The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Data Collection and Outcomes
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Comorbidities and Risk at Admission
3.2. Prophylaxis Used and Microbiological Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calderon, M.; Gysin, G.; Gujjar, A.; McMaster, A.; King, L.; Comandé, D.; Hunter, E.; Payne, B. Bacterial co-infection and antibiotic stewardship in patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2023, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Faramarzi, S.; Zandi, M.; Shahbahrami, R.; Jafarpour, A.; Akhavan Rezayat, S.; Pakzad, I.; Abdi, F.; Malekifar, P.; Pakzad, R. Bacterial coinfection among coronavirus disease 2019 patient groups: An updated systematic review and meta-analysis. New Microbes New Infect. 2021, 43, 100910. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Bartoletti, M.; Azap, O.; Barac, A.; Bussini, L.; Ergonul, O.; Krause, R.; Paño-Pardo, J.R.; Power, N.R.; Sibani, M.; Szabo, B.G.; et al. ESCMID COVID-19 living guidelines: Drug treatment and clinical management. Clin. Microbiol. Infect. 2022, 28, 222–238. [Google Scholar] [CrossRef]
- Morel, J.; Constantin, A.; Baron, G.; Dernis, E.; Flipo, R.M.; Rist, S.; Combe, B.; Gottenberg, J.E.; Schaeverbeke, T.; Soubrier, M.; et al. Risk factors of serious infections in patients with rheumatoid arthritis treated with tocilizumab in the French Registry REGATE. Rheumatology 2017, 56, 1746–1754. [Google Scholar] [CrossRef]
- Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; et al. Efficacy of Tocilizumab in Patients Hospitalized with COVID-19. N. Engl. J. Med. 2020, 383, 2333–2344. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Kashour, Z.; Damlaj, M.; Riaz, M.; Tlayjeh, H.; Altannir, M.; Altannir, Y.; Al-Tannir, M.; Tleyjeh, R.; Hassett, L.; et al. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 215–227. [Google Scholar] [CrossRef]
- Narain, S.; Stefanov, D.G.; Chau, A.S.; Weber, A.G.; Marder, G.; Kaplan, B.; Malhotra, P.; Bloom, O.; Liu, A.; Lesser, M.L.; et al. Comparative Survival Analysis of Immunomodulatory Therapy for Coronavirus Disease 2019 Cytokine Storm. Chest 2021, 159, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Fu, M.; Mei, H.; Zheng, H.; Liang, G.; She, X.; Wang, Q.; Liu, W. Efficacy and secondary infection risk of tocilizumab, sarilumab and anakinra in COVID-19 patients: A systematic review and meta-analysis. Rev. Med. Virol. 2022, 32, e2295. [Google Scholar] [CrossRef] [PubMed]
- Shikongo, A.; Nuugulu, S.M.; Elago, D.; Salom, A.T.; Owolabi, K.M. Fractional Derivative Operator on Quarantine and Isolation Principle for COVID-19. In Advanced Numerical Methods for Differential Equations; CRC Press: Boca Raton, FL, USA, 2021; pp. 205–226. ISBN 978-1-00-309793-8. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, J.; Borobia, A.M.; Ryan, P.; Rodríguez-Baño, J.; Bellón, J.M.; Jarrín, I.; Carratalà, J.; Pachón, J.; Carcas, A.J.; Yllescas, M.; et al. Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: The COVID-19 SEIMC score. Thorax 2021, 76, 920–929. [Google Scholar] [CrossRef]
- Condes, E.; Arribas, J.R.; COVID19 MADRID-S.P.P.M. Group. Impact of COVID-19 on Madrid hospital system. Enferm. Infecc. Microbiol. Clin. Engl. Ed. 2021, 39, 256–257. [Google Scholar] [CrossRef]
- Burman, L.A.; Trollfors, B.; Andersson, B.; Henrichsen, J.; Juto, P.; Kallings, I.; Lagergård, T.; Möllby, R.; Norrby, R. Diagnosis of pneumonia by cultures, bacterial and viral antigen detection tests, and serology with special reference to antibodies against pneumococcal antigens. J. Infect. Dis. 1991, 163, 1087–1093. [Google Scholar] [CrossRef]
- Reimer, L.G.; Carroll, K.C. Role of the microbiology laboratory in the diagnosis of lower respiratory tract infections. Clin. Infect. Dis. 1998, 26, 742–748. [Google Scholar] [CrossRef]
