU and AlkZ are monofunctional DNA glycosylases of HTH_42
family, the former has a distinct catalytic motif relative to AlkZ, resulting in that TxnU/LldU
exhibits no activity toward other bulky and crosslinking DNA adducts beyond TXNA/LLD-
DNA lesions. Based on the crystal structure of TXNA-DNA, TXNA can not only alkylate
DNA to form the bulky adducts, but also intercalate into the duplex DNA and extrude
the nucleobase near the alkylating site out of the helix, resulting in an increased helical
twist [49]. It would be interesting to find whether TXNA/LLD-DNA lesions are also
repaired by other enzymes or pathways, such as NER or endonuclease AziN reported in
AZB biosynthesis [45]. Therefore, more work is needed to elucidate the self-resistance
system of TXNs.

CMNs represent a mixture of nonribosomal peptide antibiotics including CMN IA, IB,
IIA and IIB that are second-line drugs for the treatment of multidrug-resistant tuberculo-
sis [55,56]. These molecules bind to the bacterial ribosomes and inhibit the biosynthesis
of proteins [57]. CMN-producing strain Saccharothrix mutabilis subsp. capreolus possesses
several self-resistance mechanisms to overcome the cytotoxicity (Figure 3D). The cac gene,
located far away from the CMN BGC, encodes an N-acetyltransferase that inactivates CMN
IIA and IIB via acetylation of the β-lysine moiety [58]. The second resistance gene was
proposed to be cmnU within the BGC, deduced to encode a methyltransferase related to the
KamB and KamC that confer resistance to kanamycin by methylating 16S rRNA. Consistent
with this proposal, the expression of cmnU in Streptomyces lividans and Escherichia coli
conferred high-level resistance to CMN and kanamycin [58], although an in vitro assay of
CmnU for rRNA methyltransferase activity was not performed. The third is the cph gene
that plays a role in the phosphorylation of CMN IA and IIA at the Ser hydroxyl group, but
not on CMN IB or IIB. Subsequent biochemical assays and structure analysis determined
that the Cph exhibits a high binding affinity to both CMN IIA and IIB, and its expression
confers E. coli resistance to CMN IIB, suggesting Cph also serves as an antibiotic sequester
beyond phosphotransferase [59]. Consequently, compared to general phosphotransferases,
Cph adopts a dual mechanism to inactivate antibiotics by either chemical modification or
physical sequestration. Besides drug modification and sequestration enzymes, the CMN
BGC also contains a hypothetical MSF efflux protein that was deduced to transport the
phosphorylated CMN, while the transportation has not been verified.

Colibactins are a group of genotoxic, nonribosomal peptide-polyketide secondary
metabolites of gut-commensal E. coli that contain the pks island [60–62]. These cryptic
genotoxins have attracted continuous studies due to their close correlation to human health.
They cause DNA double-strand breaks through DNA crosslinking or copper-mediated
oxidative cleavage, leading to cell-cycle arrest and even cell death [63–65]. To counter the
cytotoxicity of colibactin, at least four colibactin-resistance determinants (clbN, clbB, clbM
and clbS) are present in the pks biosynthetic cluster (Figure 3E). Nonribosomal peptide syn-
thetases ClbN and ClbB install an N-acyl-D-asparagine prodrug motif at the N-terminus of
colibactin to prevent the formation of the active imine moiety at the early stage of colibactin
biosynthesis, thereby generating the inactive prodrug [66,67]. Subsequently, the resulting
precolibactin will be transported into the periplasm by the 12-transmembrane MATE inner-
membrane transporter ClbM [68–70], where mature colibactin is generated via cleavage of
prodrug structure with peptidase ClbP, followed by out membrane translocation [67,71].
Notably, knocking out clbM does not completely abolish the production of colibactin, indi-
cating that precolibactin can also be exported across the cytoplasmic membrane by other
means. The intracellular cyclopropane hydrolase encoded by clbS abrogates cytotoxicity of
the offloaded intermediates or colibactin by converting the electrophilic cyclopropane into
an innocuous hydrolase product [72]. Interestingly, besides directly inactivating genotoxic
cyclopropane, ClbS also functions as a DNA binding protein that protects the bacterial DNA
from nucleolytic degradation [73,74]. However, the relationship between DNA binding
activity and colibactin resistance remains obscure.
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4. Resistance Widespread in Nature

