Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.)
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Isolation
2.2. Chemical Composition of Essential Oil
2.3. Enantiomeric Analysis
2.4. Antimicrobial Activity
2.5. Antioxidant Activity
2.6. Anticholinesterase Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Essential Oil Isolation
4.4. Identification and Quantification of Essential Oil Compounds
4.5. Enantioselective Analysis
4.6. Antimicrobial Activity
4.7. Evaluation of Antioxidant Capacity
4.8. Anticholinesterase Activity
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Aquila, P.; Paparazzo, E.; Crudo, M.; Bonacci, S.; Procopio, A.; Passarino, G.; Bellizzi, D. Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients 2022, 14, 391. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, A.; Verpoorte, R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind. Crops Prod. 2011, 34, 785–801. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Ebadollahi, A.; Jalali Sendi, J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 2015, 34, 76–91. [Google Scholar] [CrossRef]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Fašmon Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of a feed additive consisting of an essential oil from Cinnamomum cassia (L.) J. Presl (cassia leaf oil) for use in all animal species (FEFANA asbl). EFSA J. 2022, 20, e07600. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Burneo, J.I.; Benítez, Á.; Calva, J.; Velastegui, P.; Morocho, V. Soil and Leaf Nutrients Drivers on the Chemical Composition of the Essential Oil of Siparuna muricata (Ruiz & Pav.) A. DC. from Ecuador. Molecules 2021, 26, 2949. [Google Scholar] [CrossRef]
- WFO Plant List. Siparunaceae (A.DC.) Schodde. Available online: https://wfoplantlist.org/plant-list (accessed on 25 October 2022).
- Ulloa Ulloa, C.; Jørgesen, P.M. Trees and Shrubs of the Andes of Ecuador; Ediciones Abya-Yala: Quito, Ecuador, 1995; p. 329. [Google Scholar]
- Torre, L.d.l.; Navarrete, H.; Muriel, M.P.; Macía Barco, M.J.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador: Quito, Ecuador; Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Aarhus, Denmark, 2008. [Google Scholar]
- Ordonez, P.; Vega, M.; Malagon, O. Phytochemical study of native plants species used in Tradicional medicine in Loja province. Lyonia 2006, 10, 65–71. [Google Scholar]
- Da Silva, R.O.; Evangelista, F.C.G.; de Paula Sabino, A.; da Silva, L.A.M.; de Oliveira, F.F.; de Oliveira, R.A. Cytotoxicity Assessment of Siparuna cymosa Essential Oil in the Presence of Myeloid Leukemia Cells. Rev. Virtual De Quim. 2020, 12, 1381–1388. [Google Scholar] [CrossRef]
- Ruiz, S.; Malagón, O.; Zaragoza, T.; Valarezo, E. Composition of the Essential Oils of Artemisia sodiroi Hieron., Siparuna eggersii Hieron., Tagetes filifolia Lag. and Clinopodium nubigenum (Kunth) Kuntze from Loja Ecuador. J. Essent. Oil-Bear. Plants 2010, 13, 676–691. [Google Scholar] [CrossRef]