- Vaquero-Herrero, M.P.; Ragozzino, S.; Castaño-Romero, F.; Siller-Ruiz, M.; Sánchez González, R.; García-Sánchez, J.E.; García-García, I.; Marcos, M.; Ternavasio-de la Vega, H.G. The Pitt Bacteremia Score, Charlson Comorbidity Index and Chronic Disease Score are useful tools for the prediction of mortality in patients with Candida bloodstream infection. Mycoses 2017, 60, 676–685. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Andres, M.; Leon-Ramirez, J.-M.; Sánchez-Payá, J.; Rodríguez, J.C.; Sánchez, R.; García-Sevila, R.; Boix, V.; Gil, J.; Merino, E. Experience with tocilizumab in severe COVID-19 pneumonia after 80 days of follow-up: A retrospective cohort study. J. Autoimmun. 2020, 114, 102523. [Google Scholar] [CrossRef]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial Coinfections in Coronavirus Disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef]
- Puzniak, L.; Finelli, L.; Yu, K.C.; Bauer, K.A.; Moise, P.; De Anda, C.; Vankeepuram, L.; Sepassi, A.; Gupta, V. A multicenter analysis of the clinical microbiology and antimicrobial usage in hospitalized patients in the US with or without COVID-19. BMC Infect. Dis. 2021, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Cintas, M.I.; López, D.J.; Blanco, A.C.; Rodriguez, T.M.; Segarra, J.M.; Novales, J.M.; Ferriol, M.F.R.; Maestre, M.M.; Sacristán, M.S. Coinfections among hospitalized patients with covid-19 in the first pandemic wave. Diagn. Microbiol. Infect. Dis. 2021, 101, 115416. [Google Scholar] [CrossRef] [PubMed]
- Unal, S.; Garcia-Rodriguez, J.A. Activity of meropenem and comparators against Pseudomonas aeruginosa and Acinetobacter spp. isolated in the MYSTIC Program, 2002–2004. Diagn. Microbiol. Infect. Dis. 2005, 53, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Linden, P. Safety profile of meropenem: An updated review of over 6000 patients treated with meropenem. Drug Saf. 2007, 30, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Muñoz, P. Linezolid: Pharmacokinetic characteristics and clinical studies. Clin. Microbiol. Infect. 2001, 7 (Suppl. S4), 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef]
- Lai, C.-C.; Chen, S.-Y.; Ko, W.-C.; Hsueh, P.-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Mady, A.; Aletreby, W.; Abdulrahman, B.; Lhmdi, M.; Noor, A.M.; Alqahtani, S.A.; Soliman, I.; Alharthy, A.; Karakitsos, D.; Memish, Z.A. Tocilizumab in the treatment of rapidly evolving COVID-19 pneumonia and multifaceted critical illness: A retrospective case series. Ann. Med. Surg. 2020, 60, 417–424. [Google Scholar] [CrossRef]
- Abubakar, U.; Al-Anazi, M.; Alanazi, Z.; Rodríguez-Baño, J. Impact of COVID-19 pandemic on multidrug resistant gram positive and gram negative pathogens: A systematic review. J. Infect. Public Health 2023, 16, 320–331. [Google Scholar] [CrossRef]
- Meena, D.S.; Kumar, D. Candida Pneumonia: An Innocent Bystander or a Silent Killer? Med. Princ. Pract. 2022, 31, 98–102. [Google Scholar] [CrossRef]
- Segrelles-Calvo, G.; de S Araújo, G.R.; Llopis-Pastor, E.; Carrillo, J.; Hernández-Hernández, M.; Rey, L.; Melean, N.R.; Escribano, I.; Antón, E.; Zamarro, C.; et al. Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respir. Med. 2021, 188, 106619. [Google Scholar] [CrossRef] [PubMed]
- Romani, L.; Mencacci, A.; Cenci, E.; Spaccapelo, R.; Toniatti, C.; Puccetti, P.; Bistoni, F.; Poli, V. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J. Exp. Med. 1996, 183, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- van Enckevort, F.H.; Netea, M.G.; Hermus, A.R.; Sweep, C.G.; Meis, J.F.; Van der Meer, J.W.; Kullberg, B.J. Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med. Mycol. 1999, 37, 419–426. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All (n = 70) | Profilaxis (n = 45) | No Profilaxis (n = 25) | p Value |
---|---|---|---|---|
Age (years), median (IQR) | 66 (54–77) | 66 (54–77) | 65 (55–78) | 0.75 |
Charlson, median (IQR) | 3 (2–5) | 3 (2–5) | 2 (1–4) | 0.09 |
SEIMC score, median (IQR) | 10 (5–15) | 10 (5–15) | 9 (5–13) | 0.56 |
All isolates (bacterial/fungical), n | 25 (18/7) | 18 (13/5) | 7 (5/2) | 0.32 |
Patients with microbiological isolates, n (%) | 14 (20) | 10 (22.2) | 4 (16) | 0.53 |
Bacterial/fungical superinfections, n | 14 (10/4) | 9 (6/3) | 5 (4/1) | 1 |
Patients with bacterial/fungical superinfection, n (%) | 10 (14.2) | 7 (15.5) | 3 (12) | 0.68 |
