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Abstract: The increasing antifungal resistance rates against conventional drugs reveal the urgent need
to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical
role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene
found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the
antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of
fluconazole. Abietic acid was tested both individually and in combination with fluconazole against
Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT
INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability
curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium.
The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While
the IC50 of the drugs alone ranged between 1065 and 3255 µg/mL, the IC50 resulting from the
combination of abietic acid and fluconazole ranged between 7563 and 160.1 µg/mL. Whether used in
combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration
(MFC) values exceeding 1024 µg/mL against Candida albicans, Candida krusei and Candida tropicalis.
However, it was observed that the antifungal effect of fluconazole was enhanced when used in
combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest
that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness
of fluconazole, thereby reducing antifungal resistance.

Keywords: anti-Candida activity; abietic acid; fluconazole; antifungal resistance

1. Introduction

The genus Candida includes many fungal species capable of causing opportunistic
infections with elevated mortality rates, thus representing a significant public health prob-
lem [1,2]. Notably, epidemiological data have shown that fungal infections caused by
different Candida species have increased significantly in recent years [3]. While Candida
species are common in the normal microbiota, under certain circumstances, such as cancer
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therapy and immunity-related diseases like AIDS, they can cause systemic infections, con-
tributing to increased morbidity and mortality [4]. Estimating the global prevalence and
incidence of candidiasis depends on geographical location. However, the most common
cause of healthcare-related Candida infections worldwide is attributed to Candida albicans,
Candida tropicalis, Candida krusei, and Candida glabrata [5].

C. albicans and C. tropicalis are both members of the human and animal microbiota,
commonly found in the digestive and genital tracts. They exhibit high prevalence, espe-
cially in hospital environments, with a significant impact on neutropenic patients [6–8].
Invasive candidiasis, whether caused by C. albicans or C. tropicalis, can present complex
pharmacological challenges and is associated with substantial mortality. Once it reaches
the bloodstream, this condition can lead to sepsis [6–8]. The literature data show that
this Candida species presents high antifungal resistance rates of 40–80% against azole com-
pounds, including voriconazole and posaconazole [8], representing a major health problem,
especially in the Asia-Pacific and Latin American countries [9]. Another notable member
of this genus is the species C. krusei (teleomorph Pichia kudriavzeveii), a typical member of
the human microbiota. However, this pathogen is frequently associated with opportunistic
infections. Since the mucosal regions are the primary site of infection, esophageal and
cutaneous candidiasis [10] are the most common diseases caused by C. krusei, mainly
affecting immunocompromised patients. While presenting a moderate resistance profile,
this species shows intrinsic resistance to fluconazole and echinocandins, which impairs
these drugs’ therapeutic efficacy [10,11].

The development of drug resistance in Candida species is linked to genetic variability
and innate biofilm formation. It is important to highlight that the primary mutational source
in this evolutionary process arises from recurrent exposure to antimicrobial agents, leading
to the emergence of the biochemical and genetic changes observed in resistant strains. [4].
The rates of acquired resistance among different classes of antifungal drugs increase in
the following order: C. albicans (resistance profile < 5%), C. krusei (resistance profile < 7%),
C. tropicalis (resistance profile 4–9%), C. parapsilosis (resistance profile 4–10%), C. glabrata
(4–16%). Considering the epidemiological importance of candidiasis, the increasing rates
of antifungal resistance observed in recent years might impact the mortality rates due to
infection by Candida species [12,13].

Given the significant resistance to the most commonly used antifungals, such as
fluconazole, the search for new drugs capable of directly inhibiting fungal growth or en-
hancing the activity of these drugs is necessary to improve the therapeutic arsenal against
multidrug-resistant strains. Another critical alternative with significant benefits to phar-
macotherapy is combination therapy. Consistent evidence has demonstrated that using
lower doses of antifungal drugs combined with certain compounds results in increased an-
tifungal effectiveness [14,15]. Compounds that can increase the intracellular concentration
of conventional antifungal drugs can favor its interaction with the molecular target, as ob-
served in drugs whose mechanism of action involves the inhibition of ergosterol synthesis,
modifications in ion homeostasis, damage to the cell wall organization and biogenesis, or
interference on reproductive cell cycle and DNA double-strand break repair. In addition,
combined therapy against antifungal-resistant strains has been shown to interfere with
significant virulence factors such as biofilm production, morphological transition, and
filamentous growth [16]. In this context, natural products are primary sources of bioactive
compounds with the potential to be used in antifungal drug development [17].

