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Abstract: Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to
human health. Although animals are not the primary source of human infections, humans may be
exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact
with animals, and via the environment. For this reason, AMR in E. coli from food producing animals
is included in most national and international AMR monitoring programmes and is the subject of a
large body of research. As pig farming is one of the largest livestock sectors and the one with the
highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of
porcine origin. This literature review presents an overview and appraisal of current knowledge of
AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during
the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the
epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in
pig production. The review highlights the widespread nature of AMR in the porcine commensal
E. coli population, especially to the most-used classes in pig farming and discusses the complex
interplay between age and antimicrobial use during the pig lifecycle.
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1. Introduction

Escherichia coli is the predominant aerobic microorganism in the microbiota of the
vertebrate gastrointestinal tract [1,2]. Although primarily a commensal microorganism,
several pathogenic strains are known to cause disease in both humans and animals [3].
Diarrhoeagenic strains of E. coli are an important cause of gastroenteritis in humans [4].
Some of these strains are zoonotic, with Shiga toxin-producing E. coli (STEC) representing
the fourth most common bacterial food-borne infection in Europe, after campylobacteriosis,
salmonellosis, and yersiniosis [5]. In humans, extraintestinal pathogenic E. coli (ExPEC) are
the microorganisms most frequently implicated in urinary tract infections worldwide [6],
and are the leading cause of bloodstream infections in Europe [7]. Antimicrobials are
generally not indicated for the treatment of gastroenteritis caused by E. coli [8]. In contrast,
they are essential in the treatment of ExPEC infections and, hence, antimicrobial resistance
(AMR) in these bacteria is a major public health issue. Beta-lactams, cephalosporins (third
generation and higher), fluoroquinolones, aminoglycosides, and carbapenems, all classified
as critically important antimicrobials (CIA) by the World Health Organization (WHO) [9],
represent the most important treatment options, and resistance to these classes in human
isolates is monitored by the European Antimicrobial Resistance Surveillance Network
(EARS-Net) [7]. This threat to public health is further highlighted by WHO’s inclusion
of carbapenem and third-generation cephalosporin-resistant Enterobacteriaceae among its
“Priority 1: critical” AMR pathogens for the development of new antibiotics [10].
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Antimicrobial resistance in E. coli of animal origin poses a threat to human health
in two ways. Firstly, similarities between certain ExPEC strains and avian pathogenic
E. coli (APEC) strains in poultry have led some authors to suspect that some ExPEC
infections may be zoonotic [11–14] and, in particular, associated with the consumption of
chicken [15,16]. Secondly, as illustrated in Figure 1, animals represent a reservoir of AMR
E. coli to which humans may be exposed via the food chain, direct contact with animals, or
environmental contamination [17]. These AMR E. coli may transfer antimicrobial resistance
genes (ARG) to bacteria of human importance by various means of horizontal gene transfer
(HGT). Such HGT events may occur in the animal host, for example, between E. coli and
Salmonella spp. [18,19], with subsequent zoonotic transmission; within the human host, after
transient colonisation by E. coli of animal origin and subsequent HGT to human commensal
or pathogenic bacteria [20]; or in the external environment. Thus, the commensal E. coli
population is considered to be an indicator for AMR in the wider Gram-negative bacterial
population. Pig farming is one of the largest livestock sectors worldwide [21] and is
the highest consumer of veterinary antimicrobials [22]. Therefore, the transmission of
AMR E. coli of porcine origin to humans via the food chain, occupational exposure, or
environmental contamination poses a threat to public health. While recent whole genome
sequencing (WGS) studies suggest that animals do not contribute significantly to the overall
burdens of either ExPEC infections [23] or AMR E. coli in humans [24–26], the risks cannot be
discounted entirely. The potential exists for new pathogenic strains to emerge, which would
be especially concerning if accompanied by AMR. Moreover, occupational exposure to pigs
has been associated with increased carriage of AMR E. coli on Canadian farms [27], while
in the Netherlands, closely related extended spectrum beta lactamase (ESBL) producing
strains of E. coli and/or ESBL genes were identified in farm and abattoir workers and in
the pigs to which they were exposed [28–30]. Therefore, a thorough understanding of the
dynamics of AMR E. coli in the pig lifecycle is required to help mitigate current and future
threats to public health.

It should be noted that AMR in porcine bacteria is not limited to E. coli. Indeed, AMR
is reported in a range of commensal and pathogenic bacteria, as can be seen in the reports
of various national and international surveillance programmes [31–33], which include
Salmonella spp., Enterococcus spp., Campylobacter jejuni, Staphylococcus aureus, Actinobacillus
pleuropneumoniae, and Brachyspira hyodysenteriae, among others. Nor is AMR in porcine
E. coli limited to commensal strains. Enterotoxigenic E. coli (ETEC) strains are implicated in
neonatal and post-weaning diarrhoea in piglets, and treatment is frequently complicated
by the presence of AMR [34,35]. However, this review focuses on AMR in commensal
E. coli isolated from the gastrointestinal tract of healthy pigs. Published reviews on this
topic include a systematic review analysing the relationship between AMR in E. coli and
oral exposure to antimicrobials [36]; two recent systematic reviews examining resistance to
extended spectrum cephalosporins, carbapenems, fluoroquinolones, and colistin [37,38];
and a review of AMR E. coli in China [39]. This literature review presents an overview and
appraisal of current knowledge of AMR in commensal E. coli isolated from the porcine
gastrointestinal tract in pig farming more generally, with a particular focus on its evolution
during the pig’s lifecycle and the relationship with antimicrobial use (AMU). A brief review
of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones,
and colistin in pig production is also presented.

Before presenting the review, it is important to consider the criteria used to interpret
the antimicrobial susceptibility tests (AST), which determine the presence or absence of
AMR. Different interpretive criteria can hamper direct comparison between studies, es-
pecially when quantitative data, i.e., minimum inhibitory concentrations (MIC) or zone
diameters, are not available. Some of the studies presented here used clinical breakpoints
(CBP) as their interpretive criteria. These are determined using MIC distribution, phar-
macokinetic/pharmacodynamic and clinical outcome data, and thus describe ‘clinical
resistance’ [40]. Other studies used epidemiologic cut off values (ECOFF) which divide the
bacterial population according to the presence, i.e., non-wild type (nWT), or absence, i.e.,
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wild type (WT), of acquired resistance mechanisms. These are determined using MIC or
zone diameter data only and thus describe ‘microbiological resistance’ [41]. It is important
to distinguish between microbiological and clinical resistance because the presence of an
acquired resistance mechanism (whether determined phenotypically or genotypically) is
not always associated with clinical resistance and, as such, ECOFFs should not be used
as a basis for clinical decisions [41]. Notwithstanding the distinction between clinical
and microbiological resistance, many authors use the terms ‘susceptible’ and ‘resistant’ to
describe WT and nWT isolates, respectively (with or without explaining the distinction)
and, although not strictly correct, do so in the interest of readability. Clinical breakpoints
and ECOFFs can differ depending on whether European Committee on Antimicrobial
Susceptibility Testing (EUCAST), Clinical and Laboratories Standards Institute (CLSI), or
national guidelines (CBPs only) are used [40,42–44]. Furthermore, different CBPs may be
defined for humans and animals (some studies used veterinary breakpoints) and both CBPs
and ECOFFs may change over time (meaning that older studies may not be directly com-
parable to more recent ones). Finally, some studies may use other criteria, usually for the
purposes of screening for specific resistance mechanisms, which are not always analogous
to the relevant ECOFF or CBP (e.g., specific monitoring of ESBL/AmpC producing E. coli
in food animals in Europe [33,45]). The various interpretive criteria discussed highlight
a limitation in the field of clinical microbiology, generally, and in this review, specifically,
regarding the comparison of results between studies. However, it would be impossible
to discuss all of the disparities between the different studies during the narrative without
hampering readability. Therefore, for the purposes of this review, the terms susceptible
and resistant refer to the interpretive criteria used by the authors of the individual studies,
although the reader should keep in mind the nuances of AST and its interpretation as they
proceed through the text.

Antibiotics 2023, 12, x FOR PEER REVIEW 4 of 30 
 

 

Figure 1. Schematic representation of potential transmission pathways of AMR Escherichia coli 

and/or their associated ARGs between pigs, humans, and the environment. The smaller circular icon 

associated with the human and environment ecosystems represents AMR transmission within the 

microbiota of the relevant ecosystem. AMR—antimicrobial resistance; ARG—antimicrobial re-

sistance gene; MGE—mobile genetic element.  

