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Abstract: Fungal infections have become a growing public health challenge due to the clinical
transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices
for clinical physicians to deal with such situation, not to mention the long-standing problems of
emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore,
new antifungal drugs are urgently needed. Screening drugs from natural products and using
synthetic biology strategies are very promising for antifungal drug development. Chinese medicine
is a vast library of natural products of biologically active molecules. According to traditional Chinese
medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and
immunomodulatory functions. This suggests that if antifungal drugs are used in combination
with immunomodulatory drugs, better results may be achieved. Studies have shown that the
active components of TCM have strong antifungal or immunomodulatory effects and have broad
application prospects. In this paper, the latest research progress of antifungal and immunomodulatory
components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel
antifungal compounds and to open up new horizons for antifungal treatment strategies.

Keywords: natural product; traditional Chinese medicine; antifungal drug; immune regulation;
combination of drugs; fungal infection

1. Introduction

The development of new drugs has a very important role in improving human health
and extending human lifespan. There are many strategies for drug development, including
screening drugs from natural products and synthetic biology strategies. Traditional Chinese
medicine (TCM) is a huge reservoir of natural products, with a long history of practice and
great potential for drug development. The discovery of novel drug candidates from TCM
and its extracts has become a research hotspot [1].

Fungal infections have been a major public health challenge. Depending on the site
of invasion, there are at least three types: superficial, subcutaneous, and deep. Most of
these infections are superficial, i.e., non-fatal infections of the skin, nails, and hair, mainly
caused by skin fungi, with a global incidence of about 25% [2,3]. Deep mycosis, by contrast,
can be life-threatening. The infection can spread to many organ systems and meninges.
Under different circumstances, the mortality rate can vary from 35% to 90% [2]. Common
pathogens of invasive fungal diseases include Candida albicans, Cryptococcus neoformans,
and Aspergillus fumigatus [4,5]. Despite continuous efforts to develop antifungal drugs, the
availability of drugs for clinical use remains limited. At present, commonly used antifungal
drugs in clinics are azole, polyene, echinomycin, terbinafine, and so on. However, existing
drugs have problems such as drug resistance, high price, high toxicity, and serious side
effects, such as renal toxicity. It is an urgent and challenging task to find new antifungal
drugs with high efficiency and low toxicity.
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The TCM treatment of infectious diseases focuses more on the treatment of diseases
rather than just killing pathogens. According to the basic theory of TCM, diseases can be
divided into cold, heat, deficiency, and excess. The meaning of the words mentioned here
is different from the literal meaning. For example, “heat” refers to a range of different
kinds of diseases, which include a range of symptoms caused by an excessive inflammatory
response, such as vulvovaginal candidiasis. In the case of “deficiency”, diseases caused
by immune deficiency are included, such as invasive pulmonary aspergillosis. Thereby,
drugs with anti-inflammatory effects are usually used to treat fungal infections with heat.
These drugs include Fructus Forsythiae (lianqiao in Chinese) and Lonicera japonica Flos
(jinyinhua in Chinese). Meanw hile, some drugs with immune-modulatory effects are
used to tonify “deficiency”. These drugs include ginseng, Atractylodes macrocephala Koidz.
(baizhu in Chinese), and Schisandra chinensis (Turcz.) Baill. (wuweizi in Chinese). TCM
treats the interaction between the fungus and its host as a whole. If we try to explain
it in modern medical terms, it could be killing the fungus while modulating the body’s
immune response.

There are several TCM products that use both antifungal and immunomodulatory
strategies to treat fungal infections. For example, Skinguard Lotion, a TCM product for the
treatment of vaginitis, contains Lonicera japonica Flos, Taraxacum officinale L., Cnidii Fructus,
etc. The pharmacological effects of the lotion include inhibiting inflammation, relieving
itching, and killing pathogens. In the lotion, Cnidii Fructus is reported to have antifungal ef-
fects [6], while the main active molecules in Lonicera japonica Flos and Taraxacum officinale L.
are proven to have anti-inflammatory effects [7,8]. Patients with vaginitis suffer a lot from
persistent itch caused by inflammation response. The lotion can reduce the itching and at
the same time inhibit pathogens. It can both treat the symptoms and eliminate the causes
of the disease. The combination of antifungal drugs and immunomodulators may be a
promising antifungal treatment strategy and an effective way to develop new antifungal
drugs. Therefore, this paper reviewed two kinds of substances isolated from TCM: those
with antifungal effects and those with immunomodulatory effects.

2. Antifungal Ingredients from TCM

Hundreds of TCM have been shown to have antifungal effects, such as Coptis chinensis
Franch [9], Scutellaria baicalensis Georgi [10], Curcuma longa Linn [11], and Allium sativum L. [12].
We can extract active substances from these TCMs with water, alcohol, chloroform, ethyl
acetate, ether, and petroleum ether. The extracts, such as terpenoids, volatile oil, ketones,
alkaloids, aldehydes, phenylpropanoids, and saponins, also exhibit potent antifungal
activity [13]. We reviewed substances isolated from TCMs with antifungal activities,
including dioscin, α-santalol, formyl-phloroglucinol meroterpenoids, asiatic acid, carvacrol,
eugenol, thymol, turmeric oil, terpinen-4-ol, silibinin, pinobanksin, tectochrysin, chrysin,
licochalcone A, baicalein, baicalin, berberine, sanguinarine, plumbagin, osthole, and ethyl
caffeate (Table 1).

Table 1. Natural products from TCMs and their antifungal activities.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

dioscin

Dioscoreaceae
family

C. albicans (2) b 4 -

[14,15]C. glabrata 2 -

C. parapsilosis 4 -
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

α-santalol

Santalum
family T. rubrum 12.5 (µg/disc c) - [16,17]

eucarobustol E

Eucalyptus
robusta

fluconazole-susceptible
C. albicans (10) 4–16 - [18]

fluconazole-resistant
C. albicans (10) 32–128 - [18]

asiatic acid

Centella asiatica

fluconazole-susceptible
C. albicans (4) 64 0.75–1.00 [19]

fluconazole-resistant
C. albicans (4) 64–128 0.25- [19]

carvacrol

Oreganum
family C. albicans 250 0.374 [20,21]

thymol

Oreganum
family

C. albicans 500 1.062 [20,22]

C. neoformans (10) 20–51 - [23]

eugenol

Oreganum
family C. albicans 1000 0.312 [20,24]

laurel essential oil Laurus nobilis C. albicans (2) >4 (% v/v) d - [25]

anise essential oil Pimpinella
anisum C. albicans (6) 4 or >4 (% v/v) - [25]

oregano essential oil Thymus
capitatus C. albicans (31) 0.0039–1, or

<0.0019 (% v/v) - [25]
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

basil essential oil Ocimum
basilicum C. albicans (11) 4 or >4 (% v/v) - [25]

lavender essential oil Lavandula
latifolia C. albicans (15) 0.25–4 (% v/v) - [25]

mint essential oil Mentha spicata C. albicans (25) 2–4 (% v/v) - [25]

rosemary essential oil Rosmarinus
officinalis C. albicans (2) 4 (% v/v) - [25]

rosemary extract
Rosmarinus
officinalis L.

