Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp.
Abstract
:1. Introduction
2. Results
2.1. Identification Using 16S rDNA Sequencing and Multilocus Sequence Analysis
2.2. Antimicrobial Susceptibility
2.2.1. Susceptibility to Penicillin G, Cefotaxime, Ceftriaxone, Meropenem, and Vancomycin
2.2.2. Susceptibility to Erythromycin
2.2.3. Susceptibility to Clindamycin
2.2.4. Susceptibility to Levofloxacin
2.2.5. Susceptibility to Minocycline
2.2.6. Susceptibility to Other Antimicrobial Agents
2.3. Phenotypes and Genotypes of Macrolide-Resistant Strains
2.4. Tetracycline Resistance
2.5. Mutations in gyrA and gyrB
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. DNA Extraction
4.3. Identification of Gemella sp.
4.4. Detection of Macrolide-Resistant Genes
4.5. Detection of Tetracycline-Resistant Genes
4.6. Detection of Quinolone-Resistant Genes gyrA and gyrB
4.7. Antimicrobial Susceptibility Test
4.8. Statistical Analysis
4.9. Ethical Approval
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, U. A Proposed New Genus of Gram-Negative Cocci: Gemella. Int. J. Syst. Evol. Microbiol. 1961, 11, 17–19. [Google Scholar] [CrossRef]
- Hung, W.C.; Chen, H.J.; Tsai, J.C.; Tseng, S.P.; Lee, T.F.; Hsueh, P.R.; Shieh, W.Y.; Teng, L.J. Gemella parahaemolysans sp. nov. and Gemella taiwanensis sp. nov., Isolated from Human Clinical Specimens. Int. J. Syst. Evol. Microbiol. 2014, 64, 2060–2065. [Google Scholar] [CrossRef]
- Ulger-Toprak, N.; Summanen, P.H.; Liu, C.; Rowlinson, M.C.; Finegold, S.M. Gemella asaccharolytica sp. nov., Isolated from Human Clinical Specimens. Int. J. Syst. Evol. Microbiol. 2010, 60, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; Hutson, R.A.; Falsen, E.; Sjöden, B.; Facklam, R.R. Gemella bergeriae sp. nov., Isolated from Human Clinical Specimens. J. Clin. Microbiol. 1998, 36, 1290–1293. [Google Scholar] [CrossRef]
- Hoyles, L.; Foster, G.; Falsen, E.; Collins, M.D. Characterization of a Gemella-like Organism Isolated from an Abscess of a Rabbit: Description of Gemella cuniculi sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Berger, U.; Pervanidis, A. Differentiation of Gemella haemolysans (Thjøtta and Bøe 1938) Berger 1960, from Streptococcus morbillorum (Prevot 1933) Holdeman and Moore 1974. Zentralblatt Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986, 261, 311–321. [Google Scholar] [CrossRef]
- Kilpper-Balz, R.; Schleifer, K.H. Transfer of Streptococcus morbillorum to the Genus Gemella as Gemella morbillorum comb. nov. Int. J. Syst. Bacteriol. 1988, 38, 442–443. [Google Scholar] [CrossRef]
- Collins, M.D.; Rodriguez Jovita, M.; Foster, G.; Sjödén, B.; Falsen, E. Characterization of a Gemella-like Organism from the Oral Cavity of a Dog: Description of Gemella palaticanis sp. nov. Int. J. Syst. Evol. Microbiol. 1999, 49, 1523–1526. [Google Scholar] [CrossRef]
- Collins, M.D.; Hutson, R.A.; Falsen, E.; Sjöden, B.; Facklam, R.R. Description of Gemella sanguinis sp. nov., Isolated from Human Clinical Specimens. J. Clin. Microbiol. 1998, 36, 3090–3093. [Google Scholar] [CrossRef] [PubMed]
- Mbogning Fonkou, M.D.; Bilen, M.; Cadoret, F.; Fournier, P.E.; Dubourg, G.; Raoult, D. ‘Enterococcus timonensis’ sp. nov., ‘Actinomyces marseillensis’ sp. nov., ‘Leptotrichia massiliensis’ sp. nov., ‘Actinomyces pacaensis’ sp. nov., ‘Actinomyces oralis’ sp. nov., ‘Actinomyces culturomici’ sp. nov. and ‘Gemella massiliensis’ sp. nov., New Bacterial Species Isolated from the Human Respiratory Microbiome. New Microbes New Infect. 2018, 22, 37–43. [Google Scholar] [CrossRef]
- Mbogning Fonkou, M.D.; Lo, C.I.; Mekhalif, Z.; Bilen, M.; Tomei, E.; Kuete Yimagou, E.; Dubourg, G.; Raoult, D.; Fenollar, F.; Fournier, P.E. Gemella massiliensis sp. nov., A New Bacterium Isolated from the Human Sputum. Arch. Microbiol. 2021, 203, 5817–5823. [Google Scholar] [CrossRef]