2. Antimicrobial Resistance in Escherichia coli of a Porcine Origin: Surveillance  

Programmes 

Antimicrobial resistance in E. coli of porcine origin is not a recent phenomenon. In 

1957, Smith and Crabb reported that the continuous inclusion of tetracyclines in feed se-

lected for tetracycline resistance in the commensal E. coli population in pigs [46], and a 

further longitudinal study conducted in the years after a ban on the use of medically im-

portant antimicrobials as feed additives/growth promoters in the United Kingdom (UK) 

showed that relatively high levels of tetracycline, streptomycin, and sulphonamide re-

sistance had persisted and that trimethoprim resistance had emerged by the end of the 

1970s [47]. Similarly, in Denmark, Albaek et al. (1991) showed that, despite similar re-

strictions on the use of growth promoters, the levels of resistance to tetracycline, strepto-

mycin, and sulphonamide were significantly higher in 1988 than those reported in two 

earlier studies conducted in the 1970s [48]. Moreover, the prevalence of resistance to am-

picillin, neomycin, and chloramphenicol, which were rare in the earliest of the comparison 

studies (3%, 0% and 3%, respectively), had also increased (84%, 47% and 30%, respec-

tively) by 1988 [49]. More recently, commensal E. coli from food animals, including pigs, 

have been included with pathogenic bacteria in the AMR monitoring programmes of sev-

eral countries, in line with recommendations by the WHO Advisory Group on Integrated 

Surveillance of Antimicrobial Resistance (AGISAR) [49]. Examples of these programmes 

outside of Europe include the National Antimicrobial Resistance Monitoring System 

Figure 1. Schematic representation of potential transmission pathways of AMR Escherichia coli
and/or their associated ARGs between pigs, humans, and the environment. The smaller circular icon
associated with the human and environment ecosystems represents AMR transmission within the
microbiota of the relevant ecosystem. Legend: AMR—antimicrobial resistance; ARG—antimicrobial
resistance gene; MGE—mobile genetic element.
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2. Antimicrobial Resistance in Escherichia coli of Porcine Origin:
Surveillance Programmes

Antimicrobial resistance in E. coli of porcine origin is not a recent phenomenon. In
1957, Smith and Crabb reported that the continuous inclusion of tetracyclines in feed
selected for tetracycline resistance in the commensal E. coli population in pigs [46], and
a further longitudinal study conducted in the years after a ban on the use of medically
important antimicrobials as feed additives/growth promoters in the United Kingdom
(UK) showed that relatively high levels of tetracycline, streptomycin, and sulphonamide
resistance had persisted and that trimethoprim resistance had emerged by the end of the
1970s [47]. Similarly, in Denmark, Albaek et al. (1991) showed that, despite similar restric-
tions on the use of growth promoters, the levels of resistance to tetracycline, streptomycin,
and sulphonamide were significantly higher in 1988 than those reported in two earlier
studies conducted in the 1970s [48]. Moreover, the prevalence of resistance to ampicillin,
neomycin, and chloramphenicol, which were rare in the earliest of the comparison studies
(3%, 0% and 3%, respectively), had also increased (84%, 47% and 30%, respectively) by
1988 [48]. More recently, commensal E. coli from food animals, including pigs, have been
included with pathogenic bacteria in the AMR monitoring programmes of several countries,
in line with recommendations by the WHO Advisory Group on Integrated Surveillance
of Antimicrobial Resistance (AGISAR) [49]. Examples of these programmes outside of
Europe include the National Antimicrobial Resistance Monitoring System (NARMS) in
the USA [50], the Canadian Integrated Program for Antimicrobial Resistance Surveillance
(CIPARS) [51], and the Japanese Veterinary Antimicrobial Resistance Monitoring System
(JVARM) [52]. In Europe, the European Food Safety Authority (EFSA) and the European
Centre for Disease Prevention Control (ECDC) oversee a programme that mandates Eu-
ropean Union (EU) member states to monitor AMR in commensal E. coli from slaughter
pigs biennially [33]. Some non-EU states also participate (e.g., European Economic Area
(EEA) members, Switzerland) and, while the UK no longer participates since leaving the
EU, it continues to publish its United Kingdom Veterinary Antibiotic Resistance and Sales
Surveillance (UK-VARSS) reports using the same methodology [31]. Another pan-European
programme, the European Antimicrobial Susceptibility Surveillance in Animals (EASSA),
is operated by the pharmaceutical industry [53]. Several European states also operate
their own monitoring programmes, for example, the Danish Integrated Antimicrobial
Resistance Monitoring and Research Programme (DANMAP) in Denmark [54] and the
Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Nether-
lands (MARAN) programme in the Netherlands [55]. As these monitoring programmes
mature, more detailed analyses, e.g., of multiyear trends, will become available, as is the
case for Portugal, Denmark, and the USA [56–58]. Schrijver et al. (2018) reviewed the
monitoring programmes in operation in Europe up until 2016 and found marked hetero-
geneity in sampling and laboratory methodology, as well as in the availability of results (i.e.,
language and frequency of publication) [59]. However, the EFSA and ECDC programme,
with harmonised protocols and transparent reporting, allows for a comparison of AMR
in the participating European countries. In contrast, monitoring programmes in lower-
and middle-income countries (LMIC), including China, the largest pig producing country
globally, are largely absent or at least not publicly available in the English language [60–62].

3. Resistance in Escherichia coli Isolated from Finisher Pigs: Data from Surveillance
Programmes and Published Studies

The handling and consumption of pork is expected to represent the highest risk of
human exposure to AMR E. coli of porcine origin in the general population. Therefore,
national monitoring programmes and the majority of published studies sample pigs at
or close to slaughter. Table 1 presents a summary of the most recent data from the EFSA
and ECDC, UK-VARSS, NARMS, CIPARS, and JVARM programmes. These data show
that resistance to tetracyclines, sulphonamides, trimethoprim, aminopenicillins, ampheni-
cols, and aminoglycosides is common, reflecting the widespread use of these classes in
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pig production. Resistance to the highest priority critically important antimicrobials (HP
CIA) [9] is generally lower, although high levels of fluoroquinolone resistance are observed
in some individual European nations. It should be noted that, while streptomycin, an
aminoglycoside, is not included in the EFSA and ECDC testing panel, relatively high levels
of resistance are expected, in line with cross-sectional European studies [63–67]. High levels
of streptomycin resistance, not evaluated in the most recent NARMS data but included
previously [68], are also reported in the USA [58]. Table 2 summarises the results from
a selection of studies that investigated AMR in commensal E. coli isolated from healthy
finisher pigs on farm or at slaughter. Not intended to present an exhaustive list of all such
studies carried out, comparisons between the studies included in this table should be made
with caution. As discussed in the introduction, the criteria used to interpret the AST results
can hamper direct comparison between studies. Differences in study design, for example
sample size, the age of the animals at sampling, or the laboratory methods employed, may
also impact the results obtained. Nevertheless, the results from the European and North
American studies in Table 2 are broadly in line with those from their respective regional
monitoring programmes, which, along with the results from other regions, confirm high
prevalence of resistance to the heavily used antimicrobial classes in most settings, with
some exceptions. In Europe, northern countries such as Sweden and Norway, with long
histories of good antimicrobial stewardship, generally have lower AMR prevalence than
southern European countries [33]. In Africa, AMR was generally lower in the less intensive
production systems studied in Nigeria, Uganda, and Rwanda [69–71] than the intensive
systems in Tanzania [72,73]. On the other hand, studies from LMICs in Asia suggest that
AMR in intensive pig production is higher than in developed countries, particularly for HP
CIAs. In China, the high rates of resistance to tetracyclines, sulfonamides, beta-lactams,
amphenicols, and fluoroquinolones illustrated in Table 2 [74,75] are consistent with other
studies in which the age and/or health status of the sampled pigs were uncertain [76–81]
and with the findings of a recent meta-analysis [39]. They are also consistent with the
estimated resistance rates determined in a pooled analysis of point prevalence studies
that investigated AMR in E. coli isolated from pig farms, slaughterhouses, and food in
China between 2000 and 2019 [62]. Interestingly, there is disagreement between some of
the studies conducted in China concerning resistance to third-generation cephalosporins
and to colistin. For example, colistin resistance was high in some studies, for example
46.3% [76] and 59.7% [82], but low or absent in others [74,77,80,81]. Such discrepancies
could be due to differences in geographical area in such a large country, study design,
or laboratory methods, and further highlight the benefits of systematic surveillance. In
Southeast Asia, two studies in Thailand that investigated AMR in finisher pigs on groups
of farms with different levels of AMU also reported high rates of resistance to most of the
antimicrobials tested, especially on farms with routine prophylactic AMU, where almost all
isolates were resistant to tetracycline, ampicillin, trimethoprim/sulfamethoxazole, and chlo-
ramphenicol [83,84]. Furthermore, rates of resistance to third-generation cephalosporins
and fluoroquinolones in those studies were well in excess of those reported in developed
countries. Similar results were reported in studies conducted at slaughterhouses in Viet-
nam, Cambodia, and Thailand [85,86], highlighting concerns that LMICs, especially in Asia,
represent ‘hotspots’ of AMR [37,38,61].
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Table 1. Summary of antimicrobial resistance in commensal Escherichia coli of porcine origin extracted from the most recent data of monitoring programmes in the
EU/EEA, UK, USA, Canada, and Japan. Data from selected European countries participating in the EFSA and ECDC monitoring programme are included.