C. albicans 50,000 - [26]

C. dubliniensis 50,000 - [26]

C. glabrata 50,000 - [26]

C. krusei 50,000 - [26]

C. tropicalis 50,000 - [26]

tea tree oil Melaleuca
alternifolia C. albicans (44) 0.06–4 (% v/v) 0.25–1.25 [25,27]

terpinen-4-ol

Melaleuca
alternifolia C. albicans (33) 0.06–0.25 0.250-0.252 [27,28]

grapefruit essential oil Citrus paradisi C. albicans (12) 0.0039–1 (% v/v) - [25]

turmeric essential oil
Curcuma
longa L.

M.gypseum (2) 0.25 (% v/v), 6.25 - [29,30]

T. mentagrophytes (2) 0.25 (% v/v), 6.25 - [29,30]

T. rubrum 1.56 - [30]

E. floccosum 1.56 - [30]
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

Ar-turmerone

Curcuma
longa L.

M.gypseum 7.81 - [30,31]

T. mentagrophytes 7.81 - [30]

T. rubrum 3.90 - [30]

E. floccosum 3.90 - [30]

curcumin
Curcuma
longa L.

fluconazole-susceptible
Candida species (27) 250–650 - [32,33]

fluconazole-resistant
Candida species (11) 250–500 - [32]

C. albicans 64 - [34]

C. tropicalis 256 - [34]

C. krusei 256 - [34]

C. parapsilosis >256 - [34]

C. glabrata >256 - [34]

C. dubliniensis (2) 32 - [34]

C. neoformans 32 - [34]

S. schenckii 32 - [34]

P. brasiliensis (7) 0.5–32 - [34]

A. fumigatus (2) >256 - [34]

A. nomius >256 - [34]

A. flavus >256 - [34]

A. tamarii >256 - [34]
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

curcumin
Curcuma
longa L.

A. terreus >256 - [34]

A. clavatus >256 - [34]

a blend of essential oils (3.53%
of cinnamaldehyde, 3.53% of
eugenol, 3.53% of carvacol,

1.04% of carotol, and 88.35%
of Camelina sativa oil)

Cinnamomum
zeylanicum,
Syzygium

aromaticum,
Origanum

vulgare, Daucus
carota, and

Camelina sativa

C. albicans (4) 0.02 (% v/v) - [35]

C. glabrata 0.05 (% v/v) - [35]

C. tropicalis 0.01 (% v/v) - [35]

silibinin

Silybum
marianum

C. albicans (2) 19.3, 1024 - [36–38]

C. krusei 1024 - [36]

C. tropicalis 1024 - [36]

A. flavus 9.6 - [37]

C. parapsilosis 9.6 - [37]

Malassezia Furfur 19.3 - [37]

Trichosporon species 19.3 - [37]

pinobanksin

Chinese
propolis C. albicans 100 - [39]

tectochrysin

Chinese
propolis C. albicans 25 - [39]

chrysin

Chinese
propolis C. albicans 100 - [39]
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

3-O-acetylpinobanksin

Chinese
propolis C. albicans 50 - [39]

licochalcone A

Glycyrrhiza
family C. albicans (4) 16.92–50.76 - [40]

baicalein

Scutellaria
baicalensis C. albicans 25 0.039 [41,42]

berberine
many herbs

such as Coptis
chinensis and

Mahonia
aquifolium

C. albicans (4) 80–160 0.017–0.127 [43,44]

C. krusei (3) 10–20 - [43]

C. glabrata (3) 20–160 - [43]

C. dubliniensis 40 - [43]

sanguinarine

Papaveraceae
family

C. albicans (11) 4, 37.5–50 - [45,46]

C. neoformans 64 - [45]

chelerythrine

Papaveraceae
family

C. albicans (3) 2–4 - [45,47]

C. glabrata (2) 16 [47]

C. krusei (2) 16 [47]

C. tropicalis (2) 8 [47]

C. neoformans 64 - [45]
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Table 1. Cont.

Natural Product Source Target Fungi MIC (µg/mL) a FICI a References

plumbagin

Plumbago
scandens

C. albicans 0.78 - [48]

C. neoformans 8 - [49]

bis-naphthoquinone

Ceratostigma
plumbaginoides C. albicans 0.09 - [50]

shikonin

Lithospermum
erythrorhizon

C. albicans (12) 2-8, >64 - [51,52]

C. krusei 4 - [51]

C. glabrata 8 - [51]

C. tropicalis 8 - [51]

C. parapsilosis 16 - [51]

Saccharomyces cerevisiae 4 - [51]

C. neoformans 8 - [51]

T. cutaneum 8 - [51]

A. fumigatus >64 - [51]

osthole

Cnidii fructus C. albicans (52) 8–64, >64 0.04–0.37 [6,53]

ethyl caffeate

Elephantopus
scaber L. C. albicans (26) 64–256 0.047–0.375 [54]

a MIC, minimum inhibitory concentration. FICI, fractional inhibitory concentration index; the numbers indicate
the FICI of natural products combined with fluconazole against fungi. -, not mentioned in the report. b Numbers
in the brackets indicate the number of strains tested. c In this case, MIC is defined as the concentration of the
0.5 mm inhibitory zone produced by the tested compound in a disc diffusion method. d In these cases, the unit of
MICs is (% v/v) instead of µg/mL, since the agents are in liquid form.
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2.1. Terpenoids

Terpenoids are common substances in natural products. Many terpenoids have impor-
tant biological activities and are important resources for the development of new drugs.
Some terpenoids in natural medicines have important biological activities and have been
used in clinical practice for many years, such as the antimalarial drug artemisinin, the anti-
cancer drugs paclitaxel and cantharidin, the antibiotic drug lactam, etc. Some terpenoids
have antifungal activity and may provide new strategies for antifungal therapy.

For example, dioscin is a steroidal saponin that can be isolated from TCMs of the
Dioscoreaceae family. It exhibits significant fungicidal effects against the Candida species,
such as C. albicans, C. glabrata, and C. parapsilosis, with minimum inhibitory concentration
(MIC) at 2–4 µg/mL. Moreover, dioscin can also inhibit biofilm formation and even destroy
the mature biofilm at high concentrations [14]. The possible antifungal mechanisms of
dioscin may be associated with inhibiting the virulence factors of C. albicans, including
the morphological transformation, the production of phospholipase, and the adherence to
the abiotic surface [14]. Another computational study showed that dioscin can bind to the
glucoamylase enzyme that is produced in many fungi by molecular docking [55].

Another example of antifungal terpenoids is α-santalol. It can be found in the essential
oil of the Santalum species, which has been historically used as a noble perfume as well as
medicine. It is reported that α-santalol inhibits Trichophyton rubrum at 12.5 µg/disc (using
the disc diffusion method), and a preliminary mechanism study revealed that α-santalol
influences the fungal cell wall synthesis and mitosis process [16].