- Hikone, M.; Sakamoto, N.; Ota, M.; Washino, T.; Kobayashi, K.; Iwabuchi, S.; Kazama, H.; Kounosu, A.; Negishi, K.; Ainoda, Y.; et al. The First Case Report of Infective Endocarditis Caused by Gemella taiwanensis. J. Infect. Chemother. 2017, 23, 567–571. [Google Scholar] [CrossRef]
- La Scola, B.; Raoult, D. Molecular Identification of Gemella species from Three Patients with Endocarditis. J. Clin. Microbiol. 1998, 36, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.; Youssef, I.; Marroush, T.S.; Sharma, M. Gemella Endocarditis: A case report and a review of the literature. Avicenna J. Med. 2019, 09, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Virgilio, E.; Chieco, P.A. Letters to the Editor Sixth Case of Infective Endocarditis Caused by Gemella bergeri. Braz. J. Infect. Dis. 2014, 18, 467. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.J.; Husayni, T.; Collins, M.A. Gemella bergeri Infective Endocarditis: A Case Report and Brief Review of Literature. Cardiol. Young 2018, 28, 762–764. [Google Scholar] [CrossRef]
- Rabah, H.; El Gharib, K.; Assaad, M.; Kassem, A.; Mobarakai, N. Gemella Endocarditis. IDCases 2022, 29, e01597. [Google Scholar] [CrossRef]
- Pachirat, O.; Watt, G.; Pussadhamma, B. First Case of Tricuspid Valve Endocarditis Caused by Gemella bergeri. Case Rep. Med. 2015, 2015, 704785. [Google Scholar] [CrossRef] [PubMed]
- Abu-Heija, A.A.; Ajam, M.; Veltman, J. Gemella morbillorum Cryptogenic Brain Abscess: A Case Report and Literature Review. Cureus 2018, 10, e3612. [Google Scholar] [CrossRef]
- Vossen, M.G.; Gattringer, K.B.; Khalifeh, N.; Koreny, M.; Spertini, V.; Mallouhi, A.; Willeit, M.; Volc-Platzer, B.; Asboth, F.; Graninger, W.; et al. Gemella morbillorum Bacteremia after Anti-Tumor Necrosis Factor Alpha as Acne Inversa Therapy. J. Clin. Microbiol. 2012, 50, 1109–1112. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; Lau, S.K.P.; Fung, A.M.Y.; Chiu, S.K.; Yung, R.W.H.; Yuen, K.Y. Gemella Bacteraemia Characterised by 16S Ribosomal RNA Gene Sequencing. J. Clin. Pathol. 2003, 56, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Chesdachai, S.; Yetmar, Z.A.; Tabaja, H.; Comba, I.Y.; Go, J.R.; Challener, D.W.; Misra, A.; Abu Saleh, O.M. Contemporary Experience of Abiotrophia, Granulicatella and Gemella Bacteremia. J. Infect. 2022, 84, 511–517. [Google Scholar] [CrossRef]
- Vasishtha, S.; Isenberg, H.D.; Sood, S.K. Gemella morbillorum as a Cause of Septic Shock. Clin. Infect. Dis. 1996, 22, 1084–1086. [Google Scholar] [CrossRef]
- Anil, M.; Ozkalay, N.; Helvaci, M.; Agus, N.; Guler, O.; Dikerler, A.; Kanar, B. Meningitis Due to Gemella haemolysans in a Pediatric Case. J. Clin. Microbiol. 2007, 45, 2337–2339. [Google Scholar] [CrossRef]
- Yamagishi, T.; Hikone, M.; Sugiyama, K.; Tanabe, T.; Wada, Y.; Furugaito, M.; Arai, Y.; Uzawa, Y.; Mizushima, R.; Kamada, K.; et al. Purpura Fulminans with Lemierre’s Syndrome Caused by Gemella bergeri and Eikenella corrodens: A Case Report. BMC Infect. Dis. 2018, 18, 523. [Google Scholar] [CrossRef] [PubMed]
- Sono, T.; Takemoto, M.; Shinohara, K.; Tsuchido, Y. An Uncommon Case of Pyogenic Spondylodiscitis Caused by Gemella morbillorum. Case Rep. Orthop. 2018, 2018, 3127613. [Google Scholar] [CrossRef]
- Ruoff, K.L. Aerococcus, Abiotrophia, and Other Aerobic Catalase-Negative, Gram-Positive Cocci. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K.C., Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 365–376. [Google Scholar]
- Hung, W.C.; Tseng, S.P.; Chen, H.J.; Tsai, J.C.; Chang, C.H.; Lee, T.F.; Hsueh, P.R.; Teng, L.J. Use of groESL as a Target for Identification of Abiotrophia, Granulicatella, and Gemella species. J. Clin. Microbiol. 2010, 48, 3532–3538. [Google Scholar] [CrossRef] [PubMed]