Previous research has demonstrated that secondary metabolites of plants serve as a
source of numerous molecules with the potential to treat fungal infections [14]. In this con-
text, recent findings highlight resins as a substantial reservoir of bioactive compounds [17].
Resins are natural substances exuded by various plants, among which conifers such as
Pinus tabulaeformi, Pinus massoniana, Pinus palustris Mill., Pinus pinaster Ait., Pinus sylvestris
L., Pinus laricio Poiret, Pinus longifolia Roxb., Pinus densiflora Siebold et Zucc, and Pinus thun-
bergii Parlatore stand out as the most studied species [18]. Plant-derived resins consist of a
mixture of terpenoids that have been used to treat inflammation and infections [19]. Abietic
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acid (Figure 1) is a diterpene formed by the oxidation process involving the CYP720Bs, a
member of the cytochrome P450 complex, that catalyzes oxidation in the biosynthesis pro-
cess to formations of abietadiene-like and resin acids (C18-acids) [20]. Studies characterizing
the chemical profile of resins has identified abietic acid as one of the main constituents of
these substances in various species of conifers [21]. Notably, previous research has revealed
that this diterpene has biological activities that are antiparasitic [22], anti-inflammatory,
and antibacterial [23], in addition to acting as a lipoxygenase inhibitor [24], which may
imply anti-inflammatory activity [25,26].
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Figure 1. Chemical structure of abietic acid: 2D (A) and 3D (B).

The biosynthesis of ergosterol, a major sterol found in the cell membrane of many fungi,
relies on the Lanosterol 14α-demethylase enzyme found in the endoplasmic reticulum
of different cell types. This enzyme is a member of the cytochrome P450 family and has
been used as a strategic target for rational design for new compounds that can be utilized
in the treatment of a variety of fungal infections [25,27]. The literature data show that
mutations on this enzyme are involved with mechanisms that confer antifungal resistance
or cross-resistance to azole drugs [26,28,29].

Considering the need to discover new antifungal agents that are both safe and econom-
ically viable, and given the evidence of a cytochrome P450-mediated bioactivity of abietic
acid, this study aimed to evaluate its antifungal activity against Candida spp. and analyze
its interaction with the enzyme lanosterol-14α-demethylase using an in silico approach as a
strategy of action mechanism investigation.

2. Results

The Minimum Fungicidal Concentration (MFC) analysis demonstrated that none of
the tested concentrations of abietic acid inhibited fungal growth. In addition, the Minimum
Fungicidal Concentration (MFC) values for these substances, as determined for the strains
CA INCQS 40006, CK INCQS 40095, and CT INCQS 40042, were all above 1024 µg/mL.
These findings suggest that even at the highest concentrations tested in this study, the
fungicide activity of these substances is inefficient. Nevertheless, the highest concentrations
achieved a slightly better fungistatic profile, reducing the growth of fungal strains but
without clinical significance.

As can be observed in Table 1, abietic acid did not show clinically significant IC50
values, which was also observed for fluconazole against C. albicans. However, the abi-
etic acid association increased fluconazole antifungal effect against CA INCQC 40006
and CT INCQS 40042. On the other hand, in experiments with the strain CK INCQS
40095, the combination of abietic acid with fluconazole reduced the inhibitory effect of the
antifungal drug.