Focus of superinfection, n | ||||
Lung | 4 | 3 | 1 | |
Urinary | 6 | 4 | 2 | |
Bloodstream | 3 | 1 | 2 | |
Rectal | 1 | 1 | 0 | |
ICU admission, n (%) | 20 (28.6) | 11 (24.4) | 9 (36) | 0.30 |
Hospital mortality, N (%) | 32 (45.7) | 19 (42.2) | 13 (52) | 0.43 |
Patient | Prophylaxis | Microbiological Isolate | Source of Infection | Days since Tocilizumab Administration | Outcome | Superinfection |
---|---|---|---|---|---|---|
1 | Ceftriaxone | S. epidermidis | bloodstream | 8 | Death | No |
1 | Ceftriaxone | C. albicans | respiratory | 8 | Death | No |
1 | Ceftriaxone | Chlamydia pneumoniae | respiratory | 8 | Death | Yes |
1 | Ceftriaxone | ESBL E. coli | rectal | 12 | Death | No |
2 | Ceftriaxone | E. faecalis | urinary | 1 | Discharge | Yes |
2 | Ceftriaxone | K. pneumoniae | bloodstream | 12 | Discharge | Yes |
3 | Ceftriaxone | C. albicans | urinary | 5 | Discharge | Yes |
3 | Ceftriaxone | ESBL E. coli | rectal | 5 | Discharge | No |
4 | Ceftriaxone | C. albicans | respiratory | 2 | Death | No |
4 | Ceftriaxone | E. faecalis | urinary | 7 | Death | Yes |
5 | Ceftriaxone | S. aureus | nasal | 6 | Death | No |
6 | Ceftobiprole | C. albicans | urinary | 6 | Discharge | Yes |
7 | Ceftobiprole | P. aeruginosa | respiratory | 7 | Death | No |
8 | Meropenem plus linezolid | MRSA | nasal | 14 | Discharge | No |
9 | Meropenem plus linezolid | P. aeruginosa | rectal | 3 | Death | Yes |
9 | Meropenem plus linezolid | ESBL E. coIi | rectal | 14 | Death | No |
10 | Piperacillin - tazobactam | Mycoplasma pneumoniae | respiratory | 4 | Death | Yes |
10 | Piperacillin - tazobactam plus teicoplanin | A. fumigatus | respiratory | 6 | Death | Yes |
11 | None | Enterobacter spp. | respiratory | 6 | Death | Yes |
11 | None | C. albicans | urinary | 13 | Death | Yes |
11 | None | C.albicans | respiratory | 14 | Death | No |
12 | None | S. epidermidis | bloodstream | 13 | Death | Yes |
12 | None | E. faecalis | urinary | 13 | Death | Yes |
13 | None | P. aeruginosa | respiratory | 13 | Discharge | No |
13 | None | C.albicans | respiratory | 13 | Discharge | No |
14 | None | S.aureus | bloodstream | 7 | Death | Yes |
Antibiotic | N | Bacterial/Fungical Isolates, n | Patients with Microbiological Isolates, n (%) | Patients with Superinfection, n (%) | Microbiological Isolates as Colonization (Bacterial/Fungical) | Hospital Mortality, n (%) |
---|---|---|---|---|---|---|
Ceftriaxone | 18 | 11 (8/3) | 5 (27.8%) | 4 (22.2) | 6 (4/2) | 6 (33.3%) |
Ceftobiprole | 14 | 2 (1/1) | 2 (14.2%) | 1 (7.1) | 1 (1/0) | 7 (50%) |
Other | 13 | 5 (4/1) | 3 (23%) | 2 (15.4) | 2 (2/0) | 6 (46%) |
No prophylaxis | 25 | 8 (5/3) | 4 (16%) | 3 (12) | 3 (1/2) | 13 (52%) |
All | 70 | 26 (18/8) | 14 (20%) | 10 (14.2) | 12 (8/4) | 32 (45.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Membrillo de Novales, F.J.; Ramírez-Olivencia, G.; Mata Forte, M.T.; Zamora Cintas, M.I.; Simón Sacristán, M.M.; Sánchez de Castro, M.; Estébanez Muñoz, M. The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab. Antibiotics 2023, 12, 1515. https://doi.org/10.3390/antibiotics12101515
Membrillo de Novales FJ, Ramírez-Olivencia G, Mata Forte MT, Zamora Cintas MI, Simón Sacristán MM, Sánchez de Castro M, Estébanez Muñoz M. The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab. Antibiotics. 2023; 12(10):1515. https://doi.org/10.3390/antibiotics12101515
Chicago/Turabian StyleMembrillo de Novales, Francisco Javier, Germán Ramírez-Olivencia, Maj. Tatiana Mata Forte, María Isabel Zamora Cintas, Maj. María Simón Sacristán, María Sánchez de Castro, and Miriam Estébanez Muñoz. 2023. "The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab" Antibiotics 12, no. 10: 1515. https://doi.org/10.3390/antibiotics12101515
APA StyleMembrillo de Novales, F. J., Ramírez-Olivencia, G., Mata Forte, M. T., Zamora Cintas, M. I., Simón Sacristán, M. M., Sánchez de Castro, M., & Estébanez Muñoz, M. (2023). The Impact of Antibiotic Prophylaxis on a Retrospective Cohort of Hospitalized Patients with COVID-19 Treated with a Combination of Steroids and Tocilizumab. Antibiotics, 12(10), 1515. https://doi.org/10.3390/antibiotics12101515