- Setzer, W.N.; Agius, B.R.; Walker, T.M.; Moriarity, D.M.; Haber, W.A. Germacrone Dominates the Leaf Oil of Siparuna Grandiflora from Monteverde, Costa Rica. Nat. Prod. Commun. 2008, 3, 1934578X0800300233. [Google Scholar] [CrossRef] [Green Version]
- Diniz, J.A.; Marchesini, P.; Zeringóta, V.; Matos, R.D.S.; Novato, T.P.L.; Melo, D.; Vale, L.; Lopes, W.D.Z.; Gomes, G.A.; Monteiro, C. Chemical composition of essential oils of different Siparuna guianensis chemotypes and their acaricidal activity against Rhipicephalus microplus (Acari: Ixodidae): Influence of α-bisabolol. Int. J. Acarol. 2022, 48, 36–42. [Google Scholar] [CrossRef]
- Noriega Rivera, P.F.; Guerrini, A.; Ankuash Tsamaraint, E. Chemical composition of leeaf essential oil of Siparuna schimpffii Diels (limoncillo). Rev. Cuba. De Plantas Med. 2014, 19, 128–137. [Google Scholar]
- Vila, R.; Iglesias, J.; Cañigueral, S.; Santana, A.I.; Solís, P.N.; Gupta, M.P. Chemical Composition and Biological Activity of the Leaf Oil of Siparuna thecaphora (Poepp. et Endl.) A.DC. J. Essent. Oil Res. 2002, 14, 66–67. [Google Scholar] [CrossRef]
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Corrêa, M.J.M.; Gomes, J.M.; Armijos, M.J.G.; Valarezo, E.; Mantilla-Afanador, J.G.; Machado, F.P.; Rocha, L.; Aguiar, R.W.S.; Oliveira, E.E. Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Ind. Crops Prod. 2022, 178, 114611. [Google Scholar] [CrossRef]
- Radzhabov, G.K.; Aliev, A.M.; Musaev, A.M.; Islamova, F.I. Variability of the Constituent Composition of Achillea millefolium Essential Oils in the Wild Flora of Dagestan. Pharm. Chem. J. 2022, 56, 661–666. [Google Scholar] [CrossRef]
- Dos Santos, A.C.; Bianchini, A.E.; Bandeira Junior, G.; Garlet, Q.I.; Brasil, M.T.d.B.; Heinzmann, B.M.; Baldisserotto, B.; Caron, B.O.; da Cunha, M.A. Essential oil of Aloysia citriodora Paláu and citral: Sedative and anesthetic efficacy and safety in Rhamdia quelen and Ctenopharyngodon idella. Vet. Anaesth. Analg. 2022, 49, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Chen, Y.; Li, Z.-J.; Li, X.; Fan, G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food Funct. 2022, 13, 3110–3132. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Vullien, A.; Conde-Rojas, D. Variability of the Chemical Composition of the Essential Oil from the Amazonian Ishpingo Species (Ocotea quixos). Molecules 2021, 26, 3961. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.C.H.; Limberger, R.P.; Henriques, A.T.; Moreno, P.R.H. Essential oils from fruits and Leaves of Siparuna guianensis (Aubl.) Tulasne from Southeastern Brazil. J. Essent. Oil Res. 2005, 17, 101–102. [Google Scholar] [CrossRef]