Self-resistance determinants are not confined to the antibiotic producers. Instead, some
of them are widely prevalent in the clinical pathogens and environmental bacteria [75]. Re-
cent studies of self-resistance mechanisms against enediyne antitumor antibiotics revealed
that an unprecedented sequestration mechanism for the anthraquinone-fused enediynes
has been evolved in their producers and the homologs of these resistance elements are
widely distributed in nature [16]. Within the gene cluster of tiancimycin (Figure 4), re-
sistance genes tnmS1, tnmS2, and tnmS3 play a role in the sequestration of tiancimycin.
The homologs of TnmS1, TnmS2, and TnmS3 are widespread in anthraquinone-fused
enediynes producers and other bacteria, from different body sites, including the human
microbiome [16]. The expression of homologous genes from the gene clusters encoding
enediyne biosynthesis has been reported to endow E. coli BL21(DE3) with cross-resistance
to anthraquinone-fused enediynes, while the homologs from human microbiome confer
specific resistance to tiancimycin A [16]. These results further highlight that the resistance
elements responsible for anthraquinone-fused enediynes sequestration are widely dis-
tributed in nature, although little is known about how these resistance genes disseminate
in the environment. Similarly, homologous resistance genes encoding following enzymes
are widespread in nature and perform conserved biological functions, such as GyrI-like
cyclopropane hydrolases that mediate cyclopropyl moiety opening of DNA-alkylating
agents YTM/CC-1065 [35], AlbA-like drug-binding proteins that guide resistance to albi-
cidin [76,77], and NapW-like short-chain dehydrogenase/reductase that catalyze hemiami-
nal pharmacophore inactivation for tetrahydroisoquinoline antibiotics (Figure 4) [18]. In
addition to antibiotic resistance, non-antibiotic drug resistance is also widespread. As direct
evidence for this conception, Acbk-like kinase, inactivating a clinically used non-antibiotic
antidiabetic drug acarbose by phosphorylation, is widely distributed in the human gut
and oral microbiome (Figure 4) [78]. The specific kinase AcbK derived from Actinoplanes
sp. SE50/110, is located within the gene cluster for acarbose synthesis. It phosphorylates
acarbose at the O6A hydroxyl and serves as the self-resistance mechanism for acarbose
production [79]. Recently, Donia et al. performed a metagenomics-based investigation of
the human microbiome and found that homologues of AcbK are widespread in the bacteria
from the human gut and oral microbiome and provide acarbose resistance, indicating
the phosphorylation strategy of acarbose has disseminated in the human microbiome as
a resistance mechanism [78]. Therefore, research on these widely distributed resistance
elements will contribute to predicting and combating clinical drug resistance.
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5. Resistance-Guided Natural Products Discovery

