Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sampling Process
2.3. Microbiological Growth and Identification of Isolates
2.4. ARG Testing
2.5. Bioinformatics
2.6. Predictive Values
2.7. Comparison of Shotgun Analysis and MALDI-TOF-MS/16S Sequence Analysis
3. Results
3.1. Isolated Bacterial Strains
3.2. Prevalence of ARGs
3.3. Predictive Values of Resistance Genes
3.4. Identification via Shotgun Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Fuchs, G.; Eitinger, T.; Heider, J.; Kothe, E.; Overmann, J. Allgemeine Mikrobiologie, 10th ed.; Thieme: Stuttgart, Germany; New York, NY, USA, 2017. [Google Scholar]
- Marsh, P.; Martin, M.; Martin, M.V.; Marsh, P. Orale Mikrobiologie: 60 Tabellen; Thieme: Stuttgart, Germany, 2003. [Google Scholar]
- Hill, R.W.; Ramfjord, S.P.; Morrison, E.C.; Appleberry, E.A.; Caffesse, R.G.; Kerry, G.J.; Nissle, R.R. Four Types of Periodontal Treatment Compared over Two Years. J. Periodontol. 1981, 52, 655–662. [Google Scholar] [CrossRef]
- Lindhe, J.; Nyman, S. The Effect of Plaque Control and Surgical Pocket Elimination on the Establishment and Maintenance of Periodontal Health. Longitud. Study Periodontal. Ther. Cases Adv. Dis. J. Clin. Periodontol. 1975, 2, 67–79. [Google Scholar] [CrossRef]
- Suvan, J.; Leira, Y.; Moreno Sancho, F.M.; Graziani, F.; Derks, J.; Tomasi, C. Subgingival Instrumentation for Treatment of Periodontitis. Syst. Rev. J. Clin. Periodontol. 2020, 47 (Suppl. S22), 155–175. [Google Scholar] [CrossRef] [Green Version]
- Keestra, J.A.J.; Grosjean, I.; Coucke, W.; Quirynen, M.; Teughels, W. Non-Surgical Periodontal Therapy with Systemic Antibiotics in Patients with Untreated Chronic Periodontitis: A Systematic Review and Meta-Analysis. J. Periodontal. Res. 2015, 50, 294–314. [Google Scholar] [CrossRef]
- Haffajee, A.D.; Socransky, S.S.; Gunsolley, J.C. Systemic Anti-Infective Periodontal Therapy. A Systematic Review. Ann. Periodontol. 2003, 8, 115–181. [Google Scholar] [CrossRef]
- Herrera, D.; Matesanz, P.; Bascones-Martínez, A.; Sanz, M. Local and Systemic Antimicrobial Therapy in Periodontics. J. Evid.-Based Dent. Pr. 2012, 12 (Suppl. S3), 50–60. [Google Scholar] [CrossRef]
- Teughels, W.; Feres, M.; Oud, V.; Martín, C.; Matesanz, P.; Herrera, D. Adjunctive Effect of Systemic Antimicrobials in Periodontitis Therapy: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2020, 47, 257–281. [Google Scholar] [CrossRef] [Green Version]
- Haunfelder, D.; Diedrich, P.; Heidemann, D.; Borchard, R. Parodontologie, 4th ed.; Urban & Fischer: Munich, Germany, 2005. [Google Scholar]
- Herrera, D.; Matesanz, P.; Martín, C.; Oud, V.; Feres, M.; Teughels, W. Adjunctive Effect of Locally Delivered Antimicrobials in Periodontitis Therapy: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2020, 47, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Hecht, D.W.; Vedantam, G.; Osmolski, J.R. Antibiotic Resistance Among Anaerobes: What Does It Mean? Anaerobe 1999, 5, 421–429. [Google Scholar] [CrossRef]
- Hecht, D.W. Prevalence of Antibiotic Resistance in Anaerobic Bacteria: Worrisome Developments. Clin. Infect. Dis. 2004, 39, 92–97. [Google Scholar] [CrossRef]
- Soares, G.M.S.; Figueiredo, L.C.; Faveri, M.; Cortelli, S.C.; Duarte, P.M.; Feres, M. Mechanisms of Action of Systemic Antibiotics Used in Periodontal Treatment and Mechanisms of Bacterial Resistance to These Drugs. J. Appl. Oral. Sci. 2012, 20, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Almeida, V.D.S.M.; Azevedo, J.; Leal, H.F.; de Queiroz, A.T.L.; da Silva Filho, H.P.; Reis, J.N. Bacterial Diversity and Prevalence of Antibiotic Resistance Genes in the Oral Microbiome. PLoS ONE 2020, 15, e0239664. [Google Scholar] [CrossRef]
- Arredondo, A.; Blanc, V.; Mor, C.; Nart, J.; León, R. Tetracycline and Multidrug Resistance in the Oral Microbiota: Differences between Healthy Subjects and Patients with Periodontitis in Spain. J. Oral Microbiol. 2020, 13, 1847431. [Google Scholar] [CrossRef]
- Binta, B.; Patel, M. Detection of CfxA2, CfxA3, and CfxA6 Genes in Beta-Lactamase Producing Oral Anaerobes. J. Appl. Oral Sci. 2016, 24, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-M.; Kim, H.C.; Lee, S.-W.S. Characterization of Antibiotic Resistance Determinants in Oral Biofilms. J. Microbiol. 2011, 49, 595. [Google Scholar] [CrossRef]
