Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti-Salmonella Effect with Prebiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tolerance of Lactobacillus Strains to Gastric and Intestinal Stresses
2.2. Anti-Salmonella Activity of Lactobacillus Strains
2.3. Anti-Salmonella Activity of CFS from LS7247
2.4. Lactic Acid Production by LS7247 Strain
2.5. Anti-Salmonella Activity of LS7247 Strain Co-Cultivated with SE and ST Pathogens
2.6. Bacteriocins Produced by LS7247 Strain
2.7. CFS of LS7247 Strain Induces ATP Leakage from SE and ST Pathogens
2.8. Adhesion of LS7247 Strain to a Monolayer Formed from Human Caco-2, Porcine IPEC-J2, or Chicken Primary Cecal Enterocytes
2.9. Total Effect of the Actigen Prebiotic and CFS from LS7247 Strain in Inhibiting the Adhesion of SE and ST Pathogens to Caco-2, IPEC-J2, and Chicken Primary Cecal Enterocytes
2.9.1. Inhibiting Effect on Adhesion to Caco-2 Enterocytes
2.9.2. Inhibiting Effect on Adhesion to Porcine IPEC-J2 Enterocytes
2.9.3. Inhibiting Effect on Adhesion to CPCEs
3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions
3.2. Intestinal Epithelial Cells and Growth Conditions
3.2.1. Caco-2 Human Intestinal Epithelial Cells
3.2.2. IPEC-J2 Porcine Intestinal Epithelial Cells
3.2.3. Chicken Primary Cecal Enterocytes (CPCEs)
3.3. Determination of Lactobacillus Strains Tolerance to Gastric and Intestinal Stresses
3.3.1. Gastric Stress Imitation In Vitro
3.3.2. Intestinal Stress Imitation In Vitro
3.4. Screening of Anti-Salmonella Lactobacilli by Delayed Antagonism Method
3.5. Preparation of Cell-Free Supernatant (CFS) and ∆CFS from LS7247 Strain
3.6. Determination of Anti-Salmonella Activity of CFS of One of LS7247 Strain
3.7. Lactic Acid Determination in CFS of LS7247
3.8. Identification of Genes Encoding Bacteriocins Produced by LS7247 Strain and Determination of Bacteriocin Primary Structure
3.9. Determination of Anti-Salmonella Activity of LS7247 Strain by Co-Cultivation Method in a Liquid Medium
3.10. Assessment of Cytoplasmic Membrane Permeability of SE and ST Pathogens by Measurement of Extracellular ATP
3.11. Determination of LS7247 Adhesion to a Monolayer Formed from Human Caco-2, Porcine IPEC-J2, or Chicken Primary Cecal Enterocytes
3.12. Determination of Total Effects of Actigen Prebiotic and CFS from LS7247 Strain in Inhibiting the Adhesion of SE and ST Pathogens to Human Caco-2, Porcine IPEC-J2, and Chicken Primary Cecal Enterocytes
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeLièvre, V.; Besnard, A.; Schlusselhuber, M.; Desmasures, N.; Dalmasso, M. Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain? Food Microbiol. 2019, 78, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Parisi, A.; Sarkar, K.; Blacker, B.F.; Reiner, R.C.; Hay, S.I.; Nixon, M.R.; Dolecek, C.; James, S.L.; Mokdad, A.H.; et al. The global burden of non-typhoidal salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Marchello, C.S.; Fiorino, F.; Pettini, E.; Crump, J.A.; Martin, L.B.; Breghi, G.; Canals, R.; Gordon, M.A.; Hanumunthadu, B.; Jacobs, J.; et al. Incidence of non-typhoidal Salmonella invasive disease: A systematic review and meta-analysis. J. Infect. 2021, 83, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Marchello, C.S.; Birkhold, M.; Crump, J.A.; Martin, L.B.; Ansah, M.O.; Breghi, G.; Canals, R.; Fiorino, F.; Gordon, M.A.; Kim, J.-H.; et al. Complications and mortality of non-typhoidal salmonella invasive disease: A global systematic review and meta-analysis. Lancet Infect. Dis. 2022, 22, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Ceyssens, P.-J.; Mattheus, W.; Vanhoof, R.; Bertrand, S. Trends in serotype distribution and antimicrobial susceptibility in Salmonella enterica isolates from humans in Belgium, 2009 to 2013. Antimicrob. Agents Chemother. 2015, 59, 544–552. [Google Scholar] [CrossRef]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef]
- Rabsch, W.; Hargis, B.M.; Tsolis, R.M.; Kingsley, R.A.; Hinz, K.H.; Tschäpe, H.; Bäumler, A.J. Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg. Infect. Dis. 2000, 6, 443–448. [Google Scholar] [CrossRef]
- Poppe, C. Salmonella enteritidis in Canada. Int. J. Food Microbiol. 1994, 21, 1–5. [Google Scholar] [CrossRef]
- Hogue, A.; White, P.; Guard-Petter, J.; Schlosser, W.; Gast, R.; Ebel, E.; Farrar, J.; Gomez, T.; Madden, J.; Madison, M.; et al. Epidemiology and control of egg-associated Salmonella enteriditis in the United States of America. Rev. Sci. Tech. 1997, 16, 542–553. [Google Scholar] [CrossRef]
- Braden, C.R. Salmonella enterica serotype Enteritidis and eggs: A national epidemic in the United States. Clin. Infect. Dis. 2006, 43, 512–517. [Google Scholar] [CrossRef]