Formyl-phloroglucinol meroterpenoids (FPMs) are important secondary metabolites
with various biological activities, mainly found in Eucalyptus and Psidium. FPMs ex-
hibit antifungal effects against many fungal species, including C. albicans and T. menta-
grophytes [56,57]. Eucalyptus robusta is widely distributed in Sichuan, Yunnan, and other
southern areas of China, and it is commonly used in the traditional medicine of ethnic
minorities. Eucalyptus leaves are used to treat respiratory infections, intestinal infections,
malaria, trachoma, otitis media, keratitis, dermatitis, etc. The essential oil extracted from
the leaves is also used as a preservative. Eucarobustol E, as an FPM from the leaves of
Eucalyptus robusta, has a broad-spectrum antifungal effect with MIC ranging from 4 to
16 µg/mL. It also inhibits C. albicans biofilms in both the formation phase and mature
phase, and the mechanism might involve the negative regulation of hyphal growth due to
the inhibition of carbon flow towards ergosterol. This mechanism is totally different from
the known mechanisms of existing antifungal drugs and may provide a novel strategy for
fungal infection treatment [18].

Carvacrol is a phenolic monoterpenoid that can be extracted from Origanum vulgare, an
herb that is used to treat acute gastroenteritis in TCM. It inhibits the spore germination of
Aspergillus flavus by 73.3% at the concentration of 100 µg/mL, and 100 µg/mL of carvacrol
slows the mycelia growth and reduces mycelia drying weight. The antifungal mechanism
involves deficiency in ergosterol production and the alteration of glycerophospholipid
metabolism [58].

Thymol is one of the main components of thyme oil, which is used as both pharmaco-
logical and cosmetic additives. The MIC of thymol against C. albicans is 500 µg/mL [20].
Thymol also exhibits antifungal activity against C. neoformans, with MICs ranging from
20–51 µg/mL, and the mode of antifungal action seems to be related to the ergosterol of
yeast [23]. Another study demonstrated that thymol regulated several signaling pathways,
such as calcineurin, unfolded protein response, and the HOG-MAPK pathway [59].

In addition to the terpenoids with antifungal effects when used alone, there are also
some terpenoids that can be used as synergists in combination with existing antifungal
drugs to reduce the dosage and increase efficacy. Doke S. K. et al. evaluated the synergistic
effects of three terpenoids with fluconazole against C. albicans, involving carvacrol, eugenol,
and thymol. The results indicated that carvacrol and eugenol showed synergistic effects in
combination with fluconazole against planktonic cells and biofilm formation, with FICI
ranging from 0.25 to 0.516, whereas thymol showed an indifferent effect with fluconazole.
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Using terpenoids in combination with current antifungal drugs, such as fluconazole, may
be a feasible strategy to treat fungal infections. The combination can effectively reduce the
dosage of antifungal drugs and, therefore, reduce the adverse effects during treatment [20].

Asiatic acid (AA) is a natural ursane-type pentacyclic triterpenoid, mainly found in
plants such as Centella asiatica. AA shows synergistic effects with fluconazole, and the
combination can inhibit fluconazole-resistant C. albicans strains in vitro and in vivo, with
a fractional inhibitory concentration index (FICI) of 0.25. 32 µg/mL. AA also increases
the fluconazole effect against C. albicans biofilm at 0.125–0.25 µg/mL. A mechanism study
indicated that AA inhibited the drug efflux pump of C. albicans. The inhibitory effect of AA
on the drug efflux pump may increase the intracellular concentration of fluconazole in C.
albicans cells, and thereby, AA exhibits synergistic effects with fluconazole. Meanwhile, AA
in combination with fluconazole aroused the level of intracellular reactive oxygen species
(ROS) and inhibited the hyphal growth of yeast [19].

2.2. Volatile Oils

Volatile oils, also known as essential oils, are extracted from plants and animals with
various bioactivities. They are an important source for developing antifungal agents.
Volatile oils have complex molecular structures and usually have a strong fragrance. Ac-
cording to TCM theories, volatile oils have the functions of inducing diaphoresis, regulating
Qi, relieving pain, being antimicrobial, and correcting flavor, whereas modern medical
research shows that essential oils have antibacterial, antifungal, antiviral, antioxidant,
antitumor, and immunomodulatory activities [60]. It seems that natural medicines with
antifungal effects are mostly found in Lamiaceae, Lauraceae, Myrtaceae, and Compositae, such
as Cinnamomum cassia Presl, Rosmarinus officinalis, Ocimum basilicum, Origanum vulgare,
Mentha haplocalyx Briq., Melaleuca alternifolia, Foeniculum vulgare, Zingiber officinale, Catsia
tora Linn, Cinnamomum camphora (L.) Presl., and Senecio scandens.

Abers M. et al. evaluated 19 essential oils for their antifungal activity using a modified
disk diffusion test. The results demonstrated that volatiles of lavender, tea tree, cinnamon,
peppermint, cassia, and oregano had “moderate” antifungal activity, whereas volatiles of
thyme and rosemary had “high” antifungal activity. Clove volatile did not exhibit any
antifungal activity in the test [61]. A similar work was conducted by another team. Bona
E. et al. tested the sensitivity of 30 vaginal C. albicans strains to 12 essential oils, and mint,
basil, lavender, tea tree oil, and oregano were more efficient in inhibiting fungal growth
and activity than the traditional antifungal drug clotrimazole. The MICs of mint, basil,
lavender, and tea tree oil were 0.25–4% v/v for most strains, with values >4% for others.
The oregano volatile MICs were lower than 1% v/v in 64% of the strains. They also found
that the mechanism of essential oils in antifungal activity was associated with cell wall and
membrane damage [25].

Turmeric oil is the extract from Curcuma longa Linn. It has long been used as a common
household medicine and a yellow spice in Southeast Asia. As for antifungal activities,
turmeric oil completely inhibits common dermatophyte growth at the concentration of 0.2%
v/v, including Epidermophyton floccosum, Microsporum gypseum, M. nanum, T. mentagrophyte,
T. rubrum, and T. violaceum [29]. Notably, turmeric oil exhibits low toxicity towards humans.
It did not show any irritation or adverse effect at a 5% concentration for up to 3 weeks
in a clinical trial [29]. Moreover, the main component of turmeric oil, Ar-turmerone,
exhibits more potent antifungal activity against dermatophytes than ketoconazole, with
MICs ranging from 3.90 to 7.81 µg/mL [30]. Another important substance isolated from
Curcuma longa L. is curcumin, which also arouses the wide interest of scientists. It is
reported to have many bioactivities, such as antitumor, antioxidant, anti-inflammatory,
and antimicrobial activities [62–64]. Curcumin shows inhibitory effects against many
common fungal pathogens. It inhibits Candida species growth with an MIC90 ranging
from 250 to 650 µg/mL. This includes clinical isolates and fluconazole-resistant strains of
C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. guilliermondii [32]. Curcumin also shows
antifungal activity against C. neoformans and C. dubliniensis with an MIC of 32 µg/mL [34].



Antibiotics 2023, 12, 48 11 of 26

In addition, curcumin and its derivatives show synergy effects with fluconazole against
resistant C. albicans, C. tropicalis, and C. krusei, with the FICIs ranging from 0.078 to 0.563 [33].
The antifungal mechanisms of curcumin include causing oxidative stress and inhibiting
thymidine uptake 1. Curcumin also alters the membrane-associated properties of ATPase
activity, ergosterol biosynthesis, and proteinase secretion [33].