Antimicrobial a

Country Year b TET SUL c TMP SXT AMP CHL STR GEN AXO d CTX d CIP d CIP HL d AZM d COL d CS MDR

Denmark 2021 29.2% 41.5% 30.8% - 38.5% 4.6% - 0.0% - 1.5% 0.0% - 4.6% 0.0% 52.3% 33.8%
France 2021 42.2% 29.3% 21.1% - 25.4% 8.6% - 0.0% - 0.9% 2.6% 0.4% 1.3% 0.0% 44.0% 23.7%

Germany 2021 32.1% 29.5% 23.7% - 28.9% 6.3% - 2.6% - 0.0% 1.6% 0.5% 2.6% 0.0% 49.5% 22.6%
Ireland 2021 51.8% 37.1% 36.5% - 28.2% 9.4% - 3.5% - 0.0% 2.4% 0.0% 0.6% 0.0% 38.2% 32.9%

Netherlands 2021 31.0% 24.0% 24.3% - 22.3% 9.3% - 0.7% - 0.0% 2.0% 0.0% 1.7% 0.0% 50.7% 20.3%
Spain 2021 78.8% 58.8% 60.0% - 83.5% 41.2% - 4.7% - 1.2% 50.6% 11.8% 4.7% 0.0% 6.5% 78.8%

Sweden 2021 16.8% 22.5% 19.7% - 24.9% 7.5% - 0.0% - 0.6% 1.7% 0.0% 0.6% 0.0% 63.6% 19.7%
EU/EEA e 2021 45.9% 33.8% 25.9% - 32.8% 11.8% - 1.1% - 0.9% 6.4% 1.2% 1.6% 0.0% 38.3% 31.2%

UK f 2021 52.7% 40.5% 37.6% - 33.3% 18.6% - 2.1% - 1.3% 4.6% - - 0.0% - -
USA g 2021 66.5% 20.3% - 9.7% 25.0% 7.2% - 3.8% 9.3% - 10.2% 3.0% 0.4% - 27.1% 16.1%

Canada h 2019 55.5% 35.1% - 13.1% 29.9% 12.4% 40.9% 0.0% 2.2% - - 0.0% 0.0% - 25.5% -
Japan i 2017 55.4% - - 26.5% 33.7% 21.7% 41.0% 3.6% - 1.2% - - - 0.0% - -

a Antimicrobials: TET—tetracycline; SUL—sulfamethoxazole or sulfisoxazole (see c); TMP—trimethoprim; SXT—trimethoprim/sulfamethoxazole; AMP—ampicillin;
CHL—chloramphenicol; STR—streptomycin; GEN—gentamicin; AXO—ceftriaxone; CTX—cefotaxime; CIP—ciprofloxacin (MIC > 0.06 mg/L); CIP HL—ciprofloxacin (MIC > 1 mg/L);
AZM—azithromycin; COL—colistin; CS—complete susceptibility to all antimicrobials tested; MDR—multidrug resistance, resistance to antimicrobials in three or more classes. b Year of
sampling. c Sulfamethoxazole is the sulphonamide representative in the EFSA and ECDC testing panel. Sulfisoxazole is the sulphonamide representative in the NARMS and CIPARS
panels. d Highest Priority Critically Important Antimicrobial [8] e Participating EU/EEA countries submit data every two years to the EFSA and ECDC monitoring programme. Data
from seven selected countries of interest are shown. The overall EU/EEA data, highlighted in bold, represents the median for all 32 participating countries. Antimicrobial susceptibility
interpreted according to ECOFFs defined by EUCAST [33]. f United Kingdom Veterinary Antimicrobial Resistance and Sales Surveillance 2021 (UK-VARSS). Antimicrobial susceptibility
interpreted according to ECOFFs defined by EUCAST [31]. g The National Antimicrobial Resistance Monitoring System (NARMS). Antimicrobial susceptibility interpreted according to
CLSI M100-Ed30 [68]. h Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). Antimicrobial susceptibility interpreted according to CLSI M100-S26 [87].
i Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM). Antimicrobial susceptibility interpreted according to CLSI M100-S27 [88]. Legend: CLSI—Clinical and
Laboratories Standards Institute; ECOFF—Epidemiologic cut off value; EEA—European Economic Area; EU—European Union; EUCAST—European Committee on Antimicrobial
Susceptibility Testing; UK—United Kingdom; USA—United States of America.
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Table 2. Summary of resistance to selected antimicrobials in commensal Escherichia coli from healthy pigs at or before slaughter, extracted from selected pub-
lished studies.

Study Antimicrobial a

Country Year b TET SUL TMP SXT AMP STR GEN CHL CTX TIO AXO CIP

Europe
Spain [89] 2000 95.6% 87.8% 83.4% - 72.2% - 8.0% 59.5% - - - -
Spain [90] 2001 68.0% - - 48.0% 29% - 7.0% 15.0% 0% - - 3.0%

Portugal [63] 2013 93.9% - - 69.7% 68.2% 77.3% 4.5% 36.4% 0% - - 1.5%
Poland [64] 2013 48.9% 35.8% 16.3% - 29.5% 42.6% 2.6% 18.9% 2.6% - - 6.3%
Ireland [65] 2016 59.0% - - 27.6% 18.0% 33.3% 5.8% 9.6% 0% 0% - 0%
Estonia [67] 2019 32.5% 30.0% 22.4% - 58.7% 39.2% 12.5% 5.8% 2.5% - 0% 5.8%

Denmark c [66] 2016 42.3% 24.6% 23.1% - 25.0% 44.2% 5.8% 0% 0% - - 0%
France c [66] 2016 74.5% - - 40.4% 14.9% 66.0% 7.5% 17.0% 0% - - 4.3%
Italy c [66] 2016 74.4% 61.6% 50.4% - 62.4% 61.6% 6.4% 30.4% 0% - - 12.0%

Sweden c [66] 2016 14.1% 25.4% 19.7% - 18.3% 25.4% 1.4% 1.4% 0% - - 1.4%
Denmark [91] 2012 36.0% - - 14.7% 24.0% - 0% 6.7% 0% - - 0%

France [91] 2012 83.2% - - 43.6% 24.8% - 2.0% 20.8% 0% - - 0%
Germany [91] 2012 64.4% - - 33.7% 33.7% - 0% 13.5% 0% - - 1.0%

Netherlands [91] 2012 67.9% - - 42.1% 25.7% - 0% 14.3% 0% - - 0%
Spain [91] 2012 94.0% - - 66.0% 66.0% - 5.0% 42.0% 0% - - 0%

Europe d [92] 2022 53.3% - - 29.5% 35.3% - 2.2% 21.3% 0.8% - - 1.6%
France d [92] 2022 61.7% - - 29.0% 29.4% - 0.5% 13.6% 0.5% - - 0.9%

Germany d [92] 2022 32.9% - - 18.6% 27.1% - 0.5% 6.2% 2.9% - - 1.0%
Netherlands d [92] 2022 43.1% - - 24.1% 24.5% - 0.5% 31.0% 0.0% - - 0.5%

Spain d [92] 2022 81.6% - - 50.2% 66.7% - 5.5% 39.8% 0.5% - - 6.0%
UK d [92] 2022 48.5% - - 26.5% 30.4% - 4.4% 16.7% 0.0% - - 0.0%

North America
Canada [93] 1998 71.3% 38.2% - - 29.1% - 0.6% - - - - -
Canada [94] 2008 78.9% 49.9% - 6.4% 30.6% 49.6% 1.1% 17.6% - 0% 0% 0%
Canada [95] 2008 66.8% 46.0% - 7.4% 18.6% 33.4% 0.8% 17.3% - 0.1% 0% 0%
Canada [96] 2008 73.0% 46.6% - 2.6% 25.7% 27.5% 0.4% 15.5% - 0% 0.43% 0%
USA c [97] 2007 90.9% 31.6% - 1.9% 24.1% 28.9% 0.8% 8.2% - 0.3% 2.0% 0%
Australia

Australia [98] 2016 - - - - 29.4% - 17.5% - - 1.8% - -
Australia [99] 2018 67.7% - - 34.3% 60.2% 33.9% 0% 22.4% - 0% 0% 1.0%
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Table 2. Cont.

Study Antimicrobial a

Country Year b TET SUL TMP SXT AMP STR GEN CHL CTX TIO AXO CIP

Asia
Korea [100] 2007 96.3% - - 38.8% 66.1% 66.8% 42.0% 47.6% 1.0% - - 7.8%

Korea d [101] 2014 89.9% - - - 71.3% 61.2% 23.2% 68.4% - - - 8.4%
Korea d [102] 2022 73.9% - - 84.8% 79.4% 74.5% 17.6% 80.0% - 5.5% - 14.5%

China [74] 2019 98.3% - - 71.6% 90.0% - 21.7% 75.0% - - - 21.7%
China [75] 2020 73.5% - - 71.6% 58.0% 53.0% 21.6% - 16.7% - - 23.9%

Africa
Tanzania [72] 2015 72.9% - - 60.0% 38.6% 50.0% - - 24.3% - - 10%
Tanzania [73] 2021 51.3% - - 47.7% 46.4% - 26.0% 27.3% 29.5% - - 28.6%
Nigeria [69] 2015 50.0% - - 17.9% 10.7% - 0% - 3.6% - 3.6% 3.6%
Rwanda [71] 2021 26.7% - - - 12.6% 13.3% - 2.2% 0.7% - 0.7% 0%
Uganda [70] 2021 53.9% 88.5% 17.3% - 11.5% - 3.8% 5.7% 7.7% - - 7.6%

a Antimicrobial: TET—tetracycline; SUL—sulfamethoxazole or sulfisoxazole; TMP—trimethoprim; SXT—trimethoprim/sulfamethoxazole; AMP -ampicillin; STR—streptomycin;
GEN—gentamicin; CHL—chloramphenicol; AXO—ceftriaxone; TIO—ceftiofur; CTX—cefotaxime; CIP—ciprofloxacin, b Year of publication c Study compared conventional and
organic/antibiotic free systems. Results from conventional farms only are shown, d Multi-year study: results from final year of study are shown. Legend: UK—United Kingdom;
USA—United States of America.
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4. Resistance in Escherichia coli Isolated from Pigs in Age Groups Other Than Finisher