- Alauzet, C.; Lozniewski, A.; Marchandin, H. Metronidazole Resistance and Nim Genes in Anaerobes: A Review. Anaerobe 2019, 55, 40–53. [Google Scholar] [CrossRef]
- Van Winkelhoff, A.J.; Herrera, D.; Winkel, E.G.; Dellemijn-Kippuw, N.; Vandenbroucke-Grauls, C.M.; Sanz, M. Antibiotic resistance in the subgingival microflora in patients with adult periodontitis. A comparative survey between Spain and the Netherlands. Ned. Tijdschr. Tandheelkd. 1999, 106, 290–294. [Google Scholar]
- Xie, Y.; Chen, J.; He, J.; Miao, X.; Xu, M.; Wu, X.; Xu, B.; Yu, L.; Zhang, W. Antimicrobial Resistance and Prevalence of Resistance Genes of Obligate Anaerobes Isolated from Periodontal Abscesses. J. Periodontol. 2014, 85, 327–334. [Google Scholar] [CrossRef]
- Van Winkelhoff, A.J.; Herrera, D.; Oteo, A.; Sanz, M. Antimicrobial Profiles of Periodontal Pathogens Isolated from Periodontitis Patients in The Netherlands and Spain. J. Clin. Periodontol. 2005, 32, 893–898. [Google Scholar] [CrossRef]
- Ardila, C.M.; Granada, M.I.; Guzmán, I.C. Antibiotic Resistance of Subgingival Species in Chronic Periodontitis Patients. J. Periodontal. Res. 2010, 45, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S.; EFP Workshop Participants and Methodological Consultants. Treatment of Stage I–III Periodontitis—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef] [PubMed]
- Farook, F.F.; Alodwene, H.; Alharbi, R.; Alyami, M.; Alshahrani, A.; Almohammadi, D.; Alnasyan, B.; Aboelmaaty, W. Reliability Assessment between Clinical Attachment Loss and Alveolar Bone Level in Dental Radiographs. Clin. Exp. Dent. Res. 2020, 6, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Hof, H.; Dörries, R.; Geginat, G. Medizinische Mikrobiologie: Immunologie, Virologie, Bakteriologie, Mykologie, Parasitologie, Klinische Infektiologie, Hygiene; Thieme: Stuttgart, Germany, 2009. [Google Scholar]
- Stingu, C.S.; Borgmann, T.; Rodloff, A.C.; Vielkind, P.; Jentsch, H.; Schellenberger, W.; Eschrich, K. Rapid Identification of Oral Actinomyces Species Cultivated from Subgingival Biofilm by MALDI-TOF-MS. J. Oral Microbiol. 2015, 7, 26110. [Google Scholar] [CrossRef]
- Bosshard, P.P.; Abels, S.; Zbinden, R.; Böttger, E.C.; Altwegg, M. Ribosomal DNA Sequencing for Identification of Aerobic Gram-Positive Rods in the Clinical Laboratory (an 18-Month Evaluation). J. Clin. Microbiol. 2003, 41, 4134–4140. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Leclercq, R.; Courvalin, P. Bacterial Resistance to Macrolide, Lincosamide, and Streptogramin Antibiotics by Target Modification. Antimicrob. Agents Chemother. 1991, 35, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Cerdá Zolezzi, P.; Laplana, L.M.; Calvo, C.R.; Cepero, P.G.; Erazo, M.C.; Gómez-Lus, R. Molecular Basis of Resistance to Macrolides and Other Antibiotics in Commensal Viridans Group Streptococci and Gemella Spp. and Transfer of Resistance Genes to Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 3462–3467. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.C. Acquired Tetracycline and/or Macrolide-Lincosamides-Streptogramin Resistance in Anaerobes. Anaerobe 2003, 9, 63–69. [Google Scholar] [CrossRef]
- Chaffanel, F.; Charron-Bourgoin, F.; Libante, V.; Leblond-Bourget, N.; Payot, S. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus Salivarius. Appl. Environ. Microbiol. 2015, 81, 4155–4163. [Google Scholar] [CrossRef] [Green Version]
- Steininger, C.; Willinger, B. Resistance Patterns in Clinical Isolates of Pathogenic Actinomyces Species. J. Antimicrob. Chemother. 2016, 71, 422–427. [Google Scholar] [CrossRef] [PubMed]
- García, N.; Gutiérrez, G.; Lorenzo, M.; García, J.E.; Píriz, S.; Quesada, A. Genetic Determinants for CfxA Expression in Bacteroides Strains Isolated from Human Infections. J. Antimicrob. Chemother. 2008, 62, 942–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumar, S.; Roberts, A.P.; Martin, F.E.; Adler, C.J. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria. J. Dent. Res. 2016, 95, 969–976. [Google Scholar] [CrossRef]
- v_12.0_Breakpoint_Tables.xlsx. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.eucast.org%2Ffileadmin%2Fsrc%2Fmedia%2FPDFs%2FEUCAST_files%2FBreakpoint_tables%2Fv_12.0_Breakpoint_Tables.xlsx&wdOrigin=BROWSELINK (accessed on 15 May 2022).