- Zolezzi, P.C.; Laplana, L.M.; Calvo, C.R.; Cepero, P.G.; Erazo, M.C.; Gómez-Lus, R. Molecular Basis of Resistance to Macrolides and Other Antibiotics in Commensal Viridans Group Streptococci and Gemella spp. and Transfer of Resistance Genes to Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 3462–3467. [Google Scholar] [CrossRef]
- Zolezzi, P.C.; Cepero, P.G.; Ruiz, J.; Laplana, L.M.; Calvo, C.R.; Gómez-Lus, R. Molecular Epidemiology of Macrolide and Tetracycline Resistances in Commensal Gemella sp. Isolates. Antimicrob. Agents Chemother. 2007, 51, 1487–1490. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; To, A.P.C.; Lau, S.K.P.; Fung, A.M.Y.; Yuen, K.Y. Phenotypic and Molecular Characterization of Erythromycin Resistance in Four Isolates of Streptococcus-like Gram-Positive Cocci Causing Bacteremia. J. Clin. Microbiol. 2004, 42, 3303–3305. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline, 3rd ed.CLSI Guideline M45; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- Baghdadi, J.; Kelesidis, T.; Humphries, R. In Vitro Susceptibility of Gemella species From Clinical Isolates. Open Forum Infect. Dis. 2015, 2, 1737. [Google Scholar] [CrossRef]
- García Lopez, E.; Martín-Galiano, A.J. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front. Microbiol. 2020, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, F.; Pawlak, J.; Youssef, D.; Saravolatz, L.D. A Case of Gemella morbillorum Native Valve Endocarditis and Results of in Vitro Susceptibility Testing. IDCases 2021, 23, e01045. [Google Scholar] [CrossRef]
- Goldstein, E.J.; Merriam, C.V.; Claros, M.C.; Citron, D.M. Comparative Susceptibility of Gemella morbillorum to 13 Antimicrobial Agents. Anaerobe 2022, 75, 102573. [Google Scholar] [CrossRef] [PubMed]
- Weisblum, B. Erythromycin Resistance by Ribosome Modification. Antimicrob. Agents Chemother. 1995, 39, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.; Petitpas, J.; Dib-Hajj, F.; Yuan, W.; Cronan, M.; Kamath, A.V.; Bergeron, J.; Retsema, J.A. Molecular Cloning and Functional Analysis of a Novel Macrolide-Resistance Determinant, MefA, from Streptococcus pyogenes. Mol. Microbiol. 1996, 22, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, J.; Tait-Kamradt, A.; Wondrack, L. Streptococcus pneumoniae and Streptococcus pyogenes Resistant to Macrolides but Sensitive to Clindamycin: A Common Resistance Pattern Mediated by an Efflux System. Antimicrob. Agents Chemother. 1996, 40, 1817–1824. [Google Scholar] [CrossRef]
- Santagati, M.; Lupo, A.; Scillato, M.; Di Martino, A.; Stefani, S. Conjugal Mobilization of the Mega Element Carrying Mef(E) from Streptococcus salivarius to Streptococcus pneumoniae. FEMS Microbiol. Lett. 2009, 290, 79–84. [Google Scholar] [CrossRef]
- Lamont, R.J.; Bryers, J.D. Biofilm-Induced Gene Expression and Gene Transfer. Methods Enzymol. 2001, 336, 84–94. [Google Scholar] [CrossRef]
- Brooks, L.; Narvekar, U.; McDonald, A.; Mullany, P. Prevalence of Antibiotic Resistance Genes in the Oral Cavity and Mobile Genetic Elements That Disseminate Antimicrobial Resistance: A Systematic Review. Mol. Oral Microbiol. 2022, 37, 133–153. [Google Scholar] [CrossRef]
- Rossi-Fedele, G.; Scott, W.; Spratt, D.; Gulabivala, K.; Roberts, A.P. Incidence and Behaviour of Tn916-like Elements within Tetracycline- Resistant Bacteria Isolated from Root Canals. Oral Microbiol. Immunol. 2006, 21, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Villedieu, A.; Diaz-Torres, M.L.; Roberts, A.P.; Hunt, N.; McNab, R.; Spratt, D.A.; Wilson, M.; Mullany, P. Genetic Basis of Erythromycin Resistance in Oral Bacteria. Antimicrob. Agents Chemother. 2004, 48, 2298–2301. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of Drug Resistance: Quinolone Resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Murayama, M.; Goldsmith, C.E.; Coulter, W.A.; Mason, C.; Millar, B.C.; Dooley, J.S.G.; Lowery, C.J.; Matsuda, M.; Rendall, J.C.; et al. Molecular Characterization and Phylogenetic Analysis of Quinolone Resistance-Determining Regions (QRDRs) of gyrA, gyrB, parC and parE Gene Loci in Viridans Group Streptococci Isolated from Adult Patients with Cystic Fibrosis. J. Antimicrob. Chemother. 2011, 66, 476–486. [Google Scholar] [CrossRef]