Much of the work investigating AMR in commensal E. coli in younger pigs involved
experimental trials. These often involved using specific antimicrobial treatments [103] or
were conducted on experimental farms or over limited timeframes [104], meaning that
their findings may not be directly applicable to conditions in the field. Compared with the
number of field studies investigating AMR in finisher pigs, relatively few have investigated
AMR in commensal E. coli originating from other age groups. Many of these studies
reported higher levels of AMR in younger animals, which is a phenomenon noted in various
other species, including humans [105]. However, this varied somewhat between studies as
temporal trends may differ depending on the antimicrobial and/or AMU patterns studied.
Younger pigs, especially after weaning, are more likely to receive antimicrobials [106,107]
which undoubtedly affects the prevalence of resistance. Studies in Ireland, Canada, USA,
and Spain all showed higher rates of resistance in isolates from weaner pigs compared with
finisher pigs for most, if not all, of the antimicrobials studied. [65,96,108,109]. Similarly,
Pissetti et al. (2021) reported increased odds of a multidrug resistant (MDR) phenotype in
isolates from nursery pigs compared with finisher pigs on Brazilian farms [110]. While the
peak in AMR in E. coli during the weaner stage reported in these studies coincides with
high AMU in this age group, the findings of other studies suggest that AMU alone may
not explain this phenomenon. On a US research farm not exposed to antimicrobials for
over five years, resistance to tetracycline, sulfisoxazole, and streptomycin was higher in
isolates from weaner pigs compared with most of the older age groups [111]. More recently,
Yun et al. (2021) reported that the prevalence of MDR on 10 Finnish farms was higher at
5 weeks of age compared with 22 weeks, regardless of whether they received antimicrobials
during their lifetime or not [112]. A longitudinal study conducted on 29 farms in Germany
tracked resistance to ampicillin, tetracycline, colistin, and azithromycin in pigs treated
or not treated with the respective antimicrobial class [113]. Resistance to ampicillin and
tetracycline in untreated pigs, as well as to azithromycin regardless of treatment status,
peaked during the weaner stage. In contrast, the lowest levels of resistance were observed
in finisher pigs with the exception of tetracycline resistance in tetracycline-treated pigs. In
that study, the higher tetracycline resistance in treated finisher pigs was likely associated
with tetracycline use in the later production stages, whereas the other antimicrobial classes
were only used in younger pigs [113]. A cross-sectional study in the USA compared AMR
in antibiotic free (ABF) and conventional herds (n = 3 and n = 4, respectively) [109] and
found that the minimum inhibitory concentrations (MIC) of ampicillin, gentamicin, and
sulfamethazine were highest in the two youngest age groups (pigs weighing 4.5 kg and
23 kg), but only on conventional farms. This was not the case for oxytetracycline, where
resistance on the ABF farms was highest in the younger pigs, despite the absence of AMU,
but highest in finisher pigs from conventional farms who all used antimicrobials (including
tetracyclines) during the finisher stage [114]. In contrast, Græsbøll et al. (2017) found that
tetracycline resistance was lower just before slaughter than at earlier time points, although
the differences were not statistically significant, and that a significant post weaning peak in
resistance was only observed in groups treated with oxytetracycline [115]. These studies
provide evidence of the influence of age on AMR, which appears to be independent of AMU.
Nevertheless, given the relationship between age and AMU, and the age-related dynamics
of the E. coli population in the porcine intestinal tract [116–118], it is difficult to separate
both factors. It is reasonable to attribute this age-related effect to an evolutionary response
in the bacterial population, whereby E. coli in weaned pigs are adapted to a post weaning
intestinal environment which is frequently exposed to antimicrobials. Extended spectrum
cephalosporins and fluoroquinolones are notable exceptions to the post weaning peak in
resistance, with the higher prevalence observed in piglets [65,119,120] likely influenced
by higher exposure to these classes in this age group [107]. Resistance to these classes is
discussed separately below.

Relatively few studies have investigated AMR in E. coli from sows. Sows represent
an important reservoir of AMR on the farm and, although the sow and piglet E. coli
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populations are different [116], associations between resistance in E. coli from sows and
piglets have been demonstrated in several studies [113,121–124]. Burow et al. (2019)
reported similar levels of resistance in sows and finishers in their study and significant
associations between resistance to ampicillin and azithromycin in sows and piglets [113].
In Ireland, the prevalence of AMR in E. coli originating from sows was similar to piglets for
most of the antimicrobials studied, but higher than in finishers [65]. In contrast, Mathew
et al. (2001) reported lower AMR in sows compared with finishers, especially in the
ABF herds [114]. Sows on Swiss farms had a lower prevalence of resistance compared
with weaners for most of the antimicrobials studied, although not for ciprofloxacin [125].
Two cross-sectional studies in north-eastern Thailand that sampled only sows showed high
rates of resistance [126,127] consistent with other studies that sampled finisher pigs in the
region [80,84,128]. The NARMS programme includes sampling of sows at slaughter [68] and
a recent analysis of the data between 2013 and 2019 showed a generally higher prevalence of
AMR in E. coli isolated from finisher pigs compared with sows [129]. Such findings contrast
with the previously mentioned associations between AMR in sows and their offspring. This
apparent contradiction may be influenced by the timing of sampling, i.e., whether sows are
lactating or gestating, but studies investigating whether parturition and/or lactation and
their associated stresses have an effect on AMR are lacking.

5. Mechanisms of Antimicrobial Resistance in Escherichia coli

An understanding of the resistance mechanisms employed by E. coli is useful in ex-
plaining the underlying epidemiology of AMR. Overall, accurate estimates of resistance
gene prevalence in the porcine E. coli population are difficult to infer from the literature
because genotypic studies in the field are carried out less frequently than phenotypic
studies, and the methodology may differ in terms of the type of animal sampled and the
profile of isolates chosen for evaluation. Furthermore, studies that use PCR methods rely on
which gene(s) are chosen for study and thus depend on prior knowledge of the prevailing
genotypes. Such prior knowledge is not required for whole genome sequencing (WGS),
which allows for an accurate characterisation of the AMR genotype. While studies using
WGS to investigate the generic E coli commensal population in pigs are still relatively
rare, the NARMS programme has performed WGS on a subset of its isolates [68] since
2017, and studies from Europe, Spain and the UK on finisher pigs [130–133] and from
Australia on weaner pigs [134,135] have been published recently. Another study performed
a retrospective in silico analysis of E. coli WGS data from livestock, including pigs, retrieved
from three publicly available genome databases [136]. The latter study reported increasing
trends in the prevalence of some ARGs, such as tet(A), blaTEM-1b, blaCMY-2, and floR, over
the study period from 1980–2018, although the lack of farm metadata and information
on aspects such as sample site or the age of the animal at sampling precludes any farm
level analysis of the molecular epidemiology of these resistance mechanisms [136]. The
main AMR mechanisms utilised by E. coli of animal origin were reviewed by Poirel et al.
(2018) [137]. In pigs, tetracycline resistance is most often conferred by the efflux genes tet(A)
and/or tet(B) [68,130–136], although others such as tet(M), a ribosomal protective gene,
have been reported [68,81,132,133,138]. Interestingly, Pires et al. (2021) noted the displace-
ment of tet(B) by tet(A) between 1980 and 2018 in the collection of isolates studied [136], a
finding that highlights the dynamic nature of ARG epidemiology. The association of the
narrow spectrum beta-lactamase blaTEM-1 gene (particularly the 1b variant) with ampicillin
resistance is an almost universal finding in the studies investigating it [104,130–133,136,139].
Genes conferring resistance to sulphonamides and trimethoprim, which interfere with
bacterial folate metabolism, are also widespread in the porcine E. coli population. The
prevalence of sul1, sul2, and sul3 varies between studies; sul2 was the most common gene
in a UK cross sectional study [132] and in the NARMS data [68], sul3 was the predominant
gene in a Thai study [128], whereas both sul2 and sul3 were common on Spanish farms [133].
Streptomycin resistance is associated with the strA/strB gene pair and with the aadA genes
(which also confer resistance to spectinomycin); both groups are commonly found on
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pig farms [130,132,133]. Amphenicol resistance is mainly conferred by the catA and cmlA
genes [140], which persist in the E. coli population, despite the fact that chloramphenicol
is no longer used in animals in most countries. The floR gene is important in the veteri-
nary context as it confers resistance to both florfenicol, which is used in pig farming, and
chloramphenicol. Florfenicol resistance is not always reported for studies of commensal
isolates, but appears widespread in China [39,141]. In contrast, floR was found in 5.5%,
2.9%, and 11.7% of isolates in the UK, USA, and Spain respectively [68,132,133]. The genes
conferring resistance to tetracyclines, sulphonamides, trimethoprim, aminoglycosides, and
amphenicols represent the most widely distributed ARGs in the E. coli population and are
frequently co-located. Such co-location explains the phenomenon of multidrug resistance.
Indeed, multidrug resistance is a notable feature of many of the studies included in this
review and, as an illustrative example, 30.3% of all E. coli isolated from pigs at slaughter
submitted to the EFSA and ECDC monitoring programme in 2021 were MDR, 44.2% of
which were resistant to tetracycline, ampicillin, sulfamethoxazole, and trimethoprim [33].
The relevant ARGs are usually located on mobile genetic elements (MGE) and, in fact,
are often co-located on the same MGE. Integrons, especially class 1, have an important
role in the epidemiology of MDR [142] as they can capture, express, and exchange ARG
cassettes [143] and are frequently located on transposons or plasmids that can facilitate
HGT [144]. The most common integron-associated gene cassettes include variants of aadA
and dfrA, but others such cmlA are prevalent in pigs [135,145]. Furthermore, the sul1 gene
is part of the conserved 3′ region of the classical class 1 integron structure and sul3 is also
associated with integrons [134,135,146]. This means that isolates harbouring integrons are
commonly resistant to sulphonamides, trimethoprim, aminoglycosides, and/or ampheni-
cols. Several studies, especially in Asia, have reported a high prevalence of class 1 integrons
of up to 75% in E. coli isolates of porcine origin [75,101,105,147,148]. Moreover, although
tet and blaTEM are not found on integrons, they are frequently found in integron positive
isolates [147].