- Betancor, L.; Pereira, M.; Martinez, A.; Giossa, G.; Fookes, M.; Flores, K.; Barrios, P.; Repiso, V.; Vignoli, R.; Cordeiro, N.; et al. Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis. J. Clin. Microbiol. 2010, 48, 2413–2423. [Google Scholar] [CrossRef]
- Galarce, N.E.; Bravo, J.L.; Robeson, J.P.; Borie, C.F. Bacteriophage cocktail reduces Salmonella enterica serovar Enteritidis counts in raw and smoked salmon tissues. Rev. Argent. Microbiol. 2014, 46, 333–337. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [Google Scholar] [CrossRef]
- Chai, S.J.; White, P.L.; Lathrop, S.L.; Solghan, S.M.; Medus, C.; McGlinchey, B.M.; Tobin-D’Angelo, M.; Marcus, R.; Mahon, B.E. Salmonella enterica serotype Enteritidis: Increasing incidence of domestically acquired infections. Clin. Infect. Dis. 2012, 54 (Suppl. S5), S488–S497. [Google Scholar] [CrossRef] [PubMed]
- De Reu, K.; Grijspeerdt, K.; Messens, W.; Heyndrickx, M.; Uyttendaele, M.; Debevere, J.; Herman, L. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int. J. Food Microbiol. 2006, 112, 253–260. [Google Scholar] [CrossRef]
- Arnold, M.E.; Martelli, F.; McLaren, I.; Davies, R.H. Estimation of the rate of egg contamination from Salmonella-infected chickens. Zoonoses Public Health 2014, 61, 18–27. [Google Scholar] [CrossRef]
- Saleh, S.; Van Puyvelde, S.; Staes, A.; Timmerman, E.; Barbé, B.; Jacobs, J.; Gevaert, K.; Deborggraeve, S. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl. Trop. Dis. 2019, 13, e0007416. [Google Scholar] [CrossRef]
- Li, R.; Lai, J.; Wang, Y.; Liu, S.; Li, Y.; Liu, K.; Shen, J.; Wu, C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int. J. Food Microbiol. 2013, 163, 14–18. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Hiltunen, T.; Virta, M.; Laine, A.-L. Antibiotic resistance in the wild: An eco-evolutionary perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160039. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, H.; Zou, L.; Yin, S.; Wang, C.; Han, X.; Xia, X.; Hu, K.; He, L.; Zhou, K.; et al. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int. J. Food Microbiol. 2017, 259, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.H.; Paul, N.C.; Sischo, W.C.; Crespo, R.; Guard, J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult. Sci. 2017, 96, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, R.E.; Herrera-Sánchez, M.P.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World 2020, 13, 2070–2084. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, I.H.; Amolo, C.N.; Beshiru, A.; Akinnibosun, O.; Ogofure, A.G.; El-Ashker, M.; Gwida, M.; Okoh, A.I.; Igbinosa, E.O. Identification and characterization of MDR virulent Salmonella spp. isolated from smallholder poultry production environment in Edo and Delta States, Nigeria. PLoS ONE 2023, 18, e0281329. [Google Scholar] [CrossRef]
- Soubeiga, A.P.; Kpoda, D.S.; Compaoré, M.K.A.; Somda-Belemlougri, A.; Kaseko, N.; Rouamba, S.S.; Ouedraogo, S.; Traoré, R.; Karfo, P.; Nezien, D.; et al. Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. Int. J. Microbiol. 2022, 2022, 9640828. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Hammad, A.M.; Shimamoto, T. Towards a compatible probiotic-antibiotic combination therapy: Assessment of antimicrobial resistance in the Japanese probiotics. J. Appl. Microbiol. 2010, 109, 1349–1360. [Google Scholar] [CrossRef]
- Heider, L.C.; Funk, J.A.; Hoet, A.E.; Meiring, R.W.; Gebreyes, W.A.; Wittum, T.E. Identification of Escherichia coli and Salmonella enterica organisms with reduced susceptibility to ceftriaxone from fecal samples of cows in dairy herds. Am. J. Vet. Res. 2009, 70, 389–393. [Google Scholar] [CrossRef]
- Alcaine, S.D.; Warnick, L.D.; Wiedmann, M. Antimicrobial resistance in nontyphoidal Salmonella. J. Food Prot. 2007, 70, 780–790. [Google Scholar] [CrossRef]
- Adetoye, A.; Pinloche, E.; Adeniyi, B.A.; Ayeni, F.A. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018, 18, 96. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lai, C.-C.; Huang, H.-L.; Huang, W.-Y.; Toh, H.-S.; Weng, T.-C.; Chuang, Y.-C.; Lu, Y.-C.; Tang, H.-J. Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Front. Microbiol. 2019, 10, 789. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.A.; Souza, E.L.S.; Arantes, R.M.E.; Balthazar, C.F.; Guimarães, J.T.; Scudino, H.; Silva, H.L.A.; Rocha, R.S.; Freitas, M.Q.; Esmerino, E.A.; et al. Fermented whey dairy beverage offers protection against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. J. Dairy Sci. 2019, 102, 6756–6765. [Google Scholar] [CrossRef] [PubMed]