- Cicció, J.F.; Gómez-Laurito, J. Volatile Constituents of the Fruits of Siparuna thecaphora (Siparunaceae) from Costa Rica. J. Essent. Oil Res. 2010, 22, 328–330. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Lis-Balcnin, M.; Ochocka, R.J.; Deans, S.G.; Asztemborska, M.; Hart, S. Differences in Bioactivity between the Enantiomers of α-Pinene. J. Essent. Oil Res. 1999, 11, 393–397. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Espina, L.; Gelaw, T.K.; de Lamo-Castellví, S.; Pagán, R.; García-Gonzalo, D. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE 2013, 8, e56769. [Google Scholar] [CrossRef] [Green Version]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Silva, A.C.R.d.; Lopes, P.M.; Azevedo, M.M.B.d.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Mahdavi Omran, S.; Moodi, M.A.; Norozian Amiri, S.M.B.; Mosavi, S.J.; Ghazi Mir Saeed, S.A.M.; Jabbari Shiade, S.M.; Kheradi, E.; Salehi, M. The Effects of Limonene and Orange Peel Extracts on Some Spoilage Fungi. Int. J. Mol. Clin. Microbiol. 2011, 1, 82–86. [Google Scholar]
- Vuuren, S.F.v.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Andrade, M.A.; das Graças Cardoso, M.; de Andrade, J.; Silva, L.F.; Teixeira, M.L.; Valério Resende, J.M.; da Silva Figueiredo, A.C.; Barroso, J.G. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.-P.; Han, J.-X.; Li, X.-C.; Li, Y.-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C.-Y.; Li, H.-Z.; Yang, C.-R.; et al. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species. J. Agric. Food. Chem. 2017, 65, 3702–3710. [Google Scholar] [CrossRef]
- Valarezo, E.; Rivera, J.X.; Coronel, E.; Barzallo, M.A.; Calva, J.; Cartuche, L.; Meneses, M.A. Study of Volatile Secondary Metabolites Present in Piper carpunya Leaves and in the Traditional Ecuadorian Beverage Guaviduca. Plants 2021, 10, 338. [Google Scholar] [CrossRef]
- Politeo, O.; Botica, I.; Bilušić, T.; Jukić, M.; Carev, I.; Burčul, F.; Miloš, M. Chemical composition and evaluation of acetylcholinesterase inhibition and antioxidant activity of essential oil from Dalmatian endemic species Pinus nigra Arnold ssp. dalmatica (Vis.) Franco. J. Med. Plant Res. 2011, 5, 6590–6596. [Google Scholar] [CrossRef]
- Owokotomo, I.A.; Ekundayo, O.; Abayomi, T.G.; Chukwuka, A.V. In-vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicol. Rep. 2015, 2, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Budryn, G.; Majak, I.; Grzelczyk, J.; Szwajgier, D.; Rodríguez-Martínez, A.; Pérez-Sánchez, H. Hydroxybenzoic Acids as Acetylcholinesterase Inhibitors: Calorimetric and Docking Simulation Studies. Nutrients 2022, 14, 2476. [Google Scholar] [CrossRef] [PubMed]
- Wollen, K.A. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern. Med. Rev. 2010, 15, 223–244. [Google Scholar] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Valarezo, E.; Ludeña, J.; Echeverria-Coronel, E.; Cartuche, L.; Meneses, M.A.; Calva, J.; Morocho, V. Enantiomeric Composition, Antioxidant Capacity and Anticholinesterase Activity of Essential Oil from Leaves of Chirimoya (Annona cherimola Mill.). Plants 2022, 11, 367. [Google Scholar] [CrossRef]