Despite their abundance (and indeed, because of it), the resistance mechanisms dis-
cussed so far are less important in terms of public health, since the associated drugs are
no longer routinely used in the treatment of Enterobacteriaceae infection of humans. On the
other hand, antimicrobials such as third-generation (and higher) cephalosporins, fluoro-
quinolones, gentamicin, and carbapenems are essential in the treatment of Gram-negative
infections and, thus, their respective resistance mechanisms are topics of considerable
interest. Gentamicin is a medically important aminoglycoside antibiotic and several genes
conferring resistance in E. coli have been reported [137]. The aac(3)-IVa gene is especially
important in the veterinary context as it confers resistance to the veterinary drug apramycin
and to gentamicin [137], and its occurrence in human clinical isolates illustrates a rather
concrete example of the interface between AMR in animals and humans [149]. The aac(3)-
IVa gene was the most prevalent gentamicin resistance gene detected in a WGS study
carried out on UK finisher herds [132], in two studies in Australia [134,135], and in two
older studies in Denmark [150] and Korea [151]. In contrast, the aadB gene was common on
Thai pig farms [83,128] (the authors did not investigate aac(3)-IV), while the NARMS WGS
data suggests that aac(3)-IId is more prevalent in finisher pigs in the USA [68]. Interestingly,
AbuOun et al. (2020) also detected aac(3)-IId, but only in fluoroquinolone-resistant isolates
recovered from selective media [132]. Tigecycline is a synthetic derivative of tetracycline,
developed to treat MDR infections [152]. Resistance, associated with the tet(X) ARG, was
first reported in isolates of animal origin in China [153], and has been detected in E. coli iso-
lates of porcine origin in a number of Chinese studies [80,81] and in five European countries
participating in the EFSA and ECDC monitoring programme in 2021 [33]. Carbapenems
are of the utmost importance in human medicine as antimicrobial agents of last resort.
While still relatively uncommon, resistance genes such as blaVIM and blaNDM are reported
in E. coli of porcine origin [33,37,81]. Resistance to the extended spectrum cephalosporins,
fluoroquinolones, and polymyxins are discussed separately below.
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6. Relationship between AMU in Pig Farming and AMR in Escherichia coli
6.1. Ecological Associations between AMU and AMR in Escherichia coli

Antimicrobial use is generally accepted to be the main driver of AMR and, therefore,
the relationship between AMU and AMR in animals is a topic of considerable interest. Eco-
logical studies have identified associations between AMU at a national level and AMR in
E. coli recovered from national monitoring programmes. Chantziaras et al. (2014) found that
the use of specific antimicrobial classes at a national level in seven European countries was
correlated with the level of resistance in commensal E. coli in cattle, pigs, and poultry [154].
At an individual country level, a trend analysis on data from Belgium between 2011 and
2015 found significant associations between resistance and use of the corresponding class
for 10 out the 11 classes studied, while resistance was associated with total AMU for all
classes [155]. Both of these studies used species aggregated data and so direct inference
for the pig-related data is not possible. However, a Japanese study reported significant
correlations between the prevalence of resistance to specific antimicrobial classes in the pig
sector and the consumption of the corresponding classes [156], and in Denmark, gentamicin
resistance was associated with the consumption of apramycin [152]. More recently, the
‘joint inter-agency reports on integrated analysis of antimicrobial agent consumption and
occurrence of antimicrobial resistance in bacteria from humans and food-producing animals
in EU/EEA’ (JIACRA) used AMU surveillance data from the European Surveillance of Vet-
erinary Antimicrobial Consumption (ESVAC) project along with AMR data from the EFSA
and ECDC monitoring programme to explore the relationship between AMU in livestock
and AMR in E. coli in Europe [157]. These analyses found significant associations between
resistance to fluoroquinolones, colistin, ampicillin, and tetracycline, in indicator E. coli,
and the use of the corresponding antimicrobial classes at a country level for both the pig
specific and the aggregated species datasets [157]. A pan-European study carried out by the
EFFORT consortium that sampled 180 farms in nine countries also found significant associ-
ations between AMR in E. coli and the average treatment incidence at a country level [158].
These associations included cephalosporin use with ampicillin resistance, fluoroquinolone
use with ciprofloxacin and nalidixic acid resistance, amphenicol use with chloramphenicol
resistance, and lincosamide use with azithromycin resistance [158]. Dorado-Garcia et al.
(2016) used species-specific data for a similar analysis in the Netherlands and found that
resistance in porcine isolates to a particular antimicrobial was associated with total use
rather than use of the corresponding class [159]. Taken together, these studies demonstrate
a relationship between AMR in E. coli and background AMU at country level. Moreover,
they demonstrate that reductions in AMU can lead to reductions in AMR. The Dutch
and Belgian studies mentioned previously were conducted during a period of declining
AMU in livestock [155,159], and there are similar examples for colistin resistance in China
where resistance in E. coli and the prevalence of the associated mcr-1 gene in humans and
animals (including pigs) reduced substantially following a ban on the use of colistin as an
antimicrobial growth promoter (AGP) [160,161].

6.2. Intervention Studies Investigating Relationship between AMU and AMR

Studies investigating the relationship between AMU and AMR can be divided into
two categories: intervention studies where the effect of administering an antimicrobial on
AMR is investigated, and observational studies where a cohort (or cohorts) of farms are
sampled and the results are analysed in conjunction with farm-level AMU data. The former
category of study usually takes place on a research farm or on a limited number (often
single) of commercial farms, which may allow for a controlled environment, although it
may not reflect conditions in the field. Langlois et al. (1978) examined the effect of five
in-feed antimicrobial protocols (untreated, bacitracin, virginiamycin, tylosin, and chlorte-
tracycline) on resistance to chlortetracycline (CTC) and found that resistance was lowest in
the untreated groups and highest in the groups treated with CTC [162]. In another study,
Langlois et al. (1984) found that the response to antimicrobial treatment was affected by
the farm’s antimicrobial exposure history [163]. That study evaluated the effect of sub
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therapeutic and therapeutic doses of CTC on tetracycline resistance in two herds of pigs,
one of which was from an ABF farm, and found a greater increase in resistance in the
treated groups from the ABF herd compared with the treated groups from the herd with
antibiotic exposure [163]. Other studies have demonstrated similar results along with an in-
crease in resistance to unrelated antimicrobials [103,115,164,165]. Delsol et al. (2003) found
that tetracycline resistance reduced after treatment was withdrawn, but remained above
pre-treatment levels for at least two weeks [164]. Græsbøll et al. (2017) had similar findings,
but reported that resistance returned to pre-treatment levels prior to slaughter [115]. A
US study investigating resistance to apramycin found that apramycin resistance persisted
for longer after apramycin treatment if the pigs had previously been treated with oxyte-
tracycline [166]. Levels of AMR and its persistence were also affected by antimicrobial
exposure in the sows [121] and other environmental factors such as temperature, stocking
density, and mixing [166–168]. These findings are relevant to field studies as there may be
a wide variation between farms and, indeed, many of these factors may not be recorded
or measurable. Some studies investigated the effect of different treatment regimens in
terms of dose and or route of administration. This is of interest because identifying a mode
of treatment associated with a lower risk of antimicrobial resistance would be beneficial.
Overall, however, the evidence is limited and somewhat contradictory [36]. Increased doses
of apramycin were associated with higher aminoglycoside resistance in one study [169].
On the other hand, there was no difference in the response to treatment with different
doses of oral or injectable oxytetracycline on five Danish farms [115], which agreed with
the conclusions of another Danish study [170]. Similarly, ampicillin resistance in E. coli was
similar in groups of pigs treated with oral or injectable ampicillin [104]. Interestingly, while
the prevalence of phenotypic resistance within Enterobacteriaceae did not vary between
treatment groups in the latter study, there were higher Enterobacteriaceae plate counts and
higher gene copy numbers of blaTEM detected by qPCR in the faeces of the oral treatment
groups [104]. This suggests that mode of treatment affected the Enterobacteriaceae and other
members of the microbiota differently, and highlights how the quantification of AMR may
be subject to different interpretations depending on which methods are used and on the
subject population under study. It is also worth noting that this experiment found a rise
in multidrug resistance in the E. coli population in response to treatment, and that this
change was associated with a shift in the phylogenetic profile of the E. coli population to
phylogroups possessing ampicillin and MDR phenotypes [171]. Interestingly, some studies
observed increases in AMR in untreated animals kept in the same pens or rooms as treated
animals [115,120,172–174]. In one of these studies, fluoroquinolone-resistant E. coli strains
similar to those found in the fluoroquinolone-treated group were detected in the untreated
control group, even though both groups were housed in separate pens [174]. Such findings
demonstrate that AMR is influenced by AMU in the community as well as in the individual,
and further demonstrate the complexity of AMR epidemiology. Taken together, the inter-
vention studies discussed demonstrate that, in general, antimicrobial treatment causes a
rise in AMR in the E. coli population and is followed by a decline to pre-treatment levels (in
the studies in which this was measured). While these studies provide valuable information
on the dynamics of AMR, the findings are not always applicable to the situation in the field,
especially as they are usually carried out on a single herd on research farms.