An analysis of the viability curve (Figure 2A–C) indicates the potentiation of the effect
observed from the association of abietic acid and fluconazole against C. albicans (CA INCQS
40006) and C. tropicalis (CT INCQS 40042). On the other hand, the same association reduced
fluconazole’s effectiveness against the CK INCQS 40095. An analysis of the area under the
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curve (AUC) (Figure 2A–C) showed that the combination of abietic acid and fluconazole
resulted in significant modulation of activity against C. albicans (CA INCQS 40006) and C.
tropicalis (CT INCQS 40042), increasing fungal growth inhibition from 27.2% to 55.6% and
from 37.3% to 83.0%, respectively. However, in C. krusei (CK INCQS 40095) assays, discreet
antagonism was observed, with growth inhibition changing from 88.2% to 79.0%.
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Figure 2. Growth curve of Candida spp. exposed to Abietic acid, Fluconazole (FCZ), and the
combination of both: (A) Candida albicans: CA INCQS 40006; (B) Candida krusei: CK INCQS 40095;
(C) Candida tropicalis: CT INCQS 40042. INCQS: National Institute of Quality Control in Health.
These data are also represented as the area under the curve (AUC) showing the percent inhibition
compared to abietic acid. The growth curve and AUC data were analyzed by an ANOVA followed
by Tukey’s post hoc test; **** p < 0.0001; *** p < 0.001, ** p < 0.01. and * p < 0.05.
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Table 1. Half-maximal inhibitory concentrations (IC50) of antifungal agents against Candida strains.

Substance (IC50 µg/mL) C. albicans C. krusei C. tropicalis

Abietic acid 1621 * 1748 * 2189 *
Fluconazole 1449.85 * 90.14 263.2

Abietic acid + Fluconazole 37.15 147.91 12.58
Candida albicans: CA INCQS 40006; Candida krusei: CK INCQS 40095; Candida tropicalis: CT INCQS 40042; INCQS:
National Institute for Quality Control in Health. These values are expressed in µg/mL. * These values were
calculated by interpolation of the curve equation.

The MFC analysis revealed that the Candida species used in this work presents a
significant resistance profile against fluconazole and abietic acid. Nevertheless, the results
observed in Figure 2, represented as the area under the curve (AUC; Figure 2), indicate a
potentiation of antifungal activity against C. albicans and C. tropicalis that result from the
association of abietic acid and fluconazole.

The biosynthesis of ergosterol, a major sterol found in the cell membrane of many fungi,
relies heavily on lanosterol 14α-demethylase. This enzyme is highly similar to the lanosterol
14-α-demethylase found in Saccharomyces cerevisiae and Candida species [26,29]. Docking
studies were conducted to investigate the interaction of abietic acid with the lanosterol 14-α-
demethylase enzyme (PDBID:4wmz). Figure 3 displays the three-dimensional docked poses
on the lanosterol 14-α-demethylase site (Figure 3A,B) and a two-dimensional interaction
map (Figure 3C,D). Notably, the iron in the heme group creates four metal coordination
bonds with the nitrogen atoms of porphyrin groups and a coordination with electrons of
the nitrogen atom of fluconazole (Figure 3B) or oxygen in the hydroxyl group of abietic
acid, which is positioned above the porphyrin plane. The distance between the nitrogen
or oxygen atoms and the heme-liked iron are 2.2 and 3.25 Å, respectively. The hydrogen
of the hydroxyl group of abietic acid establishes a hydrogen bond with nitrogen atoms
of porphyrin groups (Figure 3C) with 1.7 Å. At the same time, fluconazole presents a
hydrogen bonding network with water (W790 and W743) and the second triazole ring
(Figure 3D). The superimposed poses show other hydrophobic interactions (which would
be expected from the nature of the lanosterol substrate), such as van der Waals interactions
between the triterpene ring with residues within 4 Å, including a total of ten residues
and twelve residues with fluconazole showing similar interactions with residues Gly310,
Gly314, Gly315, Phe236, and Leu383. The alkyl and π-alkyl interactions were observed in
eight residues between the carbons of the triterpene rings and two residues to fluconazole,
both presenting similar interactions with Ile139 residues (Figure 3C,D).