- Biedenbach, D.J.; Toleman, M.A.; Walsh, T.R.; Jones, R.N. Characterization of Fluoroquinolone-Resistant β-Hemolytic Streptococcus spp. Isolated in North America and Europe Including the First Report of Fluoroquinolone-Resistant Streptococcus dysgalactiae subspecies equisimilis: Report from the SENTRY Antimicrobial Surveillance. Diagn. Microbiol. Infect. Dis. 2006, 55, 119–127. [Google Scholar] [CrossRef]
- Miyachi, H.; Miki, I.; Aoyama, N.; Shirasaka, D.; Matsumoto, Y.; Toyoda, M.; Mitani, T.; Morita, Y.; Tamura, T.; Kinoshita, S.; et al. Primary Levofloxacin Resistance and gyrA/B Mutations among Helicobacter pylori in Japan. Helicobacter 2006, 11, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, M.; Zare, H.; Jamedar, S.A.; Hashemy, S.I.; Meshkat, Z.; Soleimanpour, S.; Hoffner, S.; Ghazvini, K. Genotypic and Phenotypic Characterization of Mycobacterium tuberculosis Resistance against Fluoroquinolones in the Northeast of Iran. BMC Infect. Dis. 2020, 20, 390. [Google Scholar] [CrossRef]
- Kanamoto, T.; Terakubo, S.; Nakashima, H. Antimicrobial Susceptibilities of Oral Isolates of Abiotrophia and Granulicatella According to the Consensus Guidelines for Fastidious Bacteria. Medicines 2018, 5, 129. [Google Scholar] [CrossRef] [PubMed]
- Tateda, K.; Ohno, A.; Ishii, Y.; Murakami, H.; Yamaguchi, K.; the Levofloxacin surveillance group. Investigation of the Susceptibility Trends in Japan to Fluoroquinolones and Other Antimicrobial Agents in a Nationwide Collection of Clinical Isolates: A Longitudinal Analysis from 1994 to 2016. J. Infect. Chemother. 2019, 25, 594–604. [Google Scholar] [CrossRef]
- Muraki, Y.; Yagi, T.; Tsuji, Y.; Nishimura, N.; Tanabe, M.; Niwa, T.; Watanabe, T.; Fujimoto, S.; Takayama, K.; Murakami, N.; et al. Japanese Antimicrobial Consumption Surveillance: First Report on Oral and Parenteral Antimicrobial Consumption in Japan (2009–2013). J. Glob. Antimicrob. Resist. 2016, 7, 19–23. [Google Scholar] [CrossRef]
- Lopardo, H.A.; Vidal, P.; Jeric, P.; Centron, D.; Paganini, H.; Facklam, R.R.; Elliott, J. Six-Month Multicenter Study on Invasive Infections Due to Group B Streptococci in Argentina. J. Clin. Microbiol. 2003, 41, 4688–4694. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Shibasaki, Y.; Hasegawa, K.; Davies, T.A.; Jacobs, M.R.; Ubukata, K.; Appelbaum, P.C. Evaluation of PCR Primers to Screen for Streptococcus pneumoniae Isolates and β-Lactam Resistance, and to Detect Common Macrolide Resistance Determinants. J. Antimicrob. Chemother. 2001, 48, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, I.; Kwiecień, E.; Kizerwetter-Świda, M.; Chrobak-Chmiel, D.; Rzewuska, M. Tetracycline, Macrolide and Lincosamide Resistance in Streptococcus canis Strains from Companion Animals and Its Genetic Determinants. Antibiotics 2022, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
Specimen | Number of Strains | ||||
---|---|---|---|---|---|
Gemella morbillorum | GHgroup | Gemella taiwanensis | Gemella sanguinis | Gemella bergeri | |
Blood | 8 | 4 | 5 | 1 | |
Ascites | 2 | ||||
Bile | 1 | ||||
Pleural effusion | 1 | ||||
Wound pus | 10 | 2 | 4 | 1 | |
Sputum | 2 | ||||
Lung biopsy | 1 | ||||
Pharynx | 5 | 2 | |||
Nose | 1 | ||||
Urine | 1 | ||||
Cornea | 1 | ||||
Total | 21 | 16 | 12 | 2 | 1 |
Antimicrobial Agents/ Gemella spp. | MIC (μg/mL) | Interpretive Breakpoint (μg/mL) a or % of Isolates | ||||
---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | Susceptible | Intermediate | Resistant | |