6.3. Observational Studies Investigating Relationship between AMU and AMR

Observational studies allow for investigation of the relationship between AMU and
AMR at farm level. Ideally, the AMU data used in such studies are as detailed and complete
as possible. In practice, such data are not always available and thus categorisation of
AMU must be used (e.g., use or not of a particular antimicrobial, high AMU vs. low
AMU). Gellin et al. (1989) compared three university farm herds, one that routinely used
AGPs, one that only used antimicrobials therapeutically when required, and, lastly, one
that did not use any antimicrobials [175]. In almost all cases, resistance to each of the
antimicrobials studied was highest on the farm using AGPs and higher on the therapeutic-
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use farm than the ABF farm [176]. A similar cross-sectional study carried out on seven
farrow-to-finish farms, including three ABF farms and four conventional farms in the USA,
had similar results [114]. Mathew et al. (1998) also found a higher resistance prevalence
on high AMU farms compared with low AMU farms in a longitudinal study conducted
from birth to nine weeks of age [176]. Bunner et al. (2007) sampled finisher pigs on 35
ABF and 60 conventional farms in the USA, and reported that the odds of resistance to
all antimicrobials were higher on conventional farms, although resistance to quinolones
and third generation cephalosporins was absent in both groups [97]. Resistance was also
lower on organic farms from four European countries compared with their conventional
counterparts [66] and on free range Iberian pig farms compared with conventional farms
in Spain [177]. These studies provide evidence for a relationship between AMU and
AMR, at least when comparing no or very limited use to higher AMU conventional farms.
However, in Southeast Asia, the situation is not as clear cut. In one study in Thailand,
resistance to sulfamethoxazole, gentamicin, and chloramphenicol was higher on medium-
scale farms (>100 sows) compared with small-scale farms (<100 sows), but resistance to
tetracycline was higher on the small-scale farms [127]. A companion study that used the
same farms and samples as the previously mention study, but with different laboratory
methods, found a higher prevalence of colistin resistance on the small-scale farms [178].
In another, unrelated, Thai study, resistance on farms practising prophylactic AMU was
higher than on farms practising only therapeutic use or those with no AMU for most of the
antimicrobials investigated, but not for tetracycline or ampicillin [83]. In that study, there
were no differences between the therapeutic use farms and ABF farms, and the prevalence
of resistance in both groups was, in most cases, higher than the equivalent prevalence on
European or North American conventional farms. In fact, the ABF farms were all rural,
small-scale farms with no apparent access to veterinary care of any kind [83]. In a similar,
but larger-scale study in Thailand, resistance to cephalosporins, azithromycin, and colistin
was higher in the prophylactic AMU group compared with those with lower AMU, but
the prevalence of resistance to most of the other antimicrobials in all three groups was
similar [84]. The high rates of AMR in ABF production systems in these studies could
reflect very high background levels of resistance in the region or perhaps reflect unreported
or unknown AMU in these herds.

Studies that report the use or not of particular antimicrobial agents or the amounts
used allow for a more detailed analysis of the relationship between AMU and AMR. The
prevalence of resistance to tetracycline in E. coli isolated from pigs of different age groups
on Belgian farms was associated with the use of tetracyclines, as well as with the treat-
ment incidence of potentiated sulphonamides [179], which demonstrates both direct and
co-selection of resistance associated with AMU. Vieira et al. (2009) also reported a positive
association between tetracycline use and tetracycline resistance in Danish pigs at slaugh-
ter [180]. Notably, there was a significant association between resistance and the length of
time between treatment and slaughter [180], meaning that the closer the last tetracycline
treatment was to slaughter, the higher the probability of resistance. Several more studies
have reported associations between the use of specific antimicrobials and resistance to their
respective classes, albeit not in all instances [65,181–186]. These studies also demonstrated
associations between the use of specific drugs and resistance to unrelated antimicrobial
classes. The use of in-feed antimicrobials in at least one diet was associated with resistance
to six out of seven antimicrobials tested on 34 farms in Ontario [181]. The exception was
gentamicin resistance, which was only associated with injectable gentamicin use. In four of
these models, the association was not antimicrobial specific, meaning resistance increased
regardless of which antimicrobial was used, and medicating the starter diet in early wean-
ing was associated with resistance in the finisher stage [181]. The use of medicated feed in
grower or finisher diets was also associated with AMR, including MDR, in isolates from
finisher pigs in a study in Alberta for four of the investigated models [185]. Similar to the
study of Dunlop et al. (1998) [181], there were antimicrobial-specific and non-specific associ-
ations with resistance, as well as examples of co-selection [185]. Interestingly, some studies
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demonstrated associations between macrolide use and unrelated antimicrobial classes,
even though E. coli is considered intrinsically resistant to macrolides [65,182,185,187]. For
example, macrolide use was associated with chloramphenicol resistance on Irish farms [65].
Overall, these studies provide evidence for a complex relationship between AMU and AMR
in E. coli. Resistance is influenced by AMU both recently and earlier in the lifecycle, as well
as by historical usage and background resistance. In many cases, the relationship between
AMU and AMR is not clear cut, with some conflicting findings between studies; however,
co-selection has an extremely important role. The persistence of chloramphenicol resistance
despite a lack of use demonstrates how resistance genes can be maintained in the popula-
tion due to their association with other resistance genes. An apparent relationship between
macrolide use and resistance to other classes further illustrates this complex relationship.
The majority of these studies are cross-sectional and, as discussed before, mostly sample
pigs at or close to slaughter. A notable exception is the study by Burow et al. (2019), who
followed pigs from birth to slaughter on 29 German pig farms [113]. In that study, E. coli
isolates from pigs treated with penicillins, tetracyclines, polymyxins, or macrolides were
more likely to be resistant to ampicillin, tetracycline, colistin, or azithromycin, respectively,
than isolates from untreated pigs, but not at all timepoints [113]. In fact, only tetracycline
had a significant difference between treated and untreated pigs at the last time point just
before slaughter. This shows that studies conducted only in older pigs may not truly
capture the relationship between AMU and AMR throughout the whole pig lifecycle.

7. Resistance to Extended Spectrum Cephalosporins, Fluoroquinolones,
and Polymyxins

Extended spectrum cephalosporins (ESC), fluoroquinolones, and polymyxins (i.e.,
colistin) are classed as HP CIA by WHO (along with glycopeptides and macrolides) and
as ‘Category B’ antimicrobials by the European Medicines Agency (EMA) [9,188]. Al-
though not as heavily used as other antimicrobials and nowadays subject to restrictions
in certain settings [189], they are important veterinary antimicrobials, and, in particular,
fluoroquinolones and colistin have indications for the treatment of E. coli infections in
animals. Resistance to these classes in commensal E. coli in livestock is especially important
because of the importance of these drugs in treating Gram-negative infections in humans
and the fact that resistance is well established in both human and animal populations.
Isolates resistant to one of these antimicrobials are usually resistant to several other classes
of antimicrobial, as illustrated in a study on Belgian poultry and pig farms, where over 90%
of ciprofloxacin or cefotaxime-resistant isolates were MDR [190], and in two recent studies
that reviewed and conducted meta-analyses of resistance to ESCs, fluoroquinolones, and
colistin [37,38].

The main mechanisms of ESC resistance are extended spectrum beta lactamases
(ESBL) and AmpC beta lactamases, which are, in most cases, associated with MGEs and
plasmids [191–193]. In humans, ESBLs are the most prevalent and, of these, the CTX-
M family is the most important, with the CTX-M-15 and CTX-M-14 variants being the
most prominent globally [194–196]. Several studies have investigated the prevalence
of ESBL/AmpC-producing E. coli in pigs, alone or in conjunction with other food pro-
ducing species. In contrast with humans, there are more distinct geographical patterns
regarding the distribution of ESBL/AmpC genes [37]. In East Asia, blaCTX-M-14, blaCTX-M-55
and blaCTX-M-65 predominate [197–206]. In North America, ESC resistance is usually con-
ferred by the plasmid-mediated AmpC blaCMY-2 gene, as ESBLs are relatively rare in
food-producing animals [37,68,207–209]. In Europe, data from the EFSA and ECDC spe-
cific monitoring of ESBL/AmpC producing E. coli show that the ESBL phenotype is more
prevalent than the AmpC phenotype, although this varies between countries [33]. This
component of the EFSA and ECDC monitoring programme aims to estimate the prevalence
of ESBL/AmpC carriage within the pig population (as opposed to the E. coli population)
and in 2021, it showed a median prevalence of 54.7%, ranging from 6.5% in Finland to
80.7% in Italy [33]. Comparing these data to the prevalence of ESC resistance in the E. coli
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population (see Table 1) indicates that, although ESBL/AmpC producers are relatively rare
within the general E. coli population, they are widely distributed within the pig population.
Some countries voluntarily submit molecular data to the EFSA and ECDC monitoring pro-
gramme showing that blaCTX-M-1 is the most prevalent ESBL gene in Europe [210], which
is in agreement with another recent pan European study [211], monitoring programmes
in Denmark [32] and the UK [31], and various other European studies [132,212–216]. The
EFSA and ECDC data also showed that in the Netherlands and several of the Nordic
countries, mutation of the chromosomal ampC promoter gene was the predominant ESC-
resistance mechanism [210], which perhaps reflects a lower prevalence of plasmid-mediated
resistance due to the more restrictive AMU regulations in these countries. This was also
the case in Denmark [32]. Ewers et al. (2021) examined 99 ESBL/AmpC-producing E. coli
isolates recovered from cattle, poultry and pigs at slaughter in eight European countries
during the EASSA program [211]. There was marked strain diversity and little evidence
of clonality among these isolates, but each ESBL/AmpC gene was associated with par-
ticular plasmids, for example, blaCTX-M-1 with IncI1α, many of which were similar to the
sequenced plasmids recovered from E. coli in other studies [211]. Although this study
included only 15 isolates from pigs (the majority were from poultry), the findings were
consistent with several other on-farm studies that showed that ESBL/AmpC genes were
distributed across a variety of E. coli strains throughout the farm, as shown in the following
examples. Moreover, many of these studies demonstrated that on a given farm, usually
one ESBL/AmpC gene and plasmid type predominated. Examples include blaTEM-52 with
IncI1, blaCTX-M-1 with IncN, and blaCTX-M-15 with IncFIA/FIB on Portuguese farms in two
different studies [217,218]; blaCTX-M-1 with IncN on a Czech farm [219]; blaCTX-M-14 with
IncK2 on a Danish farm [220]; and blaCTX-M-1 with IncI on an Australian farm [221]. A lon-
gitudinal study that followed pigs from birth until slaughter on 31 Swiss farms had broadly
similar findings [222]. These studies demonstrate that plasmids carrying ESBL/Amp genes
are widely distributed within the E. coli population but, at least in Europe, are not yet
established in the dominant commensal flora. Other studies have demonstrated a high
prevalence of ESC resistance in the general E. coli population, for example, one research
herd in the USA had a prevalence of resistance to ceftriaxone (associated with blaCMY-2)
between 52.1% and 77.1% in weaner pigs [103], and herds using prophylactic antimicrobials
in Thailand had a prevalence of resistance of approximately 35% and 45% in finisher pigs in
two separate studies [84,128]. Similarly, several studies from China show a high prevalence
of resistance to cephalosporins [75,79,80]. Such studies, even if they are not necessarily
applicable to the wider population, show that ESBL/AmpC-bearing plasmids have the po-
tential to establish themselves in the dominant E. coli population. As mentioned previously,
ESC-resistant E. coli are usually multidrug resistant. Most notably, however, in several
of the studies discussed in this section, ESC-resistant E. coli are frequently co-resistant to
fluoroquinolones. This phenomenon is particularly well illustrated in the EFSA and ECDC
report: while co-resistance is rare in isolates recovered during routine monitoring (i.e., the
general E. coli population), 43.3% of the ESC-resistant isolates recovered in specific moni-
toring of ESBL/AmpC producing E. coli during 2021 were resistant to ciprofloxacin [33].
Hayer et al. (2022) examined over 6000 E. coli genomes and reported a strong association
between blaCTX-M and both chromosomal and plasmid-mediated fluoroquinolone-resistant
mechanisms [37]. This link between ESC resistance and fluoroquinolone resistance is by no
means unique to porcine isolates; it is a notable and concerning problem in human medicine,
where, for example, 5.1% of ExPEC isolates submitted to the EARS-Net programme in the
EU in 2021 displayed resistance to both classes, along with aminoglycosides [7].