- Bernet-Camard, M.F.; Liévin, V.; Brassart, D.; Neeser, J.R.; Servin, A.L.; Hudault, S. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl. Environ. Microbiol. 1997, 63, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
- Millette, M.; Luquet, F.M.; Lacroix, M. In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Lett. Appl. Microbiol. 2007, 44, 314–319. [Google Scholar] [CrossRef]
- Fayol-Messaoudi, D.; Coconnier-Polter, M.-H.; Moal, V.L.-L.; Atassi, F.; Berger, C.N.; Servin, A.L. The Lactobacillus plantarum strain ACA-DC287 isolated from a Greek cheese demonstrates antagonistic activity in vitro and in vivo against Salmonella enterica serovar Typhimurium. J. Appl. Microbiol. 2007, 103, 657–665. [Google Scholar] [CrossRef]
- Lin, C.-K.; Tsai, H.-C.; Lin, P.-P.; Tsen, H.-Y.; Tsai, C.-C. Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe 2008, 14, 251–255. [Google Scholar] [CrossRef]
- Ren, Z.; Peng, L.; Chen, S.; Pu, Y.; Lv, H.; Wei, H.; Wan, C. Lactiplantibacillus plantarum 1201 Inhibits Intestinal Infection of Salmonella enterica subsp. enterica Serovar Typhimurium Strain ATCC 13311 in Mice with High-Fat Diet. Foods 2021, 11, 85. [Google Scholar] [CrossRef]
- Mustafa, A.; Nawaz, M.; Rabbani, M.; Tayyab, M.; Khan, M. Characterization and evaluation of anti-Salmonella enteritidis activity of indigenous probiotic lactobacilli in mice. Open life Sci. 2022, 17, 978–990. [Google Scholar] [CrossRef]
- Casey, P.G.; Casey, G.D.; Gardiner, G.E.; Tangney, M.; Stanton, C.; Ross, R.P.; Hill, C.; Fitzgerald, G.F. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbiol. 2004, 39, 431–438. [Google Scholar] [CrossRef]
- Martín, R.; Jiménez, E.; Olivares, M.; Marín, M.L.; Fernández, L.; Xaus, J.; Rodríguez, J.M. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int. J. Food Microbiol. 2006, 112, 35–43. [Google Scholar] [CrossRef]
- Olivares, M.; Díaz-Ropero, M.P.; Martín, R.; Rodríguez, J.M.; Xaus, J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006, 101, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Martín, R.; Maldonado, A.; Martín, V.; Gómez de Segura, A.; Fernández, L.; Rodríguez, J.M. Complete genome sequence of Lactobacillus salivarius CECT 5713, a probiotic strain isolated from human milk and infant feces. J. Bacteriol. 2010, 192, 5266–5267. [Google Scholar] [CrossRef] [PubMed]
- Langa, S.; Maldonado-Barragán, A.; Delgado, S.; Martín, R.; Martín, V.; Jiménez, E.; Ruíz-Barba, J.L.; Mayo, B.; Connor, R.I.; Suárez, J.E.; et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: From genotype to phenotype. Appl. Microbiol. Biotechnol. 2012, 94, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S.; Ruiz-Palacios, G.M.; Morrow, A.L. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005, 25, 37–58. [Google Scholar] [CrossRef]
- Jeurink, P.V.; van Bergenhenegouwen, J.; Jiménez, E.; Knippels, L.M.J.; Fernández, L.; Garssen, J.; Knol, J.; Rodríguez, J.M.; Martín, R. Human milk: A source of more life than we imagine. Benef. Microbes 2013, 4, 17–30. [Google Scholar] [CrossRef]
- Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J.; et al. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [Google Scholar] [CrossRef]
- Elemfareji, O.I.; Thong, K.L. Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis. Indian J. Microbiol. 2013, 53, 410–417. [Google Scholar] [CrossRef]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Vet. Res. 2016, 83, a1067. [Google Scholar] [CrossRef]
- Murugkar, H.V.; Rahman, H.; Dutta, P.K. Distribution of virulence genes in Salmonella serovars isolated from man & animals. Indian J. Med. Res. 2003, 117, 66–70. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12931840 (accessed on 15 August 2023).
- Jones, C.H.; Pinkner, J.S.; Roth, R.; Heuser, J.; Nicholes, A.V.; Abraham, S.N.; Hultgren, S.J. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 1995, 92, 2081–2085. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, Y.; Peng, Q.; Gao, L.; Shi, B. Inhibitory effects of YCW and MOS from Saccharomyces cerevisiae on Escherichia coli and Salmonella pullorum adhesion to Caco-2 cells. Front. Biol. 2017, 12, 370–375. [Google Scholar] [CrossRef]
- Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Priputnevich, T.V.; Chikileva, I.O.; Deryusheva, E.I.; Abashina, T.N.; Donetskova, A.D.; Panin, A.N.; Melnikov, V.G.; et al. Limosilactobacillus fermentum strain 3872: Antibacterial and immunoregulatory properties and synergy with prebiotics against socially significant antibiotic-resistant infections of animals and humans. Antibiotics 2022, 11, 1437. [Google Scholar] [CrossRef]