- Koukos, G.; Konstantinidis, A.; Tsalikis, L.; Arsenakis, M.; Slini, T.; Sakellari, D. Prevalence of β-Lactam (Bla TEM) and Metronidazole (Nim) Resistance Genes in the Oral Cavity of Greek Subjects. Open Dent. J. 2016, 10, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, L.G. 165—Capnocytophaga Species. In Principles and Practice of Pediatric Infectious Diseases, 6th ed.; Long, S.S., Ed.; Elsevier: Philadelphia, PA, USA, 2023; pp. 924–925.e1. [Google Scholar] [CrossRef]
- Cardona-Benavides, I.; Puertas, A.; Pinilla-Martín, F.; Medina, M.; Gutiérrez-Fernández, J. Alloscardovia Omnicolens Emerging Presence in Premature Rupture of Membranes. New Microbiol. 2019, 42, 237–239. [Google Scholar] [PubMed]
- The Federal Institute for Drugs and Medical Devices Germany. Available online: https://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Pharmakovigilanz/Gremien/Verschreibungspflicht/73Sitzung/anlage5.pdf?__blob=publicationFile&v=3 (accessed on 23 July 2022).
Antibiotics | Concentration in Agar Plates (mg/L) |
---|---|
Ampicillin-Sulbactam | 2; 4 and 8 |
Clindamycin | 2 and 4 |
Doxycycline | 2 and 4 |
Metronidazole | 2 and 4 |
Parameter | Data (Mean ± SD, n = 19) |
---|---|
Age (years) | 56.26 ± 13.45 |
Sex (male/female, %) | 47/53 |
Smoker (%) | 32 |
PD (sites) * | 6.16 ± 1.73 |
CAL (sites) * | 5.63 ± 2.89 |
BOP (positive/negative, sites, %) * | 58/42 |
Taxonomic Rank | n | % | |
---|---|---|---|
Genus | Species | ||
Streptococcus | S. mitis/oralis | 5 | 26.32 |
S. constellatus | 4 | 21.05 | |
S. anginosus | 3 | 15.79 | |
S. intermedius | 2 | 10.53 | |
S. massiliensis | 1 | 5.26 | |
S. gordonii | 1 | 5.26 | |
Prevotella | P. maculosa | 4 | 21.05 |
P. nigrescens | 2 | 10.53 | |
P. veroralis | 1 | 5.26 | |
P. salivae | 1 | 5.26 | |
P. nanceiensis | 1 | 5.26 | |
P. intermedia | 1 | 5.26 | |
P. buccae | 1 | 5.26 | |
Capnocytophaga | C. gingivalis | 6 | 31.58 |
C. ochracea | 2 | 10.53 | |
C. granulosa | 1 | 5.26 | |
Gemella | G. morbillorum | 6 | 31.58 |
Actinomyces | A. meyeri | 3 | 15.79 |
A. odontolyticus | 2 | 10.53 | |
Bacteroides | B. thetaiotaomicron | 1 | 5.26 |
B. pyogenes | 1 | 5.26 | |
B. ovatus/xylanisolvens | 1 | 5.26 | |
Anaplasma | A. ovis | 1 | 5.26 |
A. phagocytophilum | 1 | 5.26 | |
Cutibacterium | C. acnes | 2 | 10.53 |
Solobacterium | S. moorei | 2 | 10.53 |
Alloscardovia | A. omnicolens | 1 | 5.26 |
Corynebacterium | C. durum | 1 | 5.26 |
Microbacterium | M. flavescens/laevaniformans | 1 | 5.26 |
Bulleida | B. extructa | 1 | 5.26 |
Eggerthia | E. catenaformis | 1 | 5.26 |
Bacillus | B. cereus group | 1 | 5.26 |
Fusobacterium | F. nucleatum | 1 | 5.26 |
Antibiotic | Resistance Genes | Number of Biofilm Samples |
---|---|---|
Ampicillin-Sulbactam | cfxA | 3 |
cfxA3 | 4 | |
cfxA4 | 3 | |
cfxA5 | 3 | |
Clindamycin | ermB | 2 |
ermF | 5 | |
ermG | 1 | |
mefA | 3 | |
Doxycycline | tet32 | 4 |
tetM | 3 | |
tetO | 1 | |
tetQ | 2 | |
Metronidazole | nimI | 0 |