As for studies investigating general antimicrobial resistance in pig production, studies
investigating ESC resistance in commensal E. coli mainly involve pigs at or close to slaughter.
However, several studies have shown that resistance is highest in younger pigs. There
was a higher prevalence of ESC-resistant E. coli carriage in piglets compared with older
age groups in four longitudinal studies [119,123,124,223]. Bacterial counts of ESC-resistant
E. coli also decreased with age [119,124,223–225], although this measurement did not
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consider the proportion of the population it represents. Other studies in Asia showed
a higher prevalence of resistance in weaner pigs [128,226]. Resistance to ESCs has been
associated with AMU in some studies. While cephalosporin use at a national level in
Europe was not associated with the prevalence of cefotaxime or ceftazidime resistance
in the general E. coli population, it was associated with the prevalence of ESBL/AmpC
carriage [157]. At farm level, resistance was more likely on farms with cephalosporin use
compared with those without use [227–229]. Agersø and Aarestrup reported a significant
reduction in the prevalence of ESC resistance in Danish slaughter pigs after a voluntary
ban on cephalosporin use within the industry [230]. There were similar findings over a
four year period on an Australian farm that had ceased cephalosporin use [221].

In comparison with ESC resistance, there are fewer studies investigating fluoro-
quinolone resistance in the porcine commensal E. coli population. Fluoroquinolones (e.g.,
ciprofloxacin) have been included in the AST panels in most studies; however, different in-
terpretation criteria and changes in breakpoints over time hamper comparability somewhat.
In particular, whether ECOFFs or CBPs are used greatly influences this interpretation as the
EUCAST-defined ciprofloxacin cut off MIC for wild type E. coli is currently 0.06 mg/L [42]
compared with a CBP (for resistant) of >0.5 mg/L [40,43]. Therefore, studies using ECOFFs
typically report a higher prevalence of fluoroquinolone resistance than those using higher
breakpoints, as can be seen in the EFSA and ECDC data presented in Table 1. The tar-
gets for (fluoro)quinolones are DNA gyrase and topoisomerase IV, which are involved in
DNA replication, transcription, and repair. Target modification caused by mutations in the
quinolone-resistance determining region (QRDR), usually of gyrA and/or parC, can confer
resistance to quinolones, but only low-level resistance to fluoroquinolones [231]. These
can be detected if using ECOFFs. Further mutations are required for clinical resistance.
Plasmid-mediated quinolone resistance (PMQR) mechanisms such as the qnr family, which
protects DNA gyrase and topoisomerase, or genes encoding efflux pumps such as qepA
or oxqAB, by themselves confer a low level fluoroquinolone resistance, but facilitate mu-
tations in the QRDR by ‘lengthening’ the mutation prevention window [231,232]. In pigs,
chromosomal mutations of gyrA, followed by parC, are the most frequently encountered
fluoroquinolone resistance mechanisms while qnrS1 and qnrB19 are the most commonly
encountered plasmid-mediated mechanisms [38,68,132,133]. The rates of fluoroquinolone
resistance in finisher pigs are typically lower than the rates for the ‘older’ antimicrobials and
often higher than ESC resistance (see Tables 1 and 2). As for ESC resistance, fluoroquinolone
resistance is widely distributed in the pig population. In the UK, for example, one cross
sectional study found a high level ciprofloxacin resistance on 58% of finisher farms [233],
and a more recent WGS-based study found QRDR mutations on 78.5% of farms [132].
Studies investigating fluoroquinolone resistance in younger pigs are scarce. The highest
prevalence of fluoroquinolone resistance was found in piglets in an Irish cross-sectional
study [65], but was highest in weaner pigs in two smaller-scale longitudinal studies in
Vietnam and Brazil [110,226]. Recently, a larger-scale longitudinal study on 24 Swiss farms
investigated nalidixic acid resistance in fluoroquinolone-treated and untreated pigs, and
found the highest number of positive samples in piglets [120]. Resistance prevalence was
also higher in the treated groups and lower on farms not using any fluoroquinolones.
Associations between fluoroquinolone use and resistance have also been demonstrated at
national- and international level [157,158].

Colistin resistance has become a topic of increasing interest recently. Previously
reserved for animal use due to nephrotoxicity in humans, it is now an agent of last resort
used to treat some carbapenem-resistant infections in people [234]. Resistance to colistin
was previously thought to be chromosomally mediated until the discovery of the plasmid-
mediated mcr gene in porcine isolates in China [235]. To date, 10 variants of the mcr gene
have been described [236], although the original mcr-1 variant predominates worldwide [38].
While numerous studies have investigated colistin resistance in E. coli of porcine origin [38],
only a few have explored the on-farm dynamics. One longitudinal study in Vietnam
reported a lower prevalence of colistin resistance in piglets compared with weaners or
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finishers [226], while a cross-sectional study in Korea showed a higher prevalence of
resistance in weaners compared with the older age groups [237]. As seen in Table 1, colistin
resistance in E. coli isolated from finishers in the developed world is currently rare; however,
as previously discussed, many studies in Asia show a higher prevalence of resistance. In
Europe, the prevalence of colistin resistance in pigs at slaughter is associated with the use
of colistin at a national level [157].

8. Conclusions and Future Perspectives

In summary, while there is a considerable body of research characterising antimicrobial
resistance in porcine E. coli, its relationship with AMU and, to a lesser extent, its evolution
during the production cycle, knowledge gaps remain. In particular, longitudinal studies
are lacking, especially for fluoroquinolone and colistin resistance. Although the point of
slaughter is considered most relevant to human health, AMR in younger pigs, in which
resistance is typically higher, is extremely important as this influences AMR at finishing,
and is relevant to human occupational exposure and environmental contamination. Thus,
more on-farm cross-sectional studies that sample younger pigs or longitudinal studies
encompassing the full lifecycle are warranted. The majority of the studies included in
this review were conducted in Europe, North America, and, to a lesser extent, China
and Southeast Asia. This highlights a lack of data from LMICs and future studies from
such countries or regions would be beneficial. In particular, the implementation of inte-
grated monitoring programmes in developing countries is a pressing need as AMU in
livestock production is expected to increase in these countries as their food production
sectors expand [22]. However, strengthening the surveillance and research of AMR in
agriculture is a key component of the Food and Agriculture Organization’s (FAO) action
plan on AMR [238], and the successful implementation of such programmes in LMICs will
provide essential data to improve the understanding of the epidemiology of AMR in E. coli
and other bacteria globally. There is also a need for an increased understanding of the
molecular epidemiology of AMR in the general commensal E. coli population as genomic
studies, unsurprisingly, tend to focus on the ARGs most important to human health such
as ESBL/AmpC, carbapenemases, and mobile resistance genes to fluoroquinolones (e.g.,
qnr) and polymyxins (i.e., mcr-1). However, the EFSA and ECDC monitoring programme
now provides for the use of WGS data [33], and the increasing availability and affordability
of WGS is likely to provide intriguing new insights on this topic.