Penicillin G c | ≤0.06–>4 | ≤0.12 | 0.25–2 | ≥4 | ||
Gemella morbillorum | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
GH group | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella taiwanensis | ≤0.06–0.25 | ≤0.06 | ≤0.06 | 92.3 | 7.7 | 0.0 |
Gemella sanguinis | ≤0.06 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | ≤0.06 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.06–0.25 | ≤0.06 | ≤0.06 | 98.3 | 1.7 | 0.0 |
Ampicillin | ≤0.12–>4 | |||||
Gemella morbillorum | ≤0.12–0.25 | ≤0.12 | ≤0.12 | NA b | NA | NA |
GH group | ≤0.12 | ≤0.12 | ≤0.12 | NA | NA | NA |
Gemella taiwanensis | ≤0.12–0.5 | ≤0.12 | ≤0.12 | NA | NA | NA |
Gemella sanguinis | ≤0.12 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.12 | – | – | NA | NA | NA |
Total | ≤0.12–0.5 | ≤0.12 | ≤0.12 | NA | NA | NA |
Amoxicillin–clavulanic acid | ≤0.25/0.12–>4/2 | |||||
Gemella morbillorum | ≤0.25/0.12 | ≤0.25/0.12 | ≤0.25/0.12 | NA | NA | NA |
GH group | ≤0.25/0.12 | ≤0.25/0.12 | ≤0.25/0.12 | NA | NA | NA |
Gemella taiwanensis | ≤0.25/0.12 | ≤0.25/0.12 | ≤0.25/0.12 | NA | NA | NA |
Gemella sanguinis | ≤0.25/0.12 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.25/0.12 | – | – | NA | NA | NA |
Total | ≤0.25/0.12 | ≤0.25/0.12 | ≤0.25/0.12 | NA | NA | NA |
Sulbactam–ampicillin | ≤0.06/0.12–>2/4 | |||||
Gemella morbillorum | ≤0.06/0.12 | ≤0.06/0.12 | ≤0.06/0.12 | NA | NA | NA |
GH group | ≤0.06/0.12 | ≤0.06/0.12 | ≤0.06/0.12 | NA | NA | NA |
Gemella taiwanensis | ≤0.06/0.12–0.25/0.5 | ≤0.06/0.12 | ≤0.06/0.12 | NA | NA | NA |
Gemella sanguinis | ≤0.06/0.12 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.06/0.12 | – | – | NA | NA | NA |
Total | ≤0.06/0.12–0.25/0.5 | ≤0.06/0.12 | ≤0.06/0.12 | NA | NA | NA |
Cefazolin | ≤0.25–>2 | |||||
Gemella morbillorum | ≤0.25 | ≤0.25 | ≤0.25 | NA | NA | NA |
GH group | ≤0.25–0.5 | ≤0.25 | 0.5 | NA | NA | NA |
Gemellataiwanensis | ≤0.25–0.5 | ≤0.25 | 0.5 | NA | NA | NA |
Gemella sanguinis | ≤0.25 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.25 | – | – | NA | NA | NA |
Total | ≤0.25–0.5 | ≤0.25 | ≤0.25 | NA | NA | NA |
Cefdinir | ≤0.25–>1 | |||||
Gemella morbillorum | ≤0.25 | ≤0.25 | ≤0.25 | NA | NA | NA |
GH group | ≤0.25 | ≤0.25 | ≤0.25 | NA | NA | NA |
Gemella taiwanensis | ≤0.25 | ≤0.25 | ≤0.25 | NA | NA | NA |
Gememlla sanguinis | ≤0.25–0.5 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.25 | – | – | NA | NA | NA |
Total | ≤0.25–0.5 | ≤0.25 | ≤0.25 | NA | NA | NA |
Ceftriaxone c | ≤0.06–>2 | ≤1 | 2 | ≥4 | ||
Gemella morbillorum | ≤0.06–0.5 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
GH group | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella taiwanensis | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella sanguinis | 0.25–1 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | ≤0.06 | 100.0 | 0.0 | 0.0 | ||
Total | ≤0.06–1 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Cefotaxime c | ≤0.06–>2 | ≤1 | 2 | ≥4 | ||
Gemella morbillorum | ≤0.06–0.12 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
GH group | ≤0.06–0.12 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella taiwanensis | ≤0.06–0.12 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella sanguinis | 0.25–1 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | ≤0.06 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.06–1 | ≤0.06 | 0.12 | 100.0 | 0.0 | 0.0 |
Cefepime | ≤0.06–>2 | |||||
Gemella morbillorum | ≤0.06–0.5 | ≤0.06 | ≤0.06 | NA | NA | NA |
GH group | ≤0.06–0.12 | ≤0.06 | 0.12 | NA | NA | NA |
Gemella taiwanensis | ≤0.06–0.12 | ≤0.06 | ≤0.06 | NA | NA | NA |
Gemella sanguinis | 0.25–1 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.06 | – | – | NA | NA | NA |
Total | ≤0.06–1 | ≤0.06 | 0.12 | NA | NA | NA |
Imipenem | ≤0.06–>4 | |||||