- Valarezo, E.; Gaona-Granda, G.; Morocho, V.; Cartuche, L.; Calva, J.; Meneses, M.A. Chemical Constituents of the Essential Oil from Ecuadorian Endemic Species Croton ferrugineus and Its Antimicrobial, Antioxidant and α-Glucosidase Inhibitory Activity. Molecules 2021, 26, 4608. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST. Libro del Web de Química del NIST, SRD 69. in Base de Datos de Referencia Estándar del NIST Número 69. Available online: http://webbook.nist.gov (accessed on 19 May 2021).
- Van Den Dool, H.; Dec Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activity Profiling of Hedyosmum strigosum Todzia Essential Oil, an Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef]
N° | Compound a | RIC | RIR | Leaves | Fruits | CF | ||||
---|---|---|---|---|---|---|---|---|---|---|
% | SD | % | SD | |||||||
1 | Pinene <α-> | 932 | 932 | 23.22 | ± | 1.03 | 10.90 | ± | 1.79 | C10H16 |
2 | Camphene | 949 | 946 | 5.17 | ± | 0.14 | 2.29 | ± | 0.22 | C10H16 |
3 | Thuja-2,4(10)-diene | 953 | 953 | 0.41 | ± | 0.04 | 0.36 | ± | 0.05 | C10H16 |
4 | Sabinene | 975 | 969 | - | 3.63 | ± | 0.15 | C10H16 | ||
5 | Pinene <β-> | 978 | 974 | 9.47 | ± | 1.33 | - | C10H16 | ||
6 | 6-Methyl-5-hepten-2-one | 989 | 981 | - | 0.94 | ± | 0.04 | C8H14O | ||
7 | Menthene <3-ρ-> | 989 | 984 | 0.28 | ± | 0.01 | - | C10H18 | ||
8 | Myrcene | 990 | 988 | 2.17 | ± | 0.12 | 0.90 | ± | 0.08 | C10H16 |
9 | Mentha-1(7),8-diene <ρ-> | 1004 | 1003 | - | 0.18 | ± | 0.08 | C10H16 | ||
10 | Hexyl acetate | 1008 | 1007 | - | 1.86 | ± | 0.09 | C8H16O2 | ||
11 | Cymene <ο-> | 1027 | 1022 | 0.33 | ± | 0.12 | 0.39 | ± | 0.03 | C10H14 |
12 | Limonene | 1030 | 1024 | 8.71 | ± | 0.06 | 24.92 | ± | 1.20 | C10H16 |
13 | ß-Phellandrene | 1032 | 1025 | 1.1 | ± | 0.05 | 0.20 | ± | 0.03 | C10H16 |
14 | BicOcimene <(Z)-β-> | 1034 | 1037 | - | 2.08 | ± | 0.05 | C10H16 | ||
15 | Ocimene <(E)-β-> | 1037 | 1044 | 0.30 | ± | 0.01 | - | C10H16 | ||
16 | Guaiacol <ο-> | 1093 | 1087 | 0.30 | ± | 0.01 | - | C7H8O2 | ||
17 | Perillene | 1102 | 1102 | 0.53 | ± | 0.08 | - | C10H14O | ||
18 | Linalool | 1105 | 1095 | 0.34 | ± | 0.22 | 4.08 | ± | 0.19 | C10H18O |
19 | Nonanal <n-> | 1109 | 1100 | - | 0.68 | ± | 0.16 | C9H18O | ||
20 | Mentha-2,8-dien-1-ol <trans-p-> | 1125 | 1119 | - | 0.53 | ± | 0.24 | C10H16O | ||
21 | Campholenal <α-> | 1133 | 1122 | 0.86 | ± | 0.11 | 0.51 | ± | 0.24 | C10H16O |
22 | Pinocarveol <trans-> | 1143 | 1135 | - | 0.61 | ± | 0.22 | C10H16O | ||
23 | Verbenol <cis-> | 1145 | 1137 | - | 0.70 | ± | 0.1 | C10H16O | ||
24 | Sabinol <trans-> | 1146 | 1137 | 1.43 | ± | 0.08 | 0.55 | ± | 0.28 | C10H16O |
25 | Chrysanthenol <cis-> | 1152 | 1160 | 0.32 | ± | 0.08 | - | C10H16O | ||
26 | Isopulegol <iso-> | 1155 | 1155 | - | 1.66 | ± | 0.6 | C10H18O | ||
27 | Rosefuran epoxide | 1173 | 1173 | - | 0.47 | ± | 0.17 | C10H14O2 | ||
28 | Mentha-1,5-dien-8-ol <p-> | 1176 | 1166 | - | 1.84 | ± | 0.05 | C10H16O | ||
29 | Acetophenone <ρ-methyl-> | 1182 | 1179 | 0.80 | ± | 0.01 | - | C9H10O | ||
30 | Dihydro carveol | 1199 | 1192 | - | 2.82 | ± | 0.28 | C10H18O | ||
31 | Myrtenal | 1204 | 1195 | 0.65 | ± | 0.02 | - | C10H14O | ||