- Petschow, B.; Doré, J.; Hibberd, P.; Dinan, T.; Reid, G.; Blaser, M.; Cani, P.D.; Degnan, F.H.; Foster, J.; Gibson, G.; et al. Probiotics, prebiotics, and the host microbiome: The science of translation. Ann. N. Y. Acad. Sci. 2013, 1306, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A.; Gibson, G.R. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol. 2015, 32, 42–46. [Google Scholar] [CrossRef]
- Gao, H.; Li, X.; Chen, X.; Hai, D.; Wei, C.; Zhang, L.; Li, P. The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes. J. Microbiol. Biotechnol. 2022, 32, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, M.; Dallal, M.M.S.; Rezaei, F.; Douraghi, M.; Sharifi, L.; Noroozbabaei, Z.; Gholami, M.; Mirshafiey, A. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis. Osong Public Health Res. Perspect. 2017, 8, 54–60. [Google Scholar] [CrossRef]
- Fujiwara, S.; Seto, Y.; Kimura, A.; Hashiba, H. Establishment of orally-administered Lactobacillus gasseri SBT2055SR in the gastrointestinal tract of humans and its influence on intestinal microflora and metabolism. J. Appl. Microbiol. 2001, 90, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Fujita, T.; Suzuki, Y.; Benno, Y. Monitoring and survival of Lactobacillus gasseri SBT2055 in the human intestinal tract. Microbiol. Immunol. 2006, 50, 867–870. [Google Scholar] [CrossRef]
- Huang, Y.; Adams, M.C. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol. 2004, 91, 253–260. [Google Scholar] [CrossRef]
- Pan, Q.; Shen, X.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius. Microorganisms 2021, 9, 2038. [Google Scholar] [CrossRef]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 2008, 72, 728–764. [Google Scholar] [CrossRef] [PubMed]
- van den Nieuwboer, M.; van Hemert, S.; Claassen, E.; de Vos, W.M. Lactobacillus plantarum WCFS1 and its host interaction: A dozen years after the genome. Microb. Biotechnol. 2016, 9, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Muscariello, L.; De Siena, B.; Marasco, R. Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. Curr. Microbiol. 2020, 77, 3831–3841. [Google Scholar] [CrossRef]
- Carpi, F.M.; Coman, M.M.; Silvi, S.; Picciolini, M.; Verdenelli, M.C.; Napolioni, V. Comprehensive pan-genome analysis of Lactiplantibacillus plantarum complete genomes. J. Appl. Microbiol. 2022, 132, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Šušković, J.; Kos, B.; Beganović, J.; Leboš Pavunc, A.; Habjanič, K.; Matošić, S. Antimicrobial Activity—The Most Important Property of Probiotic and Starter Lactic Acid Bacteria. Food Technol. Biotechnol. 2010, 48, 296–307. [Google Scholar]
- Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G.M. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 2007, 104, 7617–7621. [Google Scholar] [CrossRef]
- Hinton, A.; Corrier, D.E.; Deloach, J.R. In Vitro Inhibition of Salmonella typhimurium and Escherichia coli 0157:H7 by an Anaerobic Gram-positive Coccus Isolated from the Cecal Contents of Adult Chickens. J. Food Prot. 1992, 55, 162–166. [Google Scholar] [CrossRef]
- De Keersmaecker, S.C.J.; Verhoeven, T.L.A.; Desair, J.; Marchal, K.; Vanderleyden, J.; Nagy, I. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 2006, 259, 89–96. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R.A. In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide. BMC Infect. Dis. 2011, 11, 200. [Google Scholar] [CrossRef]
- Murry, A.C.; Hinton, A.; Morrison, H. Inhibition of growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on chicken feed media by Lactobacillus salivarius and Lactobacillus plantarum. Int. J. Poult. Sci. 2004, 3, 603–607. [Google Scholar] [CrossRef]
- Wang, C.; Chang, T.; Yang, H.; Cui, M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control 2015, 47, 231–236. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef] [PubMed]
- Surendran Nair, M.; Amalaradjou, M.A.; Venkitanarayanan, K. Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. Adv. Appl. Microbiol. 2017, 98, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Zhitnitsky, D.; Rose, J.; Lewinson, O. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals. Sci. Rep. 2017, 7, 44554. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Vermassen, A.; Leroy, S.; Talon, R.; Provot, C.; Popowska, M.; Desvaux, M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front. Microbiol. 2019, 10, 331. [Google Scholar] [CrossRef]
- Höltje, J.-V. From growth to autolysis: The murein hydrolases in Escherichia coli. Arch. Microbiol. 1995, 164, 243–254. [Google Scholar] [CrossRef]
- Zhang, H.; HuangFu, H.; Wang, X.; Zhao, S.; Liu, Y.; Lv, H.; Qin, G.; Tan, Z. Antibacterial Activity of Lactic Acid Producing Leuconostoc mesenteroides QZ1178 Against Pathogenic Gallibacterium anatis. Front. Vet. Sci. 2021, 8, 630294. [Google Scholar] [CrossRef]