Gemella morbillorum | ≤0.06 | ≤0.06 | ≤0.06 | NA | NA | NA |
GH group | ≤0.06 | ≤0.06 | ≤0.06 | NA | NA | NA |
Gemella taiwanensis | ≤0.06 | ≤0.06 | ≤0.06 | NA | NA | NA |
Gemella sanguinis | ≤0.06 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.06 | – | – | NA | NA | NA |
Total | ≤0.06 | ≤0.06 | ≤0.06 | NA | NA | NA |
Meropenem c | ≤0.06–>2 | ≤0.5 | 1 | ≥2 | ||
Gemella morbillorum | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
GH group | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella taiwanensis | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Gemella sanguinis | ≤0.06 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | ≤0.06 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.06 | ≤0.06 | ≤0.06 | 100.0 | 0.0 | 0.0 |
Erythromycin c | ≤0.25–>2 | ≤0.25 | 0.5 | ≥1 | ||
Gemella morbillorum | ≤0.25–>2 | ≤0.25 | >2 | 72.7 | 0.0 | 27.3 |
GH group | ≤0.25–>2 | ≤0.25 | >2 | 61.1 | 5.6 | 33.3 |
Gemella taiwanensis | ≤0.25–>2 | ≤0.25 | >2 | 53.8 | 0.0 | 46.2 |
Gemella sanguinis | ≤0.25–1 | – | – | 66.7 | 0.0 | 33.3 |
Gemella bergeri | ≤0.25 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.25–>2 | ≤0.25 | >2 | 65.5 | 1.7 | 32.8 |
Clarithromycin | ≤0.12–>16 | |||||
Gemella morbillorum | ≤0.12–>16 | ≤0.12 | >16 | NA | NA | NA |
GH group | ≤0.12–16 | ≤0.12 | 8 | NA | NA | NA |
Gemella taiwanensis | ≤0.12–8 | ≤0.12 | 2 | NA | NA | NA |
Gemella sanguinis | ≤0.12–0.25 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.12 | – | – | NA | NA | NA |
Total | ≤0.12–>16 | ≤0.12 | 8 | NA | NA | NA |
Azithromycin | ≤0.12–>4 | |||||
Gemella morbillorum | ≤0.12–>4 | ≤0.12 | >4 | NA | NA | NA |
GH group | ≤0.12–>4 | ≤0.12 | >4 | NA | NA | NA |
Gemella taiwanensis | ≤0.12–>4 | 0.25 | >4 | NA | NA | NA |
Gemella sanguinis | 0.25–4 | – | – | NA | NA | NA |
Gemella bergeri | 0.25 | – | – | NA | NA | NA |
Total | ≤0.12–>4 | ≤0.12 | >4 | NA | NA | NA |
Clindamycin c | ≤0.25–>2 | ≤0.25 | 0.5 | ≥1 | ||
Gemella morbillorum | ≤0.25–>2 | ≤0.25 | >2 | 72.7 | 0.0 | 27.3 |
GH group | ≤0.25–1 | ≤0.25 | 0.5 | 77.8 | 16.7 | 5.6 |
Gemella taiwanensis | ≤0.25 | ≤0.25 | ≤0.25 | 100.0 | 0.0 | 0.0 |
Gemella sanguinis | ≤0.25 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | ≤0.25 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.25–>2 | ≤0.25 | >2 | 82.8 | 5.2 | 12.1 |
Erythromycin/clindamycin | ≤1/0.5–>1/0.5 | |||||
G. morbillorum | ≤1/0.5–>1/0.5 | ≤1/0.5 | >1/0.5 | NA | NA | NA |
GH group | ≤1/0.5–>1/0.5 | ≤1/0.5 | ≤1/0.5 | NA | NA | NA |
G. taiwanensis | ≤1/0.5 | ≤1/0.5 | ≤1/0.5 | NA | NA | NA |
G. sanguinis | ≤1/0.5 | – | – | NA | NA | NA |
Gemella bergeri | ≤1/0.5 | – | – | NA | NA | NA |
Total | ≤1/0.5–>1/0.5 | ≤1/0.5 | >1/0.5 | NA | NA | NA |
Levofloxacin c | ≤0.004–>128 | ≤2 | 4 | ≥8 | ||
Gemella morbillorum | 0.03–>128 | 0.25 | 1 | 90.9 | 0.0 | 9.1 |
GH group | 0.125–>128 | 1 | >128 | 50.0 | 0.0 | 50.0 |
Gemella taiwanensis | 0.125–>128 | >128 | >128 | 38.5 | 0.0 | 61.5 |
Gemella sanguinis | 0.5–>128 | – | – | 33.3 | 0.0 | 66.7 |
Gemella bergeri | 0.5 | – | – | 100.0 | 0.0 | 0.0 |
Total | 0.03–>128 | 0.5 | >128 | 63.8 | 0.0 | 36.2 |
Moxifloxacin | ≤0.5–>2 | |||||
Gemella morbillorum | ≤0.5–>2 | ≤0.5 | >2 | NA | NA | NA |
GH group | ≤0.5–>2 | ≤0.5 | >2 | NA | NA | NA |
Gemella taiwanensis | ≤0.5–>2 | >2 | >2 | NA | NA | NA |
Gemella sanguinis | ≤0.5–>2 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.5 | – | – | NA | NA | NA |
Total | ≤0.5–>2 | ≤0.5 | >2 | NA | NA | NA |
Minocycline | ≤1–>8 | |||||
Gemella morbillorum | ≤1–>8 | ≤1 | 2 | NA | NA | NA |
GH group | ≤1–8 | ≤1 | 8 | NA | NA | NA |
Gemella taiwanensis | ≤1–8 | ≤1 | 8 | NA | NA | NA |
Gemella sanguinis | ≤1 | – | – | NA | NA | NA |
Gemella bergeri | ≤1 | – | – | NA | NA | NA |
Total | ≤1 | ≤1 | 8 | NA | NA | NA |
Sulfamethoxazole– trimethoprim | ≤9.5/0.5–>38/2 | |||||