Similar to terpenoids, volatile oils can also be used as a synergist with antifungal
drugs. Adding tea tree oil at a concentration of 1/4 MIC can effectively reduce MICs of
fluconazole against resistant C. albicans strains. Among all the 32 tested strains, the average
fluconazole MIC is reduced from 244.0 µg/mL to 38.46 µg/mL, and terpinen-4-ol, which is
the major bioactive component of tea tree oil, shows an even stronger inhibition effect [27].

Moreover, a combination of different TCMs without antifungal drugs can also have
a synergistic effect against fungi. Apart from enhancing antifungal activity and reduc-
ing adverse effects, this kind of combination treatment can also reduce the occurrence of
drug resistance in fungi. It is reported that an essential oil blend of Cinnamomum zeylan-
icum, Daucus carota, Syzygium aromaticum, and Origanum vulgare shows antifungal activity
against C. albicans, C. tropicalis, and C. glabrata, including strains resistant to fluconazole or
amphotericin B, with MICs ranging from 0.01 to 0.05% v/v [35].

2.3. Flavonoids

Some flavonoids from TCMs also have antifungal properties. Rosmarinus officinalis L.,
for example, contains phenols and flavonoids in its extract. The extract shows an an-
tibiofilm effect against C. albicans, C. dubliniensis, C. glabrata, C. krusei, and C. tropicalis.
A 50–200 mg/mL extract can reduce mature biofilms, which are formed 48 h in advance,
and the antibiofilm activity of Rosmarinus officinalis L. extract is comparable to that of
nystatin [26].

Silibinin is a flavonoid that can be found in Silybum marianum, a traditional medicine
for hepatobiliary diseases in China and Europe [65]. The antifungal activity of silibinin
seems not stable or uniform. Dayanne R. O. et al. reported that silibinin inhibits C. albicans,
C. krusei, and C. tropicalis with MICs at 1024 µg/mL [36]. In another study, however, the
MICs of silibinin against C. albicans and C. parapsilosis were 19.3 µg/mL and 9.6 µg/mL,
respectively [37]. One possible reason for the differences is that the strains used in the
tests are different and silibinin does not exhibit stable or uniform antifungal activities
against those strains. Silibinin at 100 µg/mL also inhibits C. albicans biofilm formation to
approximately 50%, and the mode of action involves causing membrane damage to fungal
cells [65].

Propolis is a natural product with antimicrobial [66], anti-inflammatory [67], and an-
tioxidant activities [68]. The main bioactive components of propolis are flavonoids. Propolis
production is influenced by many environmental factors such as local climate and the plants
nearby. Therefore, propolis from different regions contains different kinds and amounts of
flavonoids, and it consequently has different bioactivities [69]. In Chinese propolis, the four
major flavonoids are pinobanksin, tectochrysin, chrysin, and 3-O-acetylpinobanksin. All
the four flavonoids have antifungal activities against C. albicans, with MICs of 100 µg/mL,
25 µg/mL, 100 µg/mL, and 50 µg/mL, respectively [39]. The antifungal mechanism of
propolis is related to the induction of apoptosis through metacaspase and Ras signaling. It is
also reported that propolis disrupts the expression of several genes involving pathogenesis,
cell adhesion, biofilm formation, filamentous growth, and phenotypic switching [70].

The Glycyrrhiza species is another commonly used ingredient in traditional herbal
remedies. Licochalcone A is a bioactive natural product isolated from Glycyrrhiza species,
and it exhibits antifungal activities against C. albicans with MICs ranging from 16.92 µg/mL
to 50.76 µg/mL. Licochalcone A also significantly inhibits C. albicans biofilm growth at
10 × MIC, and an in vivo experiment conducted in mice with oral candidiasis indicated
that licochalcone A decreases numbers of fungal colonies in tongue tissue. The mechanism
study revealed that licochalcone A decreased proteinases and phospholipases secreted by
C. albicans biofilm [40].
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The combination of flavonoids and antifungal agents can exhibit synergy. The major
active components of TCM Scutellaria baicalensis are baicalein and baicalin [71]. Both of the
two major components exhibit antifungal activities. The MIC of baicalein is 25 µg/mL [41].
It induces the apoptosis of C. albicans cells and has potent synergy with fluconazole against
resistant strains, with an FICI of 0.039 [42]. The derivatives of baicalein even show greater
synergistic antifungal effects with FICIs < 0.007 [72]. There is also evidence that baicalein
reduces the MIC of amphotericin B with an FICI ranging from 0.031 to 0.677, and further
mechanism investigation indicated that the combination of the two agents accelerates
C. albicans apoptosis [73].

2.4. Alkaloids

Alkaloids are a group of cyclic nitrogen-containing small molecules with diverse
bioactivities. They are abundant natural products and provide many valuable molecules in
the medical field, such as morphine, quinine, vinblastine, and berberine.

Berberine has been used for treating diarrhea for thousands of years in China and
is still used widely in contemporary medicine. There are many studies on the antifungal
effects of berberine. It is reported that berberine inhibits the Candida species, i.e., C. albicans,
C. krusei, C. glabrata, and C. dubliniensis, with MICs ranging from 10 to 160 µg/mL [43]. The
antifungal activity of berberine alone is unstable and weak in some situations. Therefore,
researchers have turned their attention to combining berberine with other drugs. Our group
members found that berberine showed potent synergy with fluconazole against fluconazole-
resistant C. albicans strains. We tested 40 clinical isolates, and the median FICI was 0.034
(range, 0.017 to 0.127) [44]. Further mechanism investigation showed that berberine played
a major role in killing the fungi in the synergy, and fluconazole increased the intracellu-
lar berberine concentration by inhibiting ergosterol synthesis in cell membranes [74,75].
Berberine also exhibits synergy with other antifungal drugs such as amphotericin B and
terbinafine. It was reported that the combination of berberine and amphotericin B reduced
approximately 75% of the amphotericin B dose in a mouse model [76], and 100 µg/mL
of berberine can effectively assist the antifungal potential of terbinafine [77]. Berberine
inhibits biofilms of the Candida species in a dose-dependent manner, and 40, 5120, 320, 40,
and 1280 µg/mL of berberine can inhibit biofilms of C. albicans ATCC 10231, C. albicans
ATCC 90028, C. krusei ATCC 6258, C. glabrata ATCC 90030, and C. dubliniensis MYA 646,
with inhibition rates of 43.54 ± 1%, 19.89 ± 0.57%, 96.93 ± 1.37%, 92.36 ± 0.32%, and
21.62 ± 0.51%, respectively [43].