- Boone, I.; Rosner, B.; Lachmann, R.; D’Errico, M.L.; Iannetti, L.; Van der Stede, Y.; Boelaert, F.; Ethelberg, S.; Eckmanns, T.; Stark, K.; et al. Healthcare-associated foodborne outbreaks in high-income countries: A literature review and surveillance study, 16 OECD countries, 2001 to 2019. Euro Surveill. 2021, 26, 2001278. [Google Scholar] [CrossRef]
- Flynn, S.; van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002, 148, 973–984. [Google Scholar] [CrossRef]
- Sevillano, E.; Peña, N.; Lafuente, I.; Cintas, L.M.; Muñoz-Atienza, E.; Hernández, P.E.; Borrero, J. Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3. Int. J. Mol. Sci. 2023, 24, 6813. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, E.F.; O’Connor, P.M.; Raftis, E.J.; O’Toole, P.W.; Stanton, C.; Cotter, P.D.; Ross, R.P.; Hill, C. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J. Bacteriol. 2011, 193, 6973–6982. [Google Scholar] [CrossRef] [PubMed]
- Quilodrán-Vega, S.; Albarracin, L.; Mansilla, F.; Arce, L.; Zhou, B.; Islam, M.A.; Tomokiyo, M.; Al Kassaa, I.; Suda, Y.; Kitazawa, H.; et al. Functional and Genomic Characterization of Ligilactobacillus salivarius TUCO-L2 Isolated From Lama glama Milk: A Promising Immunobiotic Strain to Combat Infections. Front. Microbiol. 2020, 11, 608752. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Han, G.G.; Kim, E.B.; Choi, Y.-J. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation. Microbiol. Res. 2017, 205, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.M.B.; Bourin, M.J.B.; Claesson, M.J.; O’Toole, P.W. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb. Genom. 2017, 3, e000115. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Xiong, Z.; Xia, Y.; Wang, G.; Ai, L. Complete Genome Sequence of Lactobacillus salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells. Curr. Microbiol. 2022, 79, 280. [Google Scholar] [CrossRef]
- Diep, D.B.; Mathiesen, G.; Eijsink, V.G.H.; Nes, I.F. Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Curr. Pharm. Biotechnol. 2009, 10, 62–73. [Google Scholar] [CrossRef]
- Claesson, M.J.; Li, Y.; Leahy, S.; Canchaya, C.; van Pijkeren, J.P.; Cerdeño-Tárraga, A.M.; Parkhill, J.; Flynn, S.; O’Sullivan, G.C.; Collins, J.K.; et al. Multireplicon genome architecture of Lactobacillus salivarius. Proc. Natl. Acad. Sci. USA 2006, 103, 6718–6723. [Google Scholar] [CrossRef]
- Barrett, E.; Hayes, M.; O’Connor, P.; Gardiner, G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P.; Hill, C. Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl. Environ. Microbiol. 2007, 73, 3719–3723. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Simmonds, R.S.; Kilian, M.; Tagg, J.R. Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J. Med. Microbiol. 2002, 51, 941–948. [Google Scholar] [CrossRef]
- Nissen-Meyer, J.; Oppegård, C.; Rogne, P.; Haugen, H.S.; Kristiansen, P.E. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Probiotics Antimicrob. Proteins 2010, 2, 52–60. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.N.; O’Connor, P.M.; Rea, M.C.; O’Sullivan, O.; Walsh, C.J.; Healy, B.; Mathur, H.; Field, D.; Hill, C.; Ross, R.P. Nisin J, a Novel Natural Nisin Variant, Is Produced by Staphylococcus capitis Sourced from the Human Skin Microbiota. J. Bacteriol. 2020, 202, 3. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Biron, E.; Ben Said, L.; Subirade, M.; Fliss, I. Bacteriocin-Based Synergetic Consortia: A Promising Strategy to Enhance Antimicrobial Activity and Broaden the Spectrum of Inhibition. Microbiol. Spectr. 2022, 10, e0040621. [Google Scholar] [CrossRef]
- Sheoran, P.; Tiwari, S.K. Synergistically-acting Enterocin LD3 and Plantaricin LD4 Against Gram-Positive and Gram-Negative Pathogenic Bacteria. Probiotics Antimicrob. Proteins 2021, 13, 542–554. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef]
- Xu, D.; Fu, L.; Pan, D.; Chu, Y.; Feng, M.; Lu, Y.; Yang, C.; Wang, Y.; Xia, J.; Sun, G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, Sep 2, 1–19. [Google Scholar] [CrossRef]
- Foshati, S.; Akhlaghi, M.; Babajafari, S. The effect of pro-/synbiotic supplementation on the brain-derived neurotrophic factor: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2022, 13, 8754–8765. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Mehmood, S.; Mahmud, A.; Hussain, J.; Ahmad, S.; Khan, M.T.; Rehman, A.; Zia, M.W.; Shaheen, M.S. Effect of yeast based mannan oligosaccharide (ActigenTM) supplementation on growth, carcass characteristics and physiological response in broiler chickens. Indian J. Anim. Res. 2018, 53, 1475–1479. [Google Scholar] [CrossRef]