Gemella morbillorum | ≤9.5/0.5–>38/2 | 19/1 | >38/2 | NA | NA | NA |
GH group | ≤9.5/0.5–>38/2 | 38/2 | >38/2 | NA | NA | NA |
Gemella taiwanensis | ≤9.5/0.5–>38/2 | 19/1 | 19/1 | NA | NA | NA |
Gemella sanguinis | 19/1–>38/2 | – | – | NA | NA | NA |
Gemella bergeri | ≤9.5/0.5 | – | – | NA | NA | NA |
Total | ≤9.5/0.5–>38/2 | 19/1 | >38/2 | NA | NA | NA |
Gentamicin | ≤1–>8 | |||||
Gemella morbillorum | ≤1–8 | 2 | 8 | NA | NA | NA |
GH group | ≤1–2 | ≤1 | 2 | NA | NA | NA |
Gemella taiwanensis | ≤1–4 | 2 | 4 | NA | NA | NA |
Gemella sanguinis | ≤1–8 | – | – | NA | NA | NA |
Gemella bergeri | 2, 4 | – | – | NA | NA | NA |
Total | ≤1–8 | 2 | 8 | NA | NA | NA |
Gentamicin 500 | ≤500–>500 | |||||
Gemella morbillorum | ≤500 | ≤500 | ≤500 | NA | NA | NA |
GH group | ≤500 | ≤500 | ≤500 | NA | NA | NA |
Gemella taiwanensis | ≤500 | ≤500 | ≤500 | NA | NA | NA |
Gemella sanguinis | ≤500 | – | – | NA | NA | NA |
Gemella bergeri | ≤500 | – | – | NA | NA | NA |
Total | ≤500 | ≤500 | ≤500 | NA | NA | NA |
Arbekacin | ≤1–>8 | |||||
Gemella morbillorum | ≤1–8 | 8 | >8 | NA | NA | NA |
GH group | ≤1–8 | 4 | 8 | NA | NA | NA |
Gemella taiwanensis | 2–>8 | 4 | 8 | NA | NA | NA |
Gemella sanguinis | 4–>8 | – | – | NA | NA | NA |
Gemella bergeri | 4, >8 | – | – | NA | NA | NA |
Total | ≤1–8 | 4 | >8 | NA | NA | NA |
Fosfomycin | ≤16–>128 | |||||
Gemella morbillorum | ≤16–32 | ≤16 | ≤16 | NA | NA | NA |
GH group | ≤16 | ≤16 | ≤16 | NA | NA | NA |
Gemella taiwanensis | ≤16 | ≤16 | ≤16 | NA | NA | NA |
Gemalla sanguinis | ≤16 | – | – | NA | NA | NA |
Gemella bergeri | ≤16 | – | – | NA | NA | NA |
Total | ≤16–32 | ≤16 | ≤16 | NA | NA | NA |
Rifampicin | ≤0.5–>2 | |||||
Gemella morbillorum | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
GH group | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Gemella taiwanensis | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Gemella sanguinis | ≤0.5 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.5 | NA | NA | NA | ||
Total | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Vancomycin c | ≤0.25–>2 | ≤1 | ||||
Gemella morbillorum | ≤0.25–0.5 | 0.5 | 0.5 | 100.0 | 0.0 | 0.0 |
GH group | ≤0.25–0.5 | 0.5 | 0.5 | 100.0 | 0.0 | 0.0 |
Gemella taiwanensis | ≤0.25–0.5 | 0.5 | 0.5 | 100.0 | 0.0 | 0.0 |
Gemella sanguinis | ≤0.25–0.5 | – | – | 100.0 | 0.0 | 0.0 |
Gemella bergeri | 0.5 | – | – | 100.0 | 0.0 | 0.0 |
Total | ≤0.25–0.5 | 0.5 | 0.5 | 100.0 | 0.0 | 0.0 |
Teicoplanin | ≤0.5–>16 | |||||
Gemella morbillorum | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
GH group | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Gemella taiwanensis | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Gemella sanguinis | ≤0.5 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.5 | – | – | NA | NA | NA |
Total | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Linezolid | ≤0.5–>4 | |||||
Gemella morbillorum | ≤0.5–1 | ≤0.5 | 1 | NA | NA | NA |
GH group | ≤0.5–1 | ≤0.5 | 1 | NA | NA | NA |
Gemella taiwanensis | ≤0.5 | ≤0.5 | ≤0.5 | NA | NA | NA |
Gemella sanguinis | ≤0.5–1 | – | – | NA | NA | NA |
Gemella bergeri | ≤0.5, 2 | – | – | NA | NA | NA |
Total | ≤0.5 | ≤0.5 | 1 | NA | NA | NA |
Daptomycin | ≤0.25–>4 | |||||
Gemella morbillorum | ≤0.25–4 | 2 | 2 | NA | NA | NA |
GH group | 0.5–2 | 1 | 2 | NA | NA | NA |
Gemella taiwanensis | ≤0.25–2 | 1 | 2 | NA | NA | NA |
Gemella sanguinis | 1–4 | – | – | NA | NA | NA |
Gemella bergeri | 2, 4 | – | – | NA | NA | NA |
Total | ≤0.25–4 | 1 | 2 | NA | NA | NA |
Strain No. | Identification | MIC (μg/mL) | Macrolide Phenotype a,b | mefA/E | erm | msrA | ||||
---|---|---|---|---|---|---|---|---|---|---|
Erythromycin | Clindamycin | Erythromycin/Clindamycin | Clarithromycin | Azithromycin | ||||||
TWCC 57201 | Gemella morbillorum | >2 | >2 | >1/0.5 | 8 | >4 | cMLSB | - | ermB | - |