Sanguinarine and chelerythrine are two alkaloids with similar structures. Both of
them can be isolated from Papaveraceae plants and have diverse bioactivities. They share
similar antifungal activities against C. albicans and C. neoformans with MICs of 4 µg/mL
and 64 µg/mL, respectively, and a 1:1 mixture of sanguinarine and chelerythrine exhibits
stronger antifungal effects with an MIC of 2 µg/mL for C. albicans and 16 µg/mL for
C. neoformans [45]. Another study reported that sanguinarine inhibited 10 C. albicans
strains, with the MICs within the range of 37.5–50 µg/mL. Sanguinarine also showed
anticandidal effects in a murine model at the dose of 1.5 and 2.5 mg/kg, and the mode
of action is related to ergosterol synthesis deficiency in cells [46]. Sanguinarine can also
inhibit C. albicans biofilms, and 3.2 µg/mL of sanguinarine significantly inhibits C. albicans
biofilm formation by over 90% and destroys mature biofilms by 68.3%. The possible
mechanism of sanguinarine’s antibiofilm effect involves its inhibitory effect on adhesion
and hypha formation due to cAMP pathway suppression [78]. In addition to C. albicans
and C. neoformans, the antifungal spectrum of chelerythrine consists of C. glabrata, C. krusei,
and C. tropicalis. According to Gong et al., the MICs of chelerythrine against C. albicans,
C. glabrata, C. krusei, and C. tropicalis are 2, 16, 16, and 8 µg/mL, respectively, and the
mechanism investigation showed that chelerythrine inhibited hyphal growth, increased
intracellular calcium concentration, induced the accumulation of intracellular ROS, and
inhibited drug transporter activity [47].
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Piper betle L. var. nigra is a plant used as a spice and medicine belonging to the
Piperaceae family. It contains many bioactive chemicals such as cadinene, caryophyllene,
and amide alkaloids [79,80], and the extract of P. betle showed inhibitory effects against
C. albicans according to a disk diffusion test [81].

2.5. Quinones

Quinones are six-membered α,β-dienonic rings that occur in nature. Naphthoquinones
is one of the most common classes in quinones. Futuro D.O. et al. reviewed the develop-
ment of naphthoquinones as antifungal agents against the Candida species and identified
30 naphthoquinones with better antifungal activities than those of the existing drugs [82].
Plumbagin, for example, exhibits antifungal effects against C. albicans ATCC 10,231, with an
MIC of 0.78 µg/mL [48,82]. In a recent study, plumbagin exhibited antifungal effects against
C. neoformans with an MIC of 8 µg/mL. Further study showed that plumbagin disrupted
cell membrane integrity and reduced metabolic activities of the pathogen. It also damaged
formation-phase and mature-phase biofilms of C. neoformans at concentrations of 64 and
128 µg/mL, respectively. A mechanism study confirmed that plumbagin damaged biofilm
by down-regulating FAS1 and FAS2 expression [49], and bis-naphthoquinone, which can
be extracted from Ceratostigma plumbaginoides, has an MIC of 0.09 µg/mL against C. albicans
ATCC 25,555 [50].

Another example is shikonin; it has fungicidal activity against C. albicans with MICs
of 2–8 µg/mL [51,52], and it exhibits antifungal activity against other Candida species,
C. neoformans, T. cutaneum, and Saccharomyces cerevisiae, with MICs ranging from 4 to
16 µg/mL (see details in Table 1) [51]. Using metabonomics, shikonin was found to
boost histone H3 on lysine 56 residue acetylation via HST3 in C. albicans and execute its
antifungal activity [83]. Shikonin can also inhibit the formation of biofilms and destroy
the maintenance of mature biofilms at concentrations of 1–32 µg/mL and 4–16 µg/mL,
respectively. This antibiofilm activity was confirmed in a mouse vulvovaginal candidiasis
model. The possible mechanisms involve down-regulating hypha- and adhesion-specific
gene expression and inducing farnesol production [52].

2.6. Coumarin

Osthole is a natural coumarin that can be isolated from TCM Cnidii fructus. It does not
show antifungal activity against C. albicans at up to 64 µg/mL. However, 1–16 µg/mL of
osthole has significant synergy with fluconazole against fluconazole-resistant C. albicans,
with FICIs ranging from 0.04 to 0.37 [6,53], and further study indicated that the mechanism
of synergy is associated with endogenous ROS accumulation [53].

Designing novel coumarin derivatives is another common way of developing antifun-
gal agents, since coumarin has many modifiable sites. Linking other pharmacophores, such
as azole and quinoline, to coumarin molecules can effectively expand the antimicrobial
spectrum and enhance antifungal activity [84].

2.7. Others

Ethyl caffeate (EC) can be extracted from Elephantopus scaber L., which is widely
distributed in the southwest of China and used as TCM, treating fevers and microbial
infections [85]. EC exhibits antifungal effects against 26 isolates of C. albicans, with MICs
ranging from 64 to 256 µg/mL, and the combination of EC and fluconazole shows synergism
in 14 out of 26 tested isolates, with FICIs ranging from 0.047 to 0.375. Similar results are
observed in C. albicans biofilms. EC shows no antibiofilm effects at up to 256 µg/mL.
However, EC and fluconazole exhibit synergy against 11 out of 26 isolates, with FICIs
ranging from 0.002 to 0.375. The synergy mechanisms may be related to the inhibition of
hydrolase secretion and drug efflux function of C. albicans [54].
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3. Immunomodulatory Ingredients from TCM

The immune modulatory effect of TCM on fungal infection include the inhibition
of inflammation and the enhancement of fungal clearance. According to TCM theory,
most herbs with anti-inflammatory effects fall under the category of “heat-clearing” drugs,
including Fructus Forsythiae, Lonicera japonica Flos, and Menthae Haplocalycis Herba. This
Chinese medicine is used to treat inflammatory diseases, and active ingredients of these
herbs include phenolic acids, flavonoids, volatile oils, lignans, etc. Meanwhile, Panax
ginseng C. A. Mey., and Astragalus membranaceus are herbs that can improve the fungal
clearance function of the immune system. The main active ingredients are polysaccharide,
glycoside, alkaloid, volatile oil, and so on. In this section, the common TCM components
with immunomodulatory effects were classified according to their chemical structures.

3.1. Phenolic Acids

Phenolic acids are widely found in Lonicerae and are the main active ingredients
in TCM Lonicera japonica Flos and Lonicera japonica Caulis (both originated from Lonicera
japonica Thunb.). Lonicera japonica Flos is the most important ingredient in many TCM
preparations used to treat inflammatory diseases. Its extract shows protective activity
against LPS-induced lung inflammatory cytokine release. The mechanism study revealed
that the Lonicera japonica Flos extract increases nuclear Sp1 binding activity through the
incremental phosphorylation of ERK, and it consequently enhances the expression of IL-10.
At the same time, the extract suppresses the phosphorylation of IκB, p38, and JNK, thereby
inhibits nuclear NF-κB binding activities and down-regulates the expression of TNF-α,
IL-1β, and IL-6 in the lung [86].

Chlorogenic acid is one of the main active substances of Lonicera japonica Flos (the
chemical structures can be found Figure 1). It is reported that chlorogenic acid exhibits anti-
proliferation activity against the fibroblast-like synoviocyte cell line (RSC-364), which is
stimulated by IL-6. The main mechanism involves JAK/STAT and NF-κB signaling cascades.
Chlorogenic acid inhibits these two pathways by suppressing the expression of p-STAT3,
JAK1, p50, and IKK, therefore inducing apoptosis in RSC-364 [7]. Interestingly, a recent
study revealed that chlorogenic acid also induces apoptosis in fluconazole-resistant Candida
spp. and exhibits antifungal activity. Molecular docking demonstrates that chlorogenic
acid binds to several important drug targets, including thymidylate kinase, CYP51, and
ALS3 [87].