- Ofek, I.; Mirelman, D.; Sharon, N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 1977, 265, 623–625. [Google Scholar] [CrossRef]
- Firon, N.; Ofek, I.; Sharon, N. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect. Immun. 1984, 43, 1088–1090. [Google Scholar] [CrossRef]
- Bouckaert, J.; Mackenzie, J.; de Paz, J.L.; Chipwaza, B.; Choudhury, D.; Zavialov, A.; Mannerstedt, K.; Anderson, J.; Piérard, D.; Wyns, L.; et al. The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol. Microbiol. 2006, 61, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.A.; Pinkner, J.S.; Walker, J.N.; Elam, J.S.; Jones, J.M.; Hultgren, S.J. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 2008, 76, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Ganner, A.; Schatzmayr, G. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl. Microbiol. Biotechnol. 2012, 95, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Ganner, A.; Stoiber, C.; Uhlik, J.T.; Dohnal, I.; Schatzmayr, G. Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives. AMB Express 2013, 3, 62. [Google Scholar] [CrossRef] [PubMed]
- Velge, P.; Wiedemann, A.; Rosselin, M.; Abed, N.; Boumart, Z.; Chaussé, A.M.; Grépinet, O.; Namdari, F.; Roche, S.M.; Rossignol, A.; et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012, 1, 243–258. [Google Scholar] [CrossRef]
- Boumart, Z.; Velge, P.; Wiedemann, A. Multiple invasion mechanisms and different intracellular Behaviors: A new vision of Salmonella-host cell interaction. FEMS Microbiol. Lett. 2014, 361, 1–7. [Google Scholar] [CrossRef]
- Johnson, R.; Mylona, E.; Frankel, G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cell. Microbiol. 2018, 20, e12939. [Google Scholar] [CrossRef]
- Lam, L.H.; Monack, D.M. Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection. PLoS Pathog. 2014, 10, e1004527. [Google Scholar] [CrossRef]
- Stapels, D.A.C.; Hill, P.W.S.; Westermann, A.J.; Fisher, R.A.; Thurston, T.L.; Saliba, A.-E.; Blommestein, I.; Vogel, J.; Helaine, S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 2018, 362, 1156–1160. [Google Scholar] [CrossRef]
- Nossol, C.; Barta-Böszörményi, A.; Kahlert, S.; Zuschratter, W.; Faber-Zuschratter, H.; Reinhardt, N.; Ponsuksili, S.; Wimmers, K.; Diesing, A.-K.; Rothkötter, H.-J. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism. PLoS ONE 2015, 10, e0132323. [Google Scholar] [CrossRef]
- Schierack, P.; Nordhoff, M.; Pollmann, M.; Weyrauch, K.D.; Amasheh, S.; Lodemann, U.; Jores, J.; Tachu, B.; Kleta, S.; Blikslager, A.; et al. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem. Cell Biol. 2006, 125, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Rath, N.C.; Liyanage, R.; Gupta, A.; Packialakshmi, B.; Lay, J.O. A method to culture chicken enterocytes and their characterization. Poult. Sci. 2018, 97, 4040–4047. [Google Scholar] [CrossRef] [PubMed]
- Ashida, N.; Yanagihara, S.; Shinoda, T.; Yamamoto, N. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J. Biosci. Bioeng. 2011, 112, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, R.N.; Iliev, I.N.; Chipeva, V.A.; Dimitonova, S.P.; Samelis, J.; Danova, S.T. Identification and in vitro characterisation of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J. Basic Microbiol. 2008, 48, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Dubey, U.K.; Mistry, V. V Growth characteristics of bifidobacteria in infant formulas. J. Dairy Sci. 1996, 79, 1146–1155. [Google Scholar] [CrossRef]
- de Jong, A.; van Hijum, S.A.F.T.; Bijlsma, J.J.E.; Kok, J.; Kuipers, O.P. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006, 34, W273–W279. [Google Scholar] [CrossRef]
- Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Boyko, N.; Cresci, A. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and SYNBIO® against pathogens. J. Appl. Microbiol. 2014, 117, 518–527. [Google Scholar] [CrossRef]
N | Strain | Gastric Stress * | Intestinal Stress * | ||||||
---|---|---|---|---|---|---|---|---|---|
10 min | 30 min | 60 min | 5 h | ||||||
CFU/mL | CFU/mL | CFU/mL | CFU/mL | ||||||
Experiment | Control | Experiment | Control | Experiment | Control | Experiment | Control | ||
1 | L. animalis IIE 7234 | (2.40 ± 0.50) × 107 | (2.00 ± 0.60) × 108 | (1.41 ± 0.48) × 107 | (1.55 ± 0.63) × 108 | (1.35 ± 0.44) × 107 | (1.71 ± 0.51) × 108 | (5.12 ± 0.31) × 105 | (3.05 ± 0.47) × 108 |
RD = 8.1 ± 1.6 Good | RD = 10.7 ± 0.6 Acceptable | RD = 12.6 ± 0.9 Acceptable | RD = 610.0 ± 11.5 Unacceptable | ||||||
2 | L. salivarius IIE 7247 | (2.18 ± 0.61) × 107 | (2.35 ± 0.62) × 107 | (2.14 ± 0.59) × 107 | (2.41 ± 0.55) × 107 | (1.19 ± 0.44) × 107 | (2.36 ± 0.46) × 107 | (5.43 ± 0.62) × 107 | (2.00 ± 0.51) × 108 |