For the evaluation of the affinity of the ligand towards the active site, the binding
affinity values (kcal/mol) and ligand efficiency of the best-scored pose were determined.
The binding energy values of the compounds regarding the human CYP51 inhibition ranged
from −8.2 (Ki estimated 975.8 nM and LE −0.37) to −8.3 kcal/mol (Ki estimated 824.3 nM
and LE −0.38) to abietic acid and fluconazole, respectively, with the better negative value
displaying promising binding. Furthermore, the differences in the binding energy observed
can be explained by the interaction of the hydrogen bond network, which affects the
positioning of the ligands and, subsequently, the drug binding. The key pharmacophores of
typical CYP51 inhibitors consist of coordinated interaction with the iron present in the heme
cofactor, the water-mediated hydrogen bonding network, and the hydrophobic interactions
surrounding the pocket of CYP51. However, diverse side chains with different lengths
could be accommodated in the active site of CYP51, contributing to a stabilized complex.
As observed, the ligand binding pocket of the azole antifungal fluconazole (FCZ) has an
additional affinity that is determining to better interactions with hydrophobic side-chains,
the polypeptide backbone, and water-mediated hydrogen bond networks explained the
high binding energy that observed in abietic acid.
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of abietic acid (green color) and fluconazole (pink color) with the showing the coordination of N-2
with the heme group and hydrogen bond of N-4 with W790 (B). Two-dimensional (2D) residual
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We tested the ability of amphotericin B, fluconazole, and abietic acid to cause inter-
ference in membrane permeability using Sytox Green as a fluorescent probe. Sytox Green
increases its passage through the plasma membrane when it is structurally compromised
and, inside, binds to nucleic acids to provide a fluorescent signal. In Figure 3, it can be seen
that the fungus grown and associated with Sytox Green showed the lowest increase in fluo-
rescence labeling; however, the addition of Amphotericin, a known antifungal that causes
plasma membrane permeability by interaction with ergosterol in the fungal cell membrane
causing the formation of pores, resulted in an increase in fluorescence by Sytox Green
influx. The combination of Sytox Green with fluconazole also caused an increase in Sytox
Green influx, indicating a decrease in membrane ergosterol, supporting the hypothesis that
this action mechanism affects fungal growth and membrane permeabilization. We have
observed that abietic acid has a similar effect against C. albicans (INCQS 40006; Figure 4A)
and C. tropicalis (INCQS 40042; Figure 4B), corroborating with the docking results and the
increased effect of fluconazole on the fungal growth assay supported by the hypothesis that
this compound can promote a reduction in ergosterol synthesis by competitive inhibition
of lanosterol 14-α-demethylase.
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Figure 4. Membrane permeabilization induced by Amphotericin B, fluconazole, and abietic acid. 
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Figure 4. Membrane permeabilization induced by Amphotericin B, fluconazole, and abietic acid.
(A) Candia albicans wild-type cells, and (B) Candida tropicalis. Sytox intensity was measured every
minute for 24 min in a microplate fluorometer. Data represent the geometric mean ± SD of three
individual experiments.

3. Discussion

The present study reports, for the first time, the capacity of abietic acid to positively
modulate, in vitro, the antifungal action of fluconazole against Candida strains. Despite the
absence of clinically significant intrinsic activity, abietic acid showed promising antifungal
potential when combined with fluconazole against standard strains of C. albicans and
C. tropicalis.

Literature reports show that terpenoids can enhance the action of antifungal drugs,
as demonstrated by Himejima et al. (1992) using a phenanthrene diterpene. They demon-
strated that abietane acid, found in the oleoresin of Pinus species, enhanced the activity
of antifungal drugs against Candida strains [30]. In another study, plant extracts rich in
diterpenes reduced the resistance of C. albicans to fluconazole [31,32]. Monico et al. (2017)
reported that diterpenes can act as inhibitors of ABC and MFS transporters, which may
partially contribute to their inhibitory effect on antifungal resistance [33].

Combined therapy using two or more substances with antimicrobial activity has
emerged as a significant therapeutic strategy for reducing antifungal resistance, involving
mechanisms such as efflux pump expression, mutations, deregulation of protein expression,
and alteration of ergosterol biosynthesis [34]. Fluconazole is a triazole antifungal drug
that acts by inhibiting cytochrome P450 enzymes, affecting the conversion of lanosterol
to ergosterol, thus decreasing ergosterol biosynthesis, and leading to fungal membrane
disruption. This membrane disruption enhances permeability and affects the activity of
H+—ATPase. Additionally, evidence suggests that fluconazole may induce metabolic
impairment by blocking its transcriptional regulator [35,36].