Rosmarinic acid (Figure 1) can be found in Menthae Haplocalycis Herba and Prunella
vulgaris [88,89]. Rosmarinic acid has been reported to have anti-inflammatory effects in
many diseases, such as arthritis, colitis, atopic dermatitis, asthma, allergic rhinitis, and
periodontal disease [90]. It also inhibits LPS-induced inflammation in RAW264.7 cells.
The anti-inflammation target of rosmarinic acid involves the NF-κB/MAPK pathway. It
suppresses the activation of the NF-κB/MAPK pathway and thereby reduces the production
of pro-inflammatory cytokines NO, TNF-α, IL-1β, and IL-6 [91].

3.2. Flavonoids

Flavonoids can be found in many TCMs with anti-inflammatory effects, such as Tarax-
acum officinale L., Fructus Forsythiae, and Menthae Haplocalycis Herba. Common flavonoids in
these herbs are luteolin, quercetin, rutin, etc. The extract of Taraxacum officinale L., which
contains luteolin (Figure 1), was confirmed to have anti-inflammatory effects in many
studies. It can reduce the release of inflammatory cytokines, including NO, PGE2, IL-1β,
IL-6, and TNF-α, by suppressing the NF-κB/iNOS and MAPK pathway [8,92–94]. Research
on the anti-inflammatory effects of luteolin dates back at least 20 years [95]. Luteolin can
reduce LPS-induced inflammation both in vivo and in vitro. A mechanism study showed
that luteolin inhibits the pro-inflammatory molecules TNF-α and ICAM-1 expression in
mice [95], and in RAW264.7 cells, luteolin also inhibits NO, IL-1β, and IL-6 in addition to
TNF-α [96].
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Figure 1. Chemical structures of the natural products isolated from TCMs with immunomodulatory effects.

Quercetin (Figure 1) is another common flavonoid in these “cold-natured” herbs. It
also can be found in some vegetables and fruits. The anti-inflammatory effect of quercetin
has been reported in many diseases such as inflammatory bowel disease, multiple sclerosis,
asthma, and atherosclerosis, in vivo or in vitro [97,98]. It was also in a clinical trial for
treating rheumatoid arthritis [99]. Quercetin inhibits inflammation via promoting anti-
inflammatory cytokine secretion (for example, IL-10), reducing pro-inflammatory cytokine
release (TNF-α, IL-1β, and IL-6), inhibiting cyclooxygenase and lipoxygenase expression,
and maintaining mast cell stability [97,100].

Rutin (Figure 1) is a flavonoid that exists in Fructus Forsythiae [98]. Rutin shows
anti-inflammatory effects in activated human neutrophils, through inhibiting TNF-α and
NO production, as well as myeloperoxidase (MPO) activity [101]. Rutin also attenuates
advanced glycation end product induced inflammation on human chondrocytes. The study
revealed that rutin targets BCL-2 and TRAF-6 in the NF-κB/MAPK pathway to inhibit
inflammation and treat osteoarthritis [102].

3.3. Volatile Oils

Volatile oils are the main active ingredients in Menthae Haplocalycis Herba, consisting
of menthol, menthone, isomenthone, piperitone, linalool, carvone, limonene, α-pinene,
β-pinene, etc. The volatile oils of Menthae Haplocalycis Herba are reported to exhibit anti-
inflammatory and antimicrobial effects, as well as alleviate mental fatigue [88]. Menthol
(Figure 1) can be beneficial in rats with acetic acid-induced acute colitis. The protective
effect is related to the inhibition of MPO, as well as the reduction of TNF-α, IL-1β, and
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IL-6 [103]. Menthone (Figure 1) is reported to reduce LPS-induced inflammation in mice.
The possible mechanism is that menthone inhibits the activation of NLRP3 inflammasome
and consequently reduces the release of pro-inflammatory cytokines, including IL-18, IL-1β,
IL-5, TNF-α, IFN-γ, G-CSF, GM-CSF, and MIP-1β [104].

3.4. Lignans

Lignans are one of the main active ingredients in Fructus Forsythiae. Fructus Forsythiae
is the dried fruit of Forsythia suspensa (Thunb.) Vahl, family Lignanaceae. Fructus Forsythiae
is often used for acute colds belonging to “heat”, lymphatic tuberculosis, urinary tract
infections, etc.

One of its main lignans with an anti-inflammatory effect is phillyrin (Figure 1).
Phillyrin inhibits inflammation both in vivo and in vitro. In a zebrafish model, phillyrin
reduced inflammation in a dose-dependent manner and improved survival. A mechanism
study showed that phillyrin inhibits the MyD88/IκBα/NF-κB signaling pathway, but not
ERK1/2 MAPKs or JNK MAPKs. It reduces neutrophil infiltration and down-regulates the
release of IκBα, TNF-α, IL-1β, and IL-6 [105]. By regulating NF-κB signaling, phillyrin also
alleviates inflammation induced by SARS-CoV-2 in Huh-7 cells. It decreases the release of
pro-inflammatory cytokines including TNF-α, IL-6, IL-1β, MCP-1, and IP-10 [106].

Phillygenin (Figure 1) is another lignan in Fructus Forsythiae that targets the NF-κB
signaling pathway and shows anti-inflammatory effects. It inhibits LPS-induced inflam-
mation in LX2 and RAW 264.7 cell lines. Molecular docking indicated that phillygenin
has an affinity for many proteins in the NF-κB pathway, such as IKKβ, p65, IκBα, and
TAK1 [107,108].

Arctiin (Figure 1) can be found in Fructus Forsythiae and exhibits anti-inflammatory
effects as well. It attenuates inflammation in different cells by inhibiting COX-2 expression,
which is an essential protein in inflammation [109,110]. Arctiin also activates Nrf2/HO-
1 signaling and blocks the RIG-I/JNK MAPK signaling of A549 cells in inflammation
induced by H9N2 avian influenza virus [110]. In an LPS-induced acute lung injury mice
model, arctiin significantly ameliorated lung histopathological changes and decreased lung
MPO activity. The mechanism study suggested that arctiin targets the PI3K/AKT/NF-κB
signaling pathway by inhibiting PI3K/Akt phosphorylation and NF-κB activation [111].

3.5. Alkaloids

Some alkaloids have a regulatory effect on the immune function of the body by
targeting inflammation-related pathways such as the NF-κB signaling pathway. Matrine,
for example, is a tetracyclo-quinolizindine alkaloid (Figure 1) extracted from Sophora
flavescens. It balanced the Th1/Th2 axis and improved rheumatoid arthritis in a rat model.
By regulating the NF-κB pathway, matrine reduced the level of Th1 cytokines (IFN-γ,
TNF-α, and IL-1β) and raised Th2 cytokines (IL-4 and IL-10) [112].

Tetrandrine is an isoquinoline alkaloid (Figure 1) that can be isolated from Radix
Stephaniae Tetrandrae. It is reported to have inhibitory effects on the proliferation of T cells
via the NF-κB pathway. Tetrandrine prevents the degradation of IκBα and inhibits nuclear
translocation of p65 by blocking IKKα and IKKβ activities, and tetrandrine down-regulates
the activation of MAPK including JNK, p38, and ERK, as well as the downstream transcrip-
tion factor AP-1 [113]. Isotetrandrine has a chemical structure very similar to tetrandrine,
differing only in the stereochemistry at the chiral centers (Figure 1). Isotetrandrine has
stronger inhibitory effects against the proliferation of T cells than those of tetrandrine [114].