RD = 1.1 ± 0.1 Very good | RD = 1.1 ± 0.1 Very good | RD = 2.1 ± 0.8 Very good | RD = 4 ± 0.3 Very good | ||||||
3 | L. gasseri IIE 7528 | (8.82 ± 0.53) × 107 | (5.44 ± 0.62) × 108 | (2.19 ± 0.57) × 106 | (1.71 ± 0.65) × 107 | (1.20 ± 0.40) × 105 | (9.43 ± 0.48) × 105 | (1.05 ± 0.44) × 107 | (7.12 ± 0.82) × 108 |
RD = 6.1 ± 0.8 Good | RD = 7.6 ± 1.2 Good | RD = 7.8 ± 1.1 Good | RD = 67.8 ± 3.2 Unacceptable |
Salmonella Strain | Salmonella Strain Growth Inhibition Zone (nm) | ||
---|---|---|---|
L. animalis IIE 723 | L. salivarius IIE 7247 | L. gasseri IIE 7528 | |
S. Enteritidis ATCC 13076 | 10.8 ± 0.4 | 16.5 ± 0.7 * | 12.7 ± 0.5 |
S. Enteritidis ATCC 4931 | 11.2 ± 0.5 | 18.3 ± 0.6 * | 10.9 ± 0.5 |
S. Enteritidis IIE Egg 6215 | 10.9 ± 0.5 | 17.4 ± 0.8 * | 8.2 ± 0.5 |
S. Enteritidis IIE Egg 6218 | 8.7 ± 0.3 | 18.5 ± 0.4 * | 9.5 ± 0.3 |
S. Enteritidis IIE Egg 6219 | 9.6 ± 0.6 | 18.9 ± 0.6 * | 10.2 ± 0.4 |
S. Typhimurium ATCC 700720 | 8.4 ± 0.5 | 16.8 ± 0.5 * | 11.6 ± 0.7 |
S. Typhimurium ATCC 14028 | 12.5 ± 0.6 | 17.6 ± 0.5 * | 7.8 ± 0.6 |
S. Typhimurium IIE BR 6458 | 9.8 ± 0.4 | 16.9 ± 0.8 * | 10.3 ± 0.5 |
S. Typhimurium IIE BR 6461 | 8.5 ± 0.3 | 18.6 ± 0.4 * | 9.7 ± 0.3 |
Salmonella Strain | Salmonella Strain Growth Inhibition Zone (mm) | |
---|---|---|
CFS Intact | CFS Neutralized by NaOH | |
S. Enteritidis ATCC 13076 | 15.1 ± 0.6 * | 6.5 ± 0.3 |
S. Enteritidis ATCC 4931 | 14.2 ± 0.4 * | 5.4 ± 0.4 |
S. Enteritidis IIE Egg 6215 | 18.5 ± 0.6 * | 5.8 ± 0.3 |
S. Enteritidis IIE Egg 6218 | 14.9 ± 0.7 * | 6.9 ± 0.5 |
S. Enteritidis IIE Egg 6219 | 15.3 ± 0.5 * | 6.2 ± 0.5 |
S. Typhimurium ATCC 700720 | 14.7 ± 0.5 * | 6.8 ± 0.4 |
S. Typhimurium ATCC 14028 | 19.4 ± 0.6 * | 5.7 ± 0.3 |
S. Typhimurium IIE BR 6458 | 14.5 ± 0.5 * | 6.2 ± 0.4 |
S. Typhimurium IIE BR 6461 | 14.8 ± 0.4 * | 5.9 ± 0.5 |
Cultivation Time, h | 4 | 24 | 48 | 72 |
---|---|---|---|---|
Lactic acid production, mM | 3.5 ± 0.4 | 69.7 ± 0.8 * | 124.0 ± 2.5 ** | 41.8 ± 0.6 * |
Salmonella Strain | 0 h | 24 h | ||
---|---|---|---|---|
C 1 | JC 2 | C 1 | JC 2 | |
S. Enteritidis ATCC 13076 | 2 × 105 | 3 × 105 | 8 × 105 | 8 × 104 |
S. Enteritidis ATCC 4931 | 3 × 105 | 3 × 105 | 8 × 105 | 4 × 104 |
S. Enteritidis IIE Egg 6215 | 4 × 105 | 4 × 105 | 2 × 106 | 5 × 104 |
S. Enteritidis IIE Egg 6218 | 3 × 105 | 3 × 105 | 9 × 105 | 3 × 104 |
S. Enteritidis IIE Egg 6219 | 4 × 105 | 4 × 105 | 8 × 105 | 2 × 104 |
S. Typhimurium ATCC 700720 | 3 × 105 | 3 × 105 | 8 × 105 | 2 × 104 |
S. Typhimurium ATCC 14028 | 4 × 105 | 4 × 105 | 2× 106 | 5 × 104 |
S. Typhimurium IIE BR 6458 | 3 × 105 | 3 × 105 | 8 × 105 | 4 × 104 |
S. Typhimurium IIE BR 6461 | 4 × 105 | 4 × 105 | 2 × 106 | 4 × 104 |
Salmonella Strain | Control 1 | CFS LS7247 2 |
---|---|---|
S. Enteritidis ATCC 13076 | 5.7 ± 0.8 | 25.4 ± 1.2 * |
S. Enteritidis ATCC 4931 | 4.6 ± 0.7 | 23.7 ± 1.0 * |
S. Enteritidis IIE Egg 6215 | 5.3 ± 0.9 | 28.5 ± 1.3 * |
S. Enteritidis IIE Egg 6218 | 4.5 ± 0.6 | 24.3 ± 1.2 * |
S. Enteritidis IIE Egg 6219 | 5.9 ± 0.8 | 27.5 ± 1.2 * |
S. Typhimurium ATCC 700720 | 5.4 ± 0.9 | 28.4 ± 1.1 * |
S. Typhimurium ATCC 14028 | 4.8 ± 0.7 | 25.8 ± 1.0 * |
S. Typhimurium ATCC 14028 | 5.6 ± 0.5 | 29.5 ± 1.2 * |
S. Typhimurium IIE BR 6461 | 4.0 ± 0.5 | 23.9 ± 1.1 * |
Adhesion Indicator of LS7247 Strain | Human and Animal Enterocytes | ||
---|---|---|---|
Human Caco-2 | Porcine IPEC-J2 | Chicken Cecal Cells | |
Adhesion activity | 100% | 100% | 100% |
Adhesion index | 38.6 ± 2.5 | 32.4 ± 1.9 | 27.5 ± 1.6 |
Salmonella Strain | PBS (Control) | Actigen 1 | CFS 2 | MIXT 3 | ∆CFS 4 | ∆MIXT 5 |
---|---|---|---|---|---|---|
S. Enteritidis ATCC 13076 | 25.5 ± 1.2 | 6.4 ± 0.8 ** | 9.8 ± 1.0 ** | 0.75 ± 0.04 *** | 27.4 ± 1.3 | 6.9 ± 0.7 ** |
S. Enteritidis ATCC 4931 | 28.3 ± 1.5 | 6.7 ± 0.5 ** | 9.5 ± 1.2 ** | 0.69 ± 0.05 *** | 28.6 ± 1.5 | 5.7 ± 0.9 ** |
S. Enteritidis IIE Egg 6215 | 28.7 ± 1.3 | 5.9 ± 0.6 ** | 8.4 ± 1.1 ** | 0.84 ± 0.06 *** | 23.9 ± 1.1 | 6.1 ± 0.5 ** |
S. Enteritidis IIE Egg 6218 | 26.4 ± 1.2 | 6.3 ± 0.7 ** | 8.6 ± 1.2 ** | 0.65 ± 0.03 *** | 29.5 ± 1.6 | 6.4 ± 0.8 ** |
S. Enteritidis IIE Egg 6219 | 27.3 ± 1.4 | 5.8 ± 0.5 ** | 9.3 ± 1.2 ** | 0.56 ± 0.03 *** | 24.7 ± 1.1 | 5.9 ± 0.7 ** |
S. Typhimurium ATCC 700720 | 26.5 ± 1.2 | 5.5 ± 0.8 ** | 8.5 ± 1.1 ** | 0.59 ± 0.04 *** | 28.2 ± 1.4 | 6.5 ± 0.8 ** |
S. Typhimurium ATCC 14028 | 28.5 ± 1.4 | 5.9 ± 0.7 ** | 9.2 ± 1.3 ** | 0.62 ± 0.03 *** | 25.6 ± 1.8 | 6.3 ± 0.7 ** |
S. Typhimurium IIE BR 6458 | 27.6 ± 1.5 | 6.2 ± 0.5 ** | 8.7 ± 1.1 ** | 0.67 ± 0.04 *** | 24.8 ± 1.5 | 6.5 ± 0.5 ** |
S. Typhimurium IIE BR 6461 | 29.2 ± 1.4 | 6.8 ± 0.4 ** | 9.5 ± 1.2 ** | 0.58 ± 0.03 *** | 26.7 ± 1.4 | 6.8 ± 0.7 ** |