Although abietic acid was found to potentiate the action of fluconazole, when tested
alone, it failed to inhibit the growth of the Candida species tested in this study. Similar
results are found in the literature, as demonstrated by Lima et al. (2016), who showed that
compounds derived from terpenic acid, gallic acid, and caffeic acid presented MIC values
≥1024 µg/mL against C. albicans ATCC 40042 and C. tropicalis ATCC 40006, indicating
the absence of significant activity. However, their association with fluconazole, reduced
the IC50 of the drug from 306.06 µg/mL to 67.38 µg/mL (gallic acid) and 109.12 µg/mL
(caffeic acid), respectively [37]. Teodoro et al. (2015) also evaluated the antifungal activity
of gallic acid against Candida species, finding no clinical relevance in the results. However,
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ellagic acid presented a significant fungistatic activity against C. krusei ATCC 6258 (MIC—
125 µg/mL) [38]. Urzúa et al. (2008) showed that differences in the antimicrobial activities
of diterpenes are related to structural aspects, such as the presence of hydrophobic regions
and hydrophilic fragments that act as hydrogen bond donating groups [39].

Studies with compounds presenting chemical characteristics similar to those of abietic
acid [40–44] showed that they have the ability to modulate the activity of antifungal drugs
and highlighted the ability of these compounds to increase the sensitivity of Candida strains,
which is consistent with the results of this study involving C. albicans and C. tropicalis. The
amphiphilic nature of the chemical structure of abietic acid may explain this hypothesis,
as it has the potential to interact with phospholipids leading to increased membrane
fluidity and permeability. This process may facilitate the entry of fluconazole, which is
consistent with the results obtained in this study. However, other studies have observed
that abietic acid-like compounds may have opposite effects, reducing the sensitivity of
fungi to antifungal agents [2,45]. Notably, evidence indicates that the sensitivity to these
antifungal agents may vary depending on the fungus species [46,47].

In our tests, it was observed a significant difference in the effectiveness of fluconazole,
inhibiting the growth of C. krusei, a species intrinsically more resistant to azoles than C.
albicans and C. tropicalis [48]. This resistance does not imply genetic uniformity in the
population of this species, suggesting the presence of variable resistance mechanisms. In
fact, evidence indicates that some C. krusei cells may be sensitive to fluconazole, even in
a dose-dependent manner [11]. This variability in resistance mechanisms also extends to
the C. albicans and C. tropicalis species evaluated [49]. Individual susceptibility ultimately
depends on the genetic composition of the microorganisms present in the colony used to
prepare the inoculum for tests.

Lanosterol 14α-demethylase, also known as CYP51, is an enzyme that plays a crucial
role in the biosynthesis of cholesterol-related lipids. This enzyme is a member of the
cytochrome P450 superfamily, located in the endoplasmic reticulum of different cells. The
inhibition of lanosterol 14α-demethylase has been used as a strategy for the treatment of
fungal infections since this enzyme is also involved in the biosynthesis of ergosterol, a
sterol found in the membrane of fungal cells. The inhibition of lanosterol 14α-demethylase
can lead to the accumulation of toxic sterol intermediates that disrupt the structure and
function of the fungal cell membrane, ultimately leading to fungal cell death [50]. The
interactions observed between abietic acid and CYP51 support the key pharmacophores
of typical antifungal inhibitors, which involves the coordination with and iron atom in
the heme molecule of CYP51, the oxygen of hydroxyl stabilized by a hydrogen bond with
the nitrogen of heme, and interaction with the hydrophobic cavity of CYP51 through the
carbon rings of the skeletal structure of abietic acid, as observed in the crystal structures
of lanosterol 14α-demethylase (PDB ID: 4wmz) [51]. By inhibiting this enzyme, triazole
derivatives such as voriconazole or fluconazole disrupt ergosterol synthesis, leading to
the accumulation of toxic sterol intermediates that disrupt the fungal cell membrane and
ultimately lead to cell death [52]. There are several possible reasons for this opposite effect
of abietic acid on the sensitivity of different Candida strains of fungi. Here are some of the
most likely explanations:

(a) Differences in the genetic makeup of Candida strains: Different strains have different
genetic backgrounds, which can affect their response to abietic acid. It is possible
that the genes involved in the response to abietic acid are differentially expressed in
different Candida strains, leading to different outcomes.

(b) Differences in the concentration and duration of abietic acid exposure: some strains
may be more sensitive to abietic acid at lower concentrations or for shorter durations,
while others require higher concentrations or longer exposure times to see an effect.