32 | Safranal | 1205 | 1197 | 0.47 | ± | 0.01 | - | C10H14O | ||
33 | Decanal <n-> | 1210 | 1201 | - | 4.35 | ± | 0.62 | C10H20O | ||
34 | Verbenone | 1214 | 1205 | - | 0.80 | ± | 0.45 | C10H14O | ||
35 | Carveol <trans-> | 1225 | 1215 | - | 0.93 | ± | 0.53 | C10H16O | ||
36 | Ocimenone <(Z)-> | 1218 | 1226 | 0.41 | ± | 0.01 | - | C10H14O | ||
37 | Carveol cis-> | 1226 | 1226 | - | 0.53 | ± | 0.33 | C10H16O | ||
38 | Mentha-1(7),8-dien-2-ol <cis-p-> | 1229 | 1227 | 0.27 | ± | 0.02 | - | C10H16O | ||
39 | Neral | 1245 | 1235 | - | 3.19 | ± | 0.66 | C10H16O | ||
40 | (−)-Carvone | 1252 | 1249 | - | 1.10 | ± | 0.06 | C10H14O | ||
41 | Methyl citronellate | 1261 | 1261 | - | 0.86 | ± | 0.49 | C11H20O2 | ||
42 | Pregeijerene B | 1278 | 1274 | - | 3.68 | ± | 0.22 | C12H18 | ||
43 | Bornyl acetate | 1288 | 1283 | 3.81 | ± | 0.42 | 2.32 | ± | 1.37 | C12H20O2 |
44 | Myrtenyl acetate | 1329 | 1324 | 0.62 | ± | 0.05 | - | C12H18O2 | ||
45 | Elemene <δ-> | 1334 | 1335 | 0.27 | ± | 0.03 | - | C15H24 | ||
46 | Longicyclene | 1369 | 1371 | - | 0.11 | ± | 0.08 | C15H24 | ||
47 | Copaene | 1374 | 1374 | 0.53 | ± | 0.17 | 0.62 | ± | 0.69 | C15H24 |
48 | Elemene <β-> | 1389 | 1389 | 0.37 | ± | 0.14 | - | C15H24 | ||
49 | Longipinene <β-> | 1409 | 1400 | 0.49 | ± | 0.01 | - | C15H24 | ||
50 | Caryophyllene <(E)-> | 1418 | 1417 | 0.77 | ± | 0.08 | - | C15H24 | ||
51 | Himachalene <α-> | 1450 | 1449 | 0.39 | ± | 0.06 | - | C15H24 | ||
52 | Sesquisabinene | 1455 | 1457 | 0.39 | ± | 0.16 | - | C15H24 | ||
53 | Aromadendrene <allo-> | 1461 | 1458 | 1.05 | ± | 0.07 | 0.48 | ± | 0.37 | C15H24 |
54 | Chamigrene <β-> | 1479 | 1476 | 0.42 | ± | 0.11 | - | C15H24 | ||
55 | Patchoulene <γ-> | 1498 | 1502 | 0.54 | ± | 0.26 | 0.17 | ± | 0.06 | C15H24 |
56 | Himachalene <β-> | 1500 | 1500 | 0.51 | ± | 0.42 | - | C15H24 | ||
57 | Bisabolene <β-> | 1511 | 1505 | 1.32 | ± | 0.01 | - | C15H24 | ||
58 | Amorphene <δ-> | 1519 | 1511 | 0.52 | ± | 0.09 | - | C15H24 | ||
59 | Zonarene | 1522 | 1528 | 0.44 | ± | 0.27 | - | C15H24 | ||
60 | Cubebol <10-epi-> | 1529 | 1533 | 0.75 | ± | 0.05 | - | C15H24O | ||
61 | Germacrene B | 1562 | 1559 | 0.75 | ± | 0.2 | - | C15H24 | ||
62 | Cedrene epoxide <α-> | 1581 | 1574 | 1.07 | ± | 0.81 | - | C15H24O | ||
63 | Spathulenol | 1583 | 1577 | - | 0.49 | ± | 0.51 | C15H24O | ||
64 | Davanone B | 1573 | 1564 | 0.68 | ± | 0.01 | - | C15H24O2 | ||
65 | Caryophyllene oxide | 1587 | 1582 | 3.01 | ± | 1.06 | - | C15H24O | ||
66 | Globulol | 1595 | 1590 | 1.15 | ± | 0.17 | - | C15H26O | ||
67 | Viridiflorol | 1599 | 1592 | 1.83 | ± | 2.04 | - | C15H26O | ||
68 | Ledol | 1603 | 1602 | 0.67 | ± | 0.28 | - | C15H24O | ||
69 | Humulene epoxide II | 1617 | 1608 | 0.72 | ± | 0.58 | - | C15H24O | ||
70 | Eremoligenol | 1634 | 1629 | - | 0.55 | ± | 0.54 | C15H26O | ||
71 | Acorenol <β-> | 1638 | 1636 | 12.71 | ± | 2.91 | - | C15H26O | ||
72 | Butyl phthalide <3-> | 1642 | 1647 | 2.94 | ± | 0.5 | - | C12H14O2 | ||
73 | Himachalol | 1660 | 1652 | - | 0.62 | ± | 0.33 | C15H26O | ||