Sample | Resistance Genes | Phenotypic Resistance of the Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ampicillin-Sulbactam | Clindamycin | Doxycycline | Metronidazole | Ampicillin-Sulbactam | Clindamycin | Doxycycline | Metronidazole | ||||||
2 mg/L (S) | 4 mg/L (S) | 8 mg/L (R) | 2 mg/L (S) | 4 mg/L (R) | 2 mg/L | 4 mg/L | 2 mg/L (S) | 4 mg/L (R) | |||||
1 | 0 | ermF | 0 | 0 | ø | ø | ø | + | + | ø | ø | + | ø |
2 | cfxA, 3, 4, 5 | ermF | 0 | 0 | ø | ø | ø | ø | + | ø | ø | + | + |
3 | 0 | 0 | 0 | 0 | ø | ø | ø | + | + | + | + | + | + |
4 | 0 | 0 | 0 | 0 | ø | ø | ø | ø | + | ø | ø | + | + |
5 | cfxA3 | erm(B, F, G), mefA | tet32, tetM | 0 | + | + | + | + | + | + | + | + | + |
6 | 0 | 0 | 0 | 0 | ø | ø | ø | ø | ø | ø | ø | + | + |
7 | 0 | mefA | 0 | 0 | ø | ø | ø | + | + | + | ø | + | + |
8 | 0 | ermF | 0 | 0 | ø | ø | ø | + | + | ø | ø | + | + |
9 | 0 | ermF | tet32 | 0 | ø | ø | ø | + | + | ø | ø | + | + |
10 | 0 | 0 | 0 | 0 | ø | ø | ø | + | + | ø | ø | + | + |
11 | 0 | mefA | tet32 | 0 | ø | ø | ø | + | + | + | ø | + | + |
12 | cfxA, 3, 4, 5 | 0 | tet32, tetQ | 0 | ø | ø | ø | ø | ø | ø | ø | + | + |
13 | 0 | ermB | tetM, tetO | 0 | ø | ø | ø | + | + | + | + | + | + |
14 | 0 | 0 | tetM | 0 | ø | ø | ø | + | + | + | ø | + | + |
15 | 0 | 0 | tetQ | 0 | ø | ø | ø | ø | ø | ø | ø | + | + |
16 | cfxA, 3, 4, 5 | 0 | 0 | 0 | ø | ø | ø | ø | ø | ø | ø | + | + |
17 | 0 | 0 | 0 | 0 | ø | ø | ø | + | ø | ø | ø | + | ø |
18 | 0 | 0 | 0 | 0 | ø | ø | ø | + | + | + | ø | + | + |
19 | 0 | 0 | 0 | 0 | ø | ø | ø | ø | ø | ø | ø | + | + |
Sample | Resistance Genes | Identification via MALDI-TOF-MS/16S Sequencing | Identification via Shotgun Analysis | Results |
---|---|---|---|---|
1 | ermF | Prevotella intermedia | Prevotella intermedia | same species |
2 | ermF | Prevotella buccae | Prevotella nigrescens | same genus |
5 | ermF | Bacteroides thetaiotaomicron, Bacteroides ovatus | Bacteroides ovatus | same species |
7 | mefA | Gemella morbillorum, Anaplasma phagocytophilum | Gemella sanguinis | same genus |
8 | ermF | Prevotella maculosa, Corynebacterium durum | Prevotella melaninogenica | same genus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparbrod, M.; Gager, Y.; Koehler, A.-K.; Jentsch, H.; Stingu, C.-S. Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics 2023, 12, 68. https://doi.org/10.3390/antibiotics12010068
Sparbrod M, Gager Y, Koehler A-K, Jentsch H, Stingu C-S. Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics. 2023; 12(1):68. https://doi.org/10.3390/antibiotics12010068
Chicago/Turabian StyleSparbrod, Moritz, Yann Gager, Anne-Katrin Koehler, Holger Jentsch, and Catalina-Suzana Stingu. 2023. "Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis" Antibiotics 12, no. 1: 68. https://doi.org/10.3390/antibiotics12010068
APA StyleSparbrod, M., Gager, Y., Koehler, A. -K., Jentsch, H., & Stingu, C. -S. (2023). Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics, 12(1), 68. https://doi.org/10.3390/antibiotics12010068