(c) Differences in the mechanisms of action of abietic acid: Abietic acid may affect Candida
strains through different targets and mechanisms. For example, it may disrupt the
fungal cell membrane, interfere with cellular signaling pathways, or cause interference
with the enzymes involved in the biochemical process of synthesis of the cell wall.
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Some Candida strains may be more susceptible to one mechanism of action than others,
leading to different outcomes.

(d) Interactions with other compounds: Abietic acid may interact with other compounds
in the environment, such as antifungals of clinical relevance, other natural products,
or synthetic drugs. These interactions could lead to synergistic or antagonistic effects,
affecting the sensitivity of Candida strains.

Sytox Green is a compound that, while unable to traverse the membranes of intact
live cells, readily penetrates compromised membranes and binds to nucleic acids, showcas-
ing more than a 500-fold increase in fluorescence [53–56]. Amphotericin B, a recognized
antifungal agent, induces permeability in plasma membranes, leading to pore formation
(used as a positive control) [57]. Fluconazole, a primary antifungal medication known for
its clinical effectiveness and low toxicity, acts by targeting the biosynthesis of ergosterol
through the inhibition of lanosterol 14α-demethylase [58]. The literature data suggest a
direct correlation between a reduction in ergosterol synthesis and increased membrane
permeability [59]. Then, the results presented in this study indicate that the abietic acid’s
primary mechanisms of synergism can be related to the inhibition of enzymes with cru-
cial roles on fungal survival, causing the increase in the membrane’s permeability and
interfering with intracellular ion homeostasis.

4. Materials and Methods
4.1. Drugs and Dilutions

Fluconazole was acquired from Globo Laboratory (São Jose da Lapa—Minas Gerais,
Brazil); Abietic acid was obtained from Sigma-Aldrich Corporation (Spring, TX, USA), and
Dimethyl sulfoxide (DMSO) was acquired from Merck, Darmstadt, Germany. A 0.02 g
sample of abietic acid was weighed and diluted in 1 mL (20,000 µg/mL) of dimethyl
sulfoxide (DMSO), forming the stock solution. Fluconazole was diluted in sterile water.
The initial solutions of abietic acid and fluconazole were diluted with a culture medium to
form a matrix concentration of 2048 µg/mL in test tubes or stored in Eppendorf tubes.

4.2. Microorganisms

The standard strains C. albicans INCQS 40006 (ATCC 10231), C. tropicalis INCQS 40042
(ATCC 13803), and C. krusei INCQS 40095 (ATCC 34135) were obtained from the Brazilian
Institute of Quality Control in Health (INCQS), Oswaldo Cruz Culture Collection of the
Oswaldo Cruz Foundation (FIOCRUZ).

4.3. Culture Medium

Sabouraud Dextrose Agar (SDA) and Sabouraud Dextrose Broth (SDB) were pur-
chased from HIMEDIA® (Maharashtra, India) and used according to the manufacturer’s
instructions. The media were solubilized with distilled water and sterilized in an autoclave
at 121 ◦C for 15 min.

4.4. Inoculum Preparation

All strains were initially maintained in SDA under refrigeration (8 ◦C). For the antifun-
gal activity evaluation, the strains were cultured in SDA medium in a Petri dish at 37 ◦C
for 24 h (overnight). Further, the microorganisms were prepared in tubes containing 4 mL
of sterile saline solution (NaCl to 0.9%), and their turbidity was compared and adjusted to
the 0.5 value on the MacFarland scale.

4.5. Minimum Inhibitory Fungicidal Concentration (MFC)

The MFC methodology was performed as described by Fonseca et al. (2022) [60] with
adaptations on the final volume transferred from the microdilution plate for the Petri dish
(10 µL) with a concentration that range of 0 to 1024 µg/mL. All tests were performed
in quadruplicate. The growth of Candida colonies was analyzed 24 h after incubation
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at 37 ◦C. The MFC was defined as the lowest concentration capable of inhibiting colony
growth [61,62].

4.6. Cell Viability Curve and Determination of the Half-Maximal Inhibitory Concentration (IC50)

In this assay, each well of a microdilution plate was filled with 100 µL of SDB. Then,
100 µL of solution of abietic acid or fluconazole, previously dissolved in DMSO, was added
to the first well, and a serial dilution was performed to obtain concentrations ranging from
1024 µg/mL to 1 µg/mL. Subsequently, 10 µL (10% of the total solution) of the inoculum of
the fungal strain was added, and the plates were incubated for 24 h at 37 ◦C. The readings
were performed at 630 nm using a microtiter plate reader BioTek® Cytation 1 (Agilent, CA,
USA), and the results were used to obtain a cell viability curve and determine the IC50.
Dilution and sterility controls were performed as previously described [63,64]. All tests
were performed in quadruplicate.