3.6. Polysaccharides

Polysaccharides are sugar chains consisting of at least 10 monosaccharides bound by
glycosidic bonds. They are complex mixtures and one of the main active ingredients of
tonic herbs in TCM, such as polysaccharides from Ganoderma, Astragalus, Ginseng, Angelica
sinensis, etc. The pharmacological effects of polysaccharides on immune systems are
complicated. Some polysaccharides have an inhibiting effect on the immune system
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to attenuate excessive immune responses, while others have a stimulating effect on the
immune system to help the body fight against infections or tumors. In many cases, some
polysaccharides have both of these effects. It seems that these polysaccharides can balance
immune cells and restore immune functions from abnormal.

Ganoderma lucidum polysaccharide is extracted from sporoderm-removed spores of
the fungus. On one hand, it inhibits inflammation in AOM/DSS-induced colitis. Gano-
derma polysaccharide suppresses TLR4/MyD88/NF-κB signaling, inhibits macrophage
infiltration, and down-regulates IL-1β, iNOS, as well as COX-2 expressions in the colon.
It also inhibits LPS-induced inflammation markers and MAPK activation in RAW264.7,
HT-29, and NCM460 cells [115]. On the other hand, Ganoderma polysaccharide activates the
immune responses by binding to dectin-1, TLRs, MR, or CR3 on immune cells including
monocytes, macrophages, dendritic cells (DCs), granulocytes, neutrophils, and natural
killing (NK) cells. It also can directly activate lymphocytes and neutrophils [116].

3.7. Glycosides

Glycosides can be found in many TCMs such as Paeonia lactiflora Pallas, Radix Ginseng,
Radix Scutellariae, Radix Bupleuri, etc. As with polysaccharides, the immunomodulatory
effects of glycosides are complicated, encompassing both promotive and inhibitory effects.

Paeoniflorin (Figure 1) is a monoterpene glucoside that is the major active component
of Paeonia lactiflora Pallas. Paeoniflorin has protective effects on many autoimmune diseases
in animal models, including arthritis, liver injuries, allergic contact dermatitis, Sjögren
syndrome, psoriasis, multiple sclerosis, and asthma [117]. Paeoniflorin regulates the activa-
tion of T lymphocytes, B lymphocytes, and macrophages. It also inhibits DC maturation
and pro-inflammatory mediator production. As for pathways, paeoniflorin inhibits the
MAPK signaling pathway, the JAK2/STAT3 pathway, and the PI3K/Akt/mTOR pathway
in immune cells [117].

Ginsenoside Rg1 (Figure 1) is one of the glycosides in Radix Ginseng. It has various
immune-modulating activities, for example, enhancing the immune activity of Th cells.
Ginsenoside Rg1 can help mice fight against disseminated candidiasis. Ginsenoside Rg1
has no antifungal activity against C. albicans in vitro. However, it can promote CD4+T
cell immune response mediated by Th1 cells in infected mice and consequently induces
cytokine release including IFN-γ, IL-2, IL-4, and IL-10, exhibiting protective effects in
mice [118].

Saikosaponin d (Figure 1) can be found in Radix Bupleuri and is one of the major
bioactive components of medicine. Saikosaponin d helps generate functional mature
neutrophils in cancer chemotherapy-induced neutropenia. The generated neutrophils are
capable of resisting infection both in vitro and in vivo. This immune enhancing effect is
mediated by the CBL-ERK1/2 pathway, resulting in neutrophil differentiation [119].

4. Discussion

Fungal infections can disrupt homeostasis in a number of ways. On the one hand, the
invasive growth of fungi destroys mucous membranes and destroys the structure of tissues
and organs. On the other hand, it can induce inflammation and trigger dysfunction in the
body, making it harder to recover.

In the theory of TCM, the philosophy of treating fungal diseases does not just focus
on antifungal, but on both antifungal and immune regulation. Herbal preparations are
commonly used to treat fungal diseases, and these often contain a variety of ingredients
that have complex regulatory effects on both the fungus and the host. Some ingredients
kill the fungus, and others balance the host’s immune response. TCM regulates the host
immune response in two directions. Some herbs suppress the immune response by reducing
inflammation, while others boost the immune system’s ability to clear fungi. This overall
regulation of the fungus and the host is very helpful in the treatment of fungal infections.

However, TCM has two drawbacks in treating fungal infections. First, the effective
ingredients of TCM are not clear. Second, the mechanism of TCM treatment of fungal infec-
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tion is still unclear. In recent years, efforts have been made to explore the active ingredients
of TCM and elucidate its mechanism of action. The material basis and mechanism of TCM
treatment of fungal infection were discussed in this paper.

4.1. Material Basis of TCM for Treating Fungal Infection Diseases

Overall, there are two strategies for TCM to treat fungal infections, antifungal and
immunomodulation. There are many chemicals from TCM exhibiting antifungal activities,
and most of them can be divided into terpenoids, volatile oils, flavonoids, alkaloids,
quinones, coumarin, etc. The terpenoid family of antifungal compounds varies greatly
in structure, from thymol, with a molecular weight of less than two hundred, to dioscin,
with a molecular weight of more than eight hundred. Interestingly, it seems that the
larger the molecular weight of the terpenoid, the better its antifungal activity. Dioscin
has the most complex molecular structure in this group, and it has the best antifungal
activity against Candida spp., with MIC values of 2–4 µg/mL. Volatile oils have their own
advantages and disadvantages. Most volatile oils have a pleasant aromatic scent and can be
used for environmental sterilization or topical medications. However, their volatile nature
makes them difficult to store and transport and are therefore not an ideal antifungal drug
preparation. The flavonoids mentioned in this review share a moderate activity against
C. albicans.

The chemicals with the strongest antifungal activity are from the alkaloid and quinone
families, such as chelerythrine and shikonin. They both exhibit broad and potent activities
against common Candida spp., with MICs ranging from 2 to 16 µg/mL. One potential
problem with alkaloids and quinones is their toxicity [120]. Quaternary ammonium alka-
loids, such as chelerythrine, bearing a quaternary nitrogen atom, have oxidative effects
and are thus usually toxic to cells. An evaluation of the acute hepatotoxicity effect of
chelerythrine at a dose of 10 mg/kg/day (i.p.) showed that chelerythrine caused marked
parenchymal damage in the liver [121]. Meanwhile, EC50 of shikonin against V79 cell lines
was 0.4 µg/mL by an MTT assay [122]. Through structural modification, chemicals of these
two families are promising antifungal lead compounds.

The single use of Chinese medicine has a significant antifungal effect, and the combi-
nation of Chinese medicine and existing antifungal drugs can produce synergistic effects,
such as the combination of berberine and fluconazole. Using this synergy, we can enhance
the effect of the drug and reduce drug dosage. Therefore, we can reduce the side effects of
drugs. In addition, the combination of two or more drugs can also reduce the development
of resistance.