The rapid development of bioinformatics tools and genome sequencing technologies
has brought a revolution in the discovery of natural products, leading to a transformation
from traditional bioactivity-guided fractionation to modern genome-based target min-
ing [80,81]. The enormous amount of genome data that is now available has revealed that
microorganisms harbor more natural product BGCs than those observed under laboratory
cultivation conditions, and most of them gene clusters encoding unknown products [82,83].
However, how to deal with the increasing BGCs and how to mine the desired products
from the huge resources have become a major focus. Recently, researchers found that the
self-resistance genes co-localized with BGCs can be used as a potential tool to link BGCs
with molecular targets for mining natural products with desired activity (Figure 5) [8,84,85].
For example, Tang and coworkers successfully discovered a natural herbicide with a new
mode of action from Aspergillus terreus by a putative self-resistance gene, astD, encoding
a dihydroxyacid dehydratase (DHAD) homolog [14]. The DHAD is an essential enzyme
that catalyzes the last step of branched-chain amino acid biosynthesis, and is therefore
effectively targeted for herbicide development [14]. However, no compounds that target
this enzyme have been reported in planta. Fungal genomes scanning of a DHAD homo-
logue revealed that a BGC encoding a sesquiterpene cyclase homologue and a DHAD
homologue was present in the genome of Aspergillus terreus. Subsequent experiments
demonstrated that the aspterric acid encoded by this BGC is indeed a competitive inhibitor
of DHAD and effectively functions as a herbicide, and the DHAD variant AstD functions
as a self-resistance enzyme in the BGC for aspterric acid [14]. Similarly, the Müller group
discovered a novel group of topoisomerase inhibitors, including pyxidicycline A and B,
by putative self-resistance genes encoding topoisomerase-targeting pentapeptide repeat
protein [86]. Wright et al. identified the caseinolytic protease (ClpP) inhibitor clipibicyclene
from Streptomyces cattleya using ClpP as putative antibiotic resistance gene [87]. Ge et al.
discovered a novel tetracycline, hainancycline, by using the common tetracycline antibiotics
resistance enzyme TetR/MarR-transporter as probe [88].
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In addition to discovering natural products with desired activity, self-resistance genes
can also be used in determining the biomolecular target of known antibiotics (Figure 6). For
instance, the β-lactone obafluorin isolated from Pseudomonas fluorescens ATCC 39502 shows
potent antibacterial activity against both Gram-positive and Gram-negative pathogens [89].
The mechanism of action of obafluorin, however, was unknown as this molecule was
reported to cause an unusual cell-elongation phenotype compared to other β-lactone
antibiotics. During comparative genomic analysis of obafluorin BGCs, an open reading
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frame, obaO, was identified and speculated to be an immunity gene [89]. ObaO was shown
to be a homologue of threonyl-tRNA synthetase and conferred resistance to obafluorin-
sensitive strains and obafluorin producer when expressed. Subsequently, in vitro enzyme
assays demonstrated that the obafluorin did indeed fully inhibit E. coli threonyl-tRNA
synthetase with an IC50 of 92 ± 21 nM, thus indicating the target of this compound [89]. In
another example, harzianic acid is a N-methylated tetramic acid isolated from Trichoderma
harzianum in 1994. Although it displays excellent antifungal activity, including against plant
pathogens Sclerotinia sclerotiorum and Rhizoctonia solani, the molecular target of harzianic
acid remains unknown [90]. Recently, Tang et al. discovered that the harzianic acid is
an inhibitor of acetohydroxyacid synthase (AHAS, the first enzyme on branched-chain
amino acid biosynthesis pathway), which was guided by a truncated AHAS homolog
resided within the BGC that was demonstrated to be the self-resistance enzyme [91]. A
similar biomolecular target discovery scenario is also observed in determining the mode of
action of polyketide rumbrins, which further revealed their promising potential to be HIV
inhibitors [92].
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Although the above examples have successfully confirmed the potential of self-
resistance genes in directed genome mining for natural products with known or predicted
biomolecular targets, the development of compounds with novel mechanisms of action
is also an urgent need to solve the ongoing antibiotic crisis. Recently, Wright et al. re-
ported that the method of combining the absence of known self-resistance genes with
phylogenetic analysis of biosynthetic genes could be effective in finding natural products
with new modes of action [93]. They applied this approach to the glycopeptide family of
antibiotics and successfully discovered a novel functional class of glycopeptide antibiotics
composed of complestatin and corbomycin (Figure 5), which have a new mechanism of
action that inhibits peptidoglycan re-modelling. This research outcome again indicated
that self-resistance determinants are useful for prioritizing BGCs than just function in the
self-protection. Other examples of employing a self-resistance determinant in natural prod-
ucts discovery are reviewed elsewhere [6,8,94]. Taken together, self-resistance genes can be
a bridge between the bioactivity-guided and genome-based methods for natural products
discovery. Studying the complex self-resistance strategies from a temporal-spatial shielding
perspective will allow researchers to further understanding the evolutionary relationship
between natural product biosynthesis and resistance, thereby facilitating discovery of new
drug candidates with high activity.

6. Conclusions and Perspective

Organisms that produce toxic natural products have evolved various self-resistance
determinants in offensive and defensive contexts. According to the location where fi-
nal toxic compounds are produced, we summarized two models that organisms utilize
for self-protection, intending to provide a perspective on the ties between toxic antibi-
otic biosynthesis and self-resistance from spatial distribution. Research on self-resistance
mechanisms extend well beyond revealing the origin of natural product resistance and
predicting the action model of these molecules. In terms of bioengineering, a deep under-
standing of antibiotic resistance mechanisms is crucial for the efficient synthesis of target
natural products and the development of next-generation antibiotics capable to overcome
established clinical resistances. Additionally, determinants conferring self-protection in
antibiotic producing organisms are considered to represent a major reservoir of resistance
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genes, which could disseminate into human pathogens by horizontal gene transfer [13].
Reviewing self-resistance with a multi-dimensional perspective is therefore helpful to
better cope with the increasing drug resistance in clinical settings. Moreover, regarding
natural products mining, self-resistance proteins mutated from essential housekeeping
enzymes have effectively served as a tool to link BGCs with molecular targets. How-
ever, using this strategy for genome mining might inevitably lead to the mining of results
skewed to known compounds. The continued study of natural product biosynthesis and
multi-dimensional self-resistance is required for mining desired compounds with higher
accuracy. Taken together, self-resistance genes are expected to serve as models to predict
and combat drug resistance in clinical settings and to be an effective bridge between the
bioactivity-guided and genome-based methods for natural product discovery, thus facilitat-
ing discovery of new drug candidates. It is expected that more self-resistance determinants
will be discovered to enrich our knowledge on the relationship between natural product
toxicity and resistance genes and facilitate the discovery of new drug candidates to combat
clinical resistance.
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