4.7. Evaluation of Antifungal Activity Potentiation in Combination with Fluconazole

The analysis of antifungal activity potentiation was performed as previously described
by Coutinho et al., (2008), with some modifications. Briefly, abietic acid, combined with
fluconazole, was tested at a subinhibitory concentration based on the maximal value of
the MFC. For those conditions when the MFC did not demonstrate clinical relevance
(MFC values above 1024 µg/mL), the subinhibitory concentration is calculated as twice
the maximal tested concentration (MC) (i.e., 2 × MC = 2 × 1024, so the subinhibitory
concentration is 2048/8 = 256 µg/mL). The plates were filled with 100 µL of the abietic
acid diluted in the medium. Serial microdilution was then performed by adding 100 µL of
solution fluconazole to reach concentrations ranging from 1024 to 1 µg/mL. Subsequently,
10 µL of the microbial suspension was added (corresponding to 10% of the solution).
Growth and dilution controls were also prepared. All tests were performed in quadruplicate.
The plates were incubated at 37 ◦C for 24 h, and the readings were performed as described
above [65–68].

4.8. Evaluation of Plasma Membrane Permeabilization

The permeability of the fungal plasma membrane was measured by Sytox Green
uptake according to the methodology described by Mello et al. [69] with adaptations. The
fungal inocula of C. albicans and C. tropicalis containing 1.5 × 108 CFU were distributed in
the 96-well black plate and treated with amphotericin B, fluconazole or abietic acid (128, 256
or 512 µg/mL) and then incubated for 1h; after this, 100 µL of Sytox Green was added at a
final concentration of 1 µM and again incubated for 1 h. The uptake of SYTOX Green was
quantified using a microtiter plate reader BioTek® Cytation 1 (Agilent, CA, USA) equipped
with a fluorescent filter with excitation at 485 nm and emission at 528 nm. Each treatment
was performed in triplicate.

4.9. Molecular Docking Analysis

The crystal structures of lanosterol 14α-demethylase (PDB ID: 5tz1 and 4wmz) were
obtained from the Protein Data Bank (https://www.rcsb.org/, accessed on 1 October 2023).
For the docking operations, Autodock Vina was used, which required the receptor and
ligands to be in pdbqt extension. Prior to docking, the enzymes were prepared with a
pH of 7 ± 2. The M.G.L tools were used to prepare the enzymes, abietic acid, and the co-
crystalized lead compound (fluconazole) in the proper format. The active site coordinates
and volume were determined in a grid box with coordinates x:22, y:10, z:18, and x:20, y:20,
and z:20 Å3, based on the cocrystal ligand coordinate. The estimated RMSDs between
the co-crystallized and docked ligand were 1.0 Å (14α-demethylase), demonstrating the
validity of the docking procedure. Visualizations were performed using Chimera v15 and
BIOVIA Discovery Studio Visualizer v21.1.

https://www.rcsb.org/
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4.10. Statistical Analysis

The data generated from the antifungal experiments were analyzed through one-way
ANOVA followed by Tukey’s post hoc test, using GraphPad software version 6.0. For all
analyses, the level of statistical significance was set at p < 0.05.

5. Conclusions

This study is the first to report the antifungal activity of abietic acid against standard
strains of C. albicans, C. krusei, and C. tropicalis. Although abietic acid did not demonstrate a
clinically relevant fungicidal action, its association with fluconazole promoted a relevant
change in the ability of this antifungal to reduce the growth of fungal strains of C. albicans
and C. tropicalis but not in C. krusei. Differences in the sensitivity of these species of
Candida to abietic acid are likely due to a complex interplay of genetic, environmental, and
chemical factors. However, further research is needed to determine the effectiveness of
this compound against these Candida strains in vivo. Also, the mechanism of action of this
compound can be better understood by evaluating its ability to inhibit virulence factors,
morphological transition, and antifungal resistance in a biofilm model.
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