Unlike TCM ingredients with antifungal effects, ingredients with immunomodulatory
effects have their own unique chemical structure characteristics. Major TCM ingredients
with immunomodulatory activity can generally be classified into the categories of phenolic
acids, flavonoids, volatile oils, lignans, polysaccharides, glycosides, and alkaloids. There
are two types of immunomodulatory effects of these TCM ingredients. Most of the phenolic
acids, flavonoids, volatile oils, lignans, and alkaloids show anti-inflammatory effects in the
immune response of the host, while polysaccharides and glycosides usually have immune-
promoting properties. For example, Ganoderma lucidum polysaccharide activates immune
response by binding to receptors on immune cells, ginsenoside Rg1 enhance the immune
activity of Th cells, and saikosaponin d helps generate functional mature neutrophils in
neutropenia hosts.

Panax ginseng is a traditional Chinese valuable herb with a history of application for
more than 2000 years. Ginseng is used in Chinese medicine to prolong the life of critically
ill patients and is used in folklore as a tonic for strengthening the body. Modern pharmaco-
logical studies have shown that it has immune-enhancing and antioxidant properties [123].
Polysaccharides and glycosides are two major active components in ginseng, both of which
are very promising immunomodulatory drug candidates [124]. They are relatively safe
in vivo [125]. Polysaccharides are a relatively complex mixture of components and are
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therefore difficult to synthesize in vitro, and biosynthesis may be a good way to develop
such drugs.

4.2. Mechanism of Chinese Medicine in Treating Fungal Infectious Diseases

The mechanism of antifungal action of TCM ingredients has been insufficiently studied
(Figure 2). Most of the currently reported chemicals do not have a clear target. For the
TCM ingredients that act on fungi, the main mechanisms involve inhibiting the virulence
factors of fungi (hyphal growth, cell adhesion, production of phospholipase), disturbing
fungal cell wall synthesis, damaging the fungal cell membrane, inhibiting the mitosis
process, altering the glycerophospholipid metabolism, influencing the drug efflux function,
increasing intracellular ROS levels, and inducing apoptosis. Two related pathways in
fungal cells are the HOG-MAPK pathway and the Ras-cAMP pathway. Among those
chemicals, shikonin is reported to promote histone H3 on lysine 56 residue acetylation
via HST3 in C. albicans [83]. Again, shikonin exhibits strong antifungal activities with a
broad spectrum and a clear binding target, making it a good candidate to become a lead
compound in antifungal drug development.

Figure 2. Antifungal mechanisms of some TCM ingredients.

As for immunomodulatory TCM ingredients, the mechanisms involve two aspects:
anti-inflammation and immune enhancement. The pathways that anti-inflammatory ingre-
dients related with are the NF-κB pathway, MAPK signaling pathways, and the JAK/STAT
pathway. The NF-κB pathway is one of the most important pathways that regulates inflam-
mation responses in hosts. NF-κB remains inactive in the cytoplasm when binding to its
inhibitor IκB. When the cell is stimulated, IKK promotes the phosphorylation of IκB and
leads to the dissociation of NF-κB. Then, NF-κB is translocated into the nucleus and binds to
DNA, resulting in gene transcription and protein synthesis, which are related to inflamma-
tion response [126,127]. Nearly all the anti-inflammatory functions of TCMs listed here are
related to the NF-κB pathway (Figure 3). MAPK cascades mediate the signal transduction
from extracellular signals to intracellular reactions [126]. There are at least three MAPK
cascade signal transduction pathways that are involved in the anti-inflammation effects of
TCM ingredients: ERK, JNK, and p38. Rosmarinic acid, rutin, and arctiin down-regulate
protein expressions in the MAPK pathway. This reduces inflammatory responses. The
JAK/STAT pathway is another type of cascade that translates extracellular chemical signals
into the permission of JAK phosphorylation and STAT activation. The pathway is related
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to many cellular processes, including cell proliferation, differentiation, apoptosis, and
immune regulation [128]. Chlorogenic acid and paeoniflorin can inhibit the JAK/STAT
pathway and alleviate the inflammation response. However, both the MAPK pathway
and the JAK/STAT pathway are involved in many essential biological processes, and this
prevents the two pathways from being good anti-inflammatory targets. Inhibiting targets
in these pathways may cause many adverse effects.

Figure 3. Immunomodulatory mechanisms of some TCM ingredients. When cytokines, hormones,
growth factors, or LPS bind to the receptors on the cell membrane, down-stream pathways are
stimulated. Transcription factors that are regulated by these pathways enter the nucleus and promote
the expression of inflammatory factors or immunomodulatory factors. TCM ingredients affect these
pathways and thereby regulate inflammatory processes as well as the immune system.

The immune-enhancing effects are usually induced by stimulating immune cells. For
example, Ganoderma polysaccharide boosts immune response by binding to dectin-1, TLRs,
MR, or CR3 on immune cells. Ginsenoside Rg1 promotes the CD4+T cell immune response
mediated by Th1 cells, and saikosaponin d helps produce mature neutrophils mediated by
the CBL-ERK1/2 pathway.

In addition, there are some interesting molecules, such as chlorogenic acid, that possess
both antifungal and anti-inflammatory effects via different mechanisms. On one hand,
it possibly binds to CYP51 as well as ALS3 and induces apoptosis in Candida spp. On
the other hand, it inhibits the JAK/STAT and NF-κB pathways by suppressing p-STAT3,
JAK1, p50, and IKK in host cells. This kind of molecule with multiple targets is also a good
candidate for drug discovery.

4.3. Exploitation of TCM and Development of New Antifungal Drugs

If antifungal ingredients are combined with immunomodulatory components of TCM,
more ideal antifungal therapeutic effects may be obtained. However, there are still some
problems in the development of TCM. Many TCM candidates have shown good antifungal
activity in vitro, but few have shown consistent efficacy in animal models or clinical trials.
This problem makes the application of TCM in antifungal therapy a great challenge.

There may be some reasons for this. First, the content of active ingredients in TCM
is relatively low. We can use the technology of synthetic biology to genetically modify
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medicinal plants or use engineering yeast to increase the yield of effective components.
Synthetic biology was applied to improve the production of natural products in many cases.
For example, by introducing the Artemisia annua Linn. genes that encode the enzymes of
the artemisinin biosynthetic pathway into yeast cells, we can improve the artemisinic acid
yields from 1% to 25 g/L [129,130], although artemisinin production costs may increase as a
result. The application of modern technology to improve the yield and economic benefits of
the effective components can effectively solve some difficulties in the application of TCM.

Another possible reason is the relatively low efficacy and poor ADME properties of
the active ingredient. We can modify the structure of the active small molecules of TCM by
semi-synthesis or total synthesis, explore the structure–activity relationship, and select the
molecules with better medicinal properties from the derivatives. TCM is a rich reservoir of
biologically active natural products. It can provide us with many implications for the study
of novel chemical structures with antifungal or immunomodulatory activities. We can
screen for new lead compounds in this different TCM chemical pool. A variety of series of
derivatives can be developed based on lead compounds to improve their efficacy, toxicity,
and pharmacokinetic properties. By evaluating these derivatives, we can find antifungal
candidates with high efficacy, low toxicity, and good ADME properties.

Currently, the development of TCM antifungal drugs is still in the stage of drug
screening, and the mechanism of action of these bioactive molecules or mixtures is not clear.
Future research should focus on the development of natural drugs with clear ingredients, a
clear mechanism of action, and an optimized structure of active ingredients. It is hoped
that new antifungal drugs with high efficiency and low toxicity can be developed.
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