TWCC 57818 | Gemella morbillorum | >2 | >2 | >1/0.5 | >16 | >4 | cMLSB | - | ermB | - |
TWCC 57944 | Gemella morbillorum | >2 | >2 | >1/0.5 | >16 | >4 | cMLSB | - | ermB | - |
TWCC 59111 | Gemella morbillorum | >2 | >2 | >1/0.5 | 8 | >4 | cMLSB | - | ermB | - |
TWCC 71703 | Gemella morbillorum | >2 | >2 | >1/0.5 | >16 | >4 | cMLSB | - | ermB | - |
TWCC 72266 | Gemella morbillorum | >2 | >2 | >1/0.5 | >16 | >4 | cMLSB | - | ermB | - |
TWCC 52027 | GH group | 0.5 | ≤0.25 | ≤1/0.5 | 8 | 2 | M | mefE | - | - |
TWCC 59566 | GH group | 2 | ≤0.25 | ≤1/0.5 | 2 | >4 | M | mefE | - | - |
TWCC 59567 | GH group | >2 | 1 | >1/0.5 | 16 | >4 | M | mefE | - | - |
TWCC 59795 | GH group | 1 | 0.5 | ≤1/0.5 | 0.5 | 2 | M | mefE | - | - |
TWCC 70939 | GH group | >2 | ≤0.25 | ≤1/0.5 | 2 | >4 | M | mefE | - | - |
TWCC 71200 | GH group | 1 | ≤0.25 | ≤1/0.5 | 2 | 2 | M | mefA | - | - |
TWCC 71814 | GH group | 1 | ≤0.25 | ≤1/0.5 | 0.5 | 1 | M | mefE | - | - |
TWCC 55344 | Gemella taiwanensis | >2 | ≤0.25 | ≤1/0.5 | 8 | >4 | M | mefE | - | - |
TWCC 58522 | Gemella taiwanensis | >2 | ≤0.25 | ≤1/0.5 | 2 | 4 | M | mefE | - | - |
TWCC 70386 | Gemella taiwanensis | >2 | ≤0.25 | ≤1/0.5 | 2 | 4 | M | mefE | - | - |
TWCC 72085 | Gemella taiwanensis | >2 | ≤0.25 | ≤1/0.5 | 2 | >4 | M | mefE | - | - |
TWCC 70387L | Gemella taiwanensis | 2 | ≤0.25 | ≤1/0.5 | 0.5 | >4 | M | mefE | - | - |
TWCC 70387S | Gemella taiwanensis | >2 | ≤0.25 | ≤1/0.5 | 2 | >4 | M | mefE | - | - |
TWCC 54965 | Gemella sanguinis | 1 | ≤0.25 | ≤1/0.5 | 0.25 | 4 | M | mefE | - | - |
TWCC 70419 | Gemella sanguinis | ≤0.25 c | ≤0.25 | ≤1/0.5 | ≤0.12 | 0.25 | not M | mefE | - | - |
Strain No. | Identification | tetM | Minocycline MIC (μg/mL) | ermB |
---|---|---|---|---|
TWCC 57944 | Gemella morbillorum | + | 2 | + |
TWCC 57987 | Gemella morbillorum | + | ≤1 | − |
TWCC 59111 | Gemella morbillorum | + | 2 | + |
TWCC 70937 | Gemella morbillorum | + | >8 | − |
TWCC 71703 | Gemella morbillorum | + | 2 | + |
TWCC 72266 | Gemella morbillorum | + | ≤1 | + |
TWCC 51800 | GH group | + | 8 | − |
TWCC 59795 | GH group | + | ≤1 | − |
TWCC 70939 | GH group | + | 8 | − |
TWCC 71814 | GH group | + | 2 | − |
TWCC 53044 | Gemella taiwanensis | + | 8 | − |
TWCC 56546 | Gemella taiwanensis | + | 2 | − |
TWCC 58522 | Gemella taiwanensis | + | 8 | − |
TWCC 70386 | Gemella taiwanensis | + | 8 | − |
TWCC 72085 | Gemella taiwanensis | + | 8 | − |
TWCC 70387L | Gemella taiwanensis | + | ≤1 | − |
TWCC 70387S | Gemella taiwanensis | + | ≤1 | − |
Strain | n | MIC (μg/mL) | GyrA Amino Acid Substitutions a | |
---|---|---|---|---|
Levofloxacin | Moxifloxacin | |||
Gemella morbillorum | 2 | >128 | >2 | Ser83 > Leu83 (n = 2) |
GH group | 9 | 128–>128 | >2 | Ser83 > Phe83 (n = 7), Ser83 > Tyr83 (n =2) |
Gemella taiwanensis | 8 | 128–>128 | >2 | Ser83 > Phe83 (n = 7), Ser83 > Tyr83 (n = 1) |
Gemella sanguinis | 2 | 128–>128 | >2 | Ser83 > Phe83 (n = 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furugaito, M.; Arai, Y.; Uzawa, Y.; Kamisako, T.; Ogura, K.; Okamoto, S.; Kikuchi, K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538. https://doi.org/10.3390/antibiotics12101538
Furugaito M, Arai Y, Uzawa Y, Kamisako T, Ogura K, Okamoto S, Kikuchi K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics. 2023; 12(10):1538. https://doi.org/10.3390/antibiotics12101538
Chicago/Turabian StyleFurugaito, Michiko, Yuko Arai, Yutaka Uzawa, Toshinori Kamisako, Kohei Ogura, Shigefumi Okamoto, and Ken Kikuchi. 2023. "Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp." Antibiotics 12, no. 10: 1538. https://doi.org/10.3390/antibiotics12101538
APA StyleFurugaito, M., Arai, Y., Uzawa, Y., Kamisako, T., Ogura, K., Okamoto, S., & Kikuchi, K. (2023). Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics, 12(10), 1538. https://doi.org/10.3390/antibiotics12101538