Salmonella Strain | PBS (Control) | Actigen 1 | CFS 2 | MIXT 3 | ∆CFS 4 | ∆MIXT 5 |
---|---|---|---|---|---|---|
S. Enteritidis ATCC 13076 | 28.6 ± 1.3 | 5.4 ± 0.4 ** | 8.7 ± 1.3 ** | 0.64 ± 0.05 *** | 26.4 ± 1.3 | 6.3 ± 0.4 ** |
S. Enteritidis ATCC 4931 | 27.5 ± 1.2 | 6.2 ± 0.2 ** | 9.5 ± 1.4 ** | 0.55 ± 0.03 *** | 28.5 ± 1.2 | 5.8 ± 0.5 ** |
S. Enteritidis IIE Egg 6215 | 29.4 ± 1.5 | 6.5 ± 0.3 ** | 8.3 ± 1.2 ** | 0.49 ± 0.05 *** | 27.6 ± 1.4 | 6.1 ± 0.3 ** |
S. Enteritidis IIE Egg 6218 | 26.9 ± 1.4 | 5.2 ± 0.4 ** | 7.9 ± 1.1 ** | 0.46 ± 0.04 *** | 29.5 ± 1.2 | 7.4 ± 0.8 ** |
S. Enteritidis IIE Egg 6219 | 25.4 ± 1.1 | 5.3 ± 0.4 ** | 8.2 ± 1.5 ** | 0.48 ± 0.05 *** | 24.8 ± 1.6 | 6.5 ± 0.5 ** |
S. Typhimurium ATCC 700720 | 27.2 ± 1.4 | 7.2 ± 0.3 ** | 9.4 ± 1.3 ** | 0.59 ± 0.04 *** | 28.9 ± 1.7 | 7.1 ± 0.4 ** |
S. Typhimurium ATCC 14028 | 25.8 ± 1.3 | 5.2 ± 0.6 ** | 8.2 ± 1.2 ** | 0.45 ± 0.03 *** | 29.2 ± 1.5 | 7.2 ± 0.8 ** |
S. Typhimurium IIE BR 6458 | 26.7 ± 1.1 | 5.7 ± 0.4 ** | 8.4 ± 1.5 ** | 0.48 ± 0.05 *** | 28.4 ± 1.4 | 6.9 ± 0.7 ** |
S. Typhimurium IIE BR 6461 | 28.2 ± 1.6 | 7.5 ± 0.9 ** | 9.3 ± 1.1 ** | 0.67 ± 0.04 *** | 29.6 ± 1.7 | 7.1 ± 0.5 ** |
Salmonella Strain | PBS (Control) | Actigen 1 | CFS 2 | MIXT 3 | ∆CFS 4 | ∆MIXT 5 |
---|---|---|---|---|---|---|
S. Enteritidis ATCC 13076 | 19.4 ± 1.5 | 4.8 ± 0.3 ** | 6.5 ± 0.8 ** | 0.5 ± 0.04 *** | 23.5 ± 1.7 | 5.4 ± 0.5 ** |
S. Enteritidis ATCC 4931 | 21.7 ± 1.3 | 5.8 ± 0.6 ** | 6.7 ± 0.5 ** | 0.7 ± 0.05 *** | 24.8 ± 1.3 | 4.9 ± 0.6 ** |
S. Enteritidis IIE Egg 6215 | 18.6 ± 1.6 | 4.9 ± 0.4 ** | 5.9 ± 0.7 ** | 0.6 ± 0.03 *** | 19.7 ± 1.1 | 5.7 ± 0.4 ** |
S. Enteritidis IIE Egg 6218 | 22.3 ± 1.4 | 4.6 ± 0.3 ** | 6.3 ± 0.6 ** | 0.4 ± 0.02 *** | 20.9 ± 1.6 | 5.1 ± 0.3 ** |
S. Enteritidis IIE Egg 6219 | 19.5 ± 1.2 | 4.7 ± 0.5 ** | 5.7 ± 0.4 ** | 0.5 ± 0.03 *** | 22.3 ± 1.8 | 4.8 ± 0.5 ** |
S. Typhimurium ATCC 700720 | 23.6 ± 1.1 | 5.3 ± 0.4 ** | 6.6 ± 0.7 ** | 0.6 ± 0.04 *** | 19.9 ± 1.2 | 5.3 ± 0.4 ** |
S. Typhimurium ATCC 14028 | 20.4 ± 1.3 | 5.7 ± 0.5 ** | 7.5 ± 0.4 ** | 0.6 ± 0.03 *** | 21.4 ± 1.5 | 5.2 ± 0.6 ** |
S. Typhimurium IIE BR 6458 | 21.7 ± 1.5 | 5.2 ± 0.4 ** | 7.2 ± 0.8 ** | 0.8 ± 0.05 *** | 22.7 ± 1.8 | 4.9 ± 0.5 ** |
S. Typhimurium IIE BR 6461 | 22.5 ± 1.6 | 4.9 ± 0.3 ** | 6.8 ± 0.5 ** | 0.7 ± 0.04 *** | 20.6 ± 1.3 | 4.7 ± 0.6 ** |
Microorganism | Strain | Antibiotic Resistance | Growth Conditions |
---|---|---|---|
L. salivarius | IIE 1 LS7247 2 | MRS a 37 °C in CO2 incubator, 10% CO2 or anaerobically 48 h | |
L. animalis | IIE LA 7234 3 | The same | |
L. gasseri | IIE LG 7528 4 | The same | |
S. Enteritidis | ATCC 13076 | BHI b 37 °C aerobically 18 h | |
S. Enteritidis | ATCC 4931 | The same | |
S. Enteritidis | IIE Egg 6215 5 | NAL/AMP | The same |
S. Enteritidis | IIE Egg 6218 | AMP/TET/CIP/NAL/CHL | The same |
S. Enteritidis | IIE Egg 6219 | AMP/TET/CIP/NAL/AZM | The same |
S. Typhimurium | ATCC 700720 | The same | |
S. Typhimurium | ATCC 14028 | The same | |
S. Typhimurium | IIE Br 6458 6 | NAL/AMP/TET | The same |
S. Typhimurium | IIE Br 6461 | AMP/TET/SXT/AZM | The same |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramov, V.M.; Kosarev, I.V.; Machulin, A.V.; Deryusheva, E.I.; Priputnevich, T.V.; Panin, A.N.; Chikileva, I.O.; Abashina, T.N.; Manoyan, A.M.; Ahmetzyanova, A.A.; et al. Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti-Salmonella Effect with Prebiotics. Antibiotics 2023, 12, 1535. https://doi.org/10.3390/antibiotics12101535
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ahmetzyanova AA, et al. Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti-Salmonella Effect with Prebiotics. Antibiotics. 2023; 12(10):1535. https://doi.org/10.3390/antibiotics12101535
Chicago/Turabian StyleAbramov, Vyacheslav M., Igor V. Kosarev, Andrey V. Machulin, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Irina O. Chikileva, Tatiana N. Abashina, Ashot M. Manoyan, Anna A. Ahmetzyanova, and et al. 2023. "Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti-Salmonella Effect with Prebiotics" Antibiotics 12, no. 10: 1535. https://doi.org/10.3390/antibiotics12101535
APA StyleAbramov, V. M., Kosarev, I. V., Machulin, A. V., Deryusheva, E. I., Priputnevich, T. V., Panin, A. N., Chikileva, I. O., Abashina, T. N., Manoyan, A. M., Ahmetzyanova, A. A., Ivanova, O. E., Papazyan, T. T., Nikonov, I. N., Suzina, N. E., Melnikov, V. G., Khlebnikov, V. S., Sakulin, V. K., Samoilenko, V. A., Gordeev, A. B., ... Uversky, V. N. (2023). Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti-Salmonella Effect with Prebiotics. Antibiotics, 12(10), 1535. https://doi.org/10.3390/antibiotics12101535