74 | Helifolenol A | 1665 | 1674 | 0.63 | ± | 0.12 | - | C15H24 | ||
75 | Allohimachalol | 1668 | 1661 | 0.19 | ± | 0.01 | - | C15H26O | ||
76 | Khusinol | 1680 | 1679 | 0.19 | ± | 0.01 | 2.30 | ± | 1.58 | C15H24O |
77 | Eicosane <n-> | 1995 | 2000 | - | 3.52 | ± | 1.02 | C20H42 | ||
Monoterpene hydrocarbons | 51.16 | 45.84 | ||||||||
Oxygenated monoterpenes | 8.75 | 25.07 | ||||||||
Sesquiterpenes hydrocarbons | 8.76 | 1.38 | ||||||||
Oxygenated sesquiterpenes | 22.97 | 3.96 | ||||||||
Diterpenes hydrocarbons | - | 3.52 | ||||||||
Others | 5.52 | 10.34 | ||||||||
Total identified | 97.16 | 90.13 |
Enantiomers | Leaves | Fruits | |||
---|---|---|---|---|---|
RI | ED (%) | e.e. (%) | ED (%) | e.e. (%) | |
(1R,5R)-(+)-α-Pinene | 935 | 76.99 | 53.98 | - | - |
(1S,5S)-(−)-α-Pinene | 943 | 23.01 | 100 | 100 | |
(1S,4R)-(−)-Camphene | 960 | 100 | 100 | 87.31 | 74.62 |
(1R,4S)-(+)-Camphene | 964 | - | - | 12.96 | |
(1R,5R)-(+)-β-Pinene | 993 | 72.18 | 44.36 | - | - |
(1S,5S)-(−)-β-Pinene | 999 | 27.82 | - | - | |
(4S)-(−)-Limonene | 1055 | 34.42 | 31.16 | 21.81 | 56.38 |
(4R)-(+)-Limonene | 1061 | 65.58 | 78.19 | ||
(R)-(−)-Linalool | 1202 | - | - | 33.33 | 33.34 |
(S)-(+)-Linalool | 1209 | - | - | 66.67 |
Microorganism | Leaves | Fruits | Positive Control a |
---|---|---|---|
MIC (µg/mL) | |||
Gram-positive cocci | |||
Enterococcus faecalis (ATCC 19433) | 1000 | 4000 | 0.78 |
Enterococcus faecium (ATCC 27270) | 500 | 4000 | 0.39 |
Staphylococcus aureus (ATCC 25923) | 1000 | 2000 | 0.39 |
Gram-negative bacilli | |||
Escherichia coli O157:H7 (ATCC 43888) | >4000 | 4000 | 1.56 |
Pseudomonas aeruginosa (ATCC 10145) | >4000 | >4000 | 0.39 |
Yeasts and sporulated fungi | |||
Candida albicans (ATTC 10231) | 1000 | 1000 | 0.098 |
Aspergillus niger (ATTC 10231) | 250 | 1000 | 0.098 |
Sample | ABTS | DPPH |
---|---|---|
SC50 (µg/mL) ± SD | ||
Siparuna muricata leaves essential oil | 963.3 ± 1.6 | 4000 ± 5.1 |
Siparuna muricata fruit essential oil | 775.3 ± 1.3 | - |
Trolox | 23.3 ± 1.1 | 30.0 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morocho, V.; Hidalgo-Tapia, M.; Delgado-Loyola, I.; Cartuche, L.; Cumbicus, N.; Valarezo, E. Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiotics 2023, 12, 82. https://doi.org/10.3390/antibiotics12010082
Morocho V, Hidalgo-Tapia M, Delgado-Loyola I, Cartuche L, Cumbicus N, Valarezo E. Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiotics. 2023; 12(1):82. https://doi.org/10.3390/antibiotics12010082
Chicago/Turabian StyleMorocho, Vladimir, Mariangel Hidalgo-Tapia, Israel Delgado-Loyola, Luis Cartuche, Nixon Cumbicus, and Eduardo Valarezo. 2023. "Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.)" Antibiotics 12, no. 1: 82. https://doi.org/10.3390/antibiotics12010082
APA StyleMorocho, V., Hidalgo-Tapia, M., Delgado-Loyola, I., Cartuche, L., Cumbicus, N., & Valarezo, E. (2023). Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiotics, 12(1), 82. https://doi.org/10.3390/antibiotics12010082