This review was motivated by the potential role played by AMR commensal E. coli
of animal origin in the overall epidemiology of AMR. While its overall importance in
the overall context of AMR remains to be established, one key question for the future is
how will AMR in E. coli evolve in the coming years? On the one hand, several European
countries show decreasing trends in resistance to some antimicrobials as their efforts to
increase awareness of AMR and improve antimicrobial stewardship take effect [33]. On
the other hand, AMU in livestock is projected by some authors to increase in line with the
increasing global demand for food [22], and LMICs in Asia have already been identified
as ‘hotspots’ for AMR in livestock [37,38,61]. Ultimately, whether this potential threat to
human health can be mitigated or reduced depends on the engagement and concerted
action of all stakeholders within the health and agriculture sectors. Continued research,
monitoring and surveillance will be required into the future to underpin these efforts.
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64. Wasyl, D.; Hoszowski, A.; Zając, M.; Szulowski, K. Antimicrobial resistance in commensal Escherichia coli isolated from animals at
slaughter. Front. Microbiol. 2013, 4, 221. [CrossRef]

65. Gibbons, J.; Boland, F.; Egan, J.; Fanning, S.; Markey, B.; Leonard, F. Antimicrobial Resistance of Faecal Escherichia coli Isolates
from Pig Farms with Different Durations of In-feed Antimicrobial Use. Zoonoses Public Health 2016, 63, 241–250. [CrossRef]

66. Österberg, J.; Wingstrand, A.; Jensen, A.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic
Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLoS ONE 2016,
11, e0157049. [CrossRef]

67. Aasmäe, B.; Häkkinen, L.; Kaart, T.; Kalmus, P. Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from
Estonian cattle and swine from 2010 to 2015. Acta Vet. Scand. 2019, 61, 5. [CrossRef] [PubMed]

68. Food Drug Administration (FDA) NARMSNow Rockville MD. U.S. Department of Health and Human Services. 2023. Available
online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-
data (accessed on 30 September 2023).

69. Adenipekun, E.O.; Jackson, C.R.; Oluwadun, A.; Iwalokun, B.A.; Frye, J.G.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A. Prevalence
and Antimicrobial Resistance in Escherichia coli from Food Animals in Lagos, Nigeria. Microb. Drug Resist. 2015, 21, 358–365.
[CrossRef]

70. Ikwap, K.; Gertzell, E.; Hansson, I.; Dahlin, L.; Selling, K.; Magnusson, U.; Dione, M.; Jacobson, M. The presence of antibiotic-
resistant Staphylococcus spp. and Escherichia coli in smallholder pig farms in Uganda. BMC Vet. Res. 2021, 17, 31. [CrossRef]

71. Manishimwe, R.; Moncada, P.M.; Musanayire, V.; Shyaka, A.; Scott, M.H.; Loneragan, G.H. Antibiotic-Resistant Escherichia coli
and Salmonella from the Feces of Food Animals in the East Province of Rwanda. Animals 2021, 11, 1013. [CrossRef] [PubMed]

72. Katakweba, A.; Muhairwa, A.P.; Lupindu, A.M.; Damborg, P.; Rosenkrantz, J.T.; Minga, U.M.; Mtambo, M.; Olsen, J.E. First
Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and
Humans in Tanzania. Microb. Drug Resist. 2018, 24, 260–268. [CrossRef] [PubMed]

73. Kimera, Z.I.; Mgaya, F.X.; Misinzo, G.; Mshana, S.E.; Moremi, N.; Matee, M.I. Multidrug-Resistant, Including Extended-Spectrum
Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam,
Tanzania. Antibiotics 2021, 10, 406. [CrossRef]

74. Fang, J.; Shen, Y.; Qu, D.; Han, J. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated
from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control 2019, 95,
215–222. [CrossRef]

75. Zhang, X.; Li, X.; Wang, W.; Qi, J.; Wang, D.; Xu, L.; Liu, Y.; Zhang, Y.; Guo, K. Diverse Gene Cassette Arrays Prevail in Commensal
Escherichia coli From Intensive Farming Swine in Four Provinces of China. Front. Microbiol. 2020, 11, 565349. [CrossRef]

76. Lei, T.; Tian, W.; He, L.; Huang, X.H.; Sun, Y.X.; Deng, Y.T.; Sun, Y.; Lv, D.H.; Wu, C.M.; Huang, L.Z.; et al. Antimicrobial resistance
in Escherichia coli isolates from food animals, animal food products and companion animals in China. Vet. Microbiol. 2010, 146,
85–89. [CrossRef]

77. Jiang, H.X.; Lü, D.H.; Chen, Z.L.; Wang, X.M.; Chen, J.R.; Liu, Y.H.; Liao, X.P.; Liu, J.H.; Zeng, Z.L. High prevalence and
widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. Vet. J. 2011, 187, 99–103. [CrossRef]

78. Zhang, P.; Shen, Z.; Zhang, C.; Song, L.; Wang, B.; Shang, J.; Yue, X.; Qu, Z.; Li, X.; Wu, L.; et al. Surveillance of antimicrobial
resistance among Escherichia coli from chicken and swine, China, 2008–2015. Vet. Microbiol. 2017, 203, 49–55. [CrossRef]

https://www.wur.nl/en/Research-Results/Research-Institutes/Bioveterinary-Research/In-the-spotlight/Antibiotic-resistance/MARAN-reports.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/Bioveterinary-Research/In-the-spotlight/Antibiotic-resistance/MARAN-reports.htm
https://doi.org/10.1111/zph.12920
https://doi.org/10.2807/1560-7917.ES.2023.28.20.2200678
https://doi.org/10.3390/microorganisms11041033
https://doi.org/10.1016/j.cmi.2017.09.013
https://www.ncbi.nlm.nih.gov/pubmed/28970159
https://doi.org/10.1038/s41597-021-00978-9
https://www.ncbi.nlm.nih.gov/pubmed/34294731
https://doi.org/10.1126/science.aaw1944
https://www.ncbi.nlm.nih.gov/pubmed/31604207
https://doi.org/10.1038/s43016-021-00320-x
https://doi.org/10.1002/jsfa.5814
https://doi.org/10.3389/fmicb.2013.00221
https://doi.org/10.1111/zph.12225
https://doi.org/10.1371/journal.pone.0157049
https://doi.org/10.1186/s13028-019-0441-9
https://www.ncbi.nlm.nih.gov/pubmed/30665443
https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-data
https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/narms-now-integrated-data
https://doi.org/10.1089/mdr.2014.0222
https://doi.org/10.1186/s12917-020-02727-3
https://doi.org/10.3390/ani11041013
https://www.ncbi.nlm.nih.gov/pubmed/33916794
https://doi.org/10.1089/mdr.2016.0297
https://www.ncbi.nlm.nih.gov/pubmed/28759321
https://doi.org/10.3390/antibiotics10040406
https://doi.org/10.1016/j.foodcont.2018.08.003
https://doi.org/10.3389/fmicb.2020.565349
https://doi.org/10.1016/j.vetmic.2010.04.025
https://doi.org/10.1016/j.tvjl.2009.10.017
https://doi.org/10.1016/j.vetmic.2017.02.008


Antibiotics 2023, 12, 1616 23 of 30

79. Lv, C.; Shang, J.; Zhang, W.; Sun, B.; Li, M.; Guo, C.; Zhou, N.; Guo, X.; Huang, S.; Zhu, Y. Dynamic antimicrobial resistant
patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect. Dis. Poverty 2022,
11, 98. [CrossRef] [PubMed]

80. Ma, J.; Zhou, W.; Wu, J.; Liu, X.; Lin, J.; Ji, X.; Lin, H.; Wang, J.; Jiang, H.; Zhou, Q.; et al. Large-Scale Studies on Antimicrobial
Resistance and Molecular Characterization of Escherichia coli from Food Animals in Developed Areas of Eastern China. Microbiol.
Spectr. 2022, 10, e02015-22. [CrossRef]

81. Peng, Z.; Hu, Z.; Li, Z.; Zhang, X.; Jia, C.; Li, T.; Dai, M.; Tan, C.; Xu, Z.; Wu, B.; et al. Antimicrobial resistance and population
genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat. Commun. 2022, 13, 1116. [CrossRef]
[PubMed]

82. Cheng, P.; Yang, Y.; Cao, S.; Liu, H.; Li, X.; Sun, J.; Li, F.; Ishfaq, M.; Zhang, X. Prevalence and Characteristic of Swine-Origin
mcr-1-Positive Escherichia coli in Northeastern China. Front. Microbiol. 2021, 12, 712707. [CrossRef]

83. Lugsomya, K.; Chatsuwan, T.; Niyomtham, W.; Tummaruk, P.; Hampson, D.J.; Prapasarakul, N. Routine Prophylactic Antimicro-
bial Use Is Associated with Increased Phenotypic and Genotypic Resistance in Commensal Escherichia coli Isolates Recovered
from Healthy Fattening Pigs on Farms in Thailand. Microb. Drug Resist. 2018, 24, 213–223. [CrossRef] [PubMed]

84. Pholwat, S.; Pongpan, T.; Chinli, R.; McQuade, E.T.; Thaipisuttikul, I.; Ratanakorn, P.; Liu, J.; Taniuchi, M.; Houpt, E.R.;
Foongladda, S. Antimicrobial Resistance in Swine Fecal Specimens Across Different Farm Management Systems. Front. Microbiol.
2020, 11, 1238. [CrossRef]

85. Trongjit, S.; Angkittitrakul, S.; Chuanchuen, R. Occurrence and molecular characteristics of antimicrobial resistance of Escherichia
coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol. Immunol. 2016, 60, 575–585. [CrossRef]

86. Tuat, C.V.; Hue, P.T.; Loan, N.T.P.; Thuy, N.T.; Hue, L.T.; Giang, V.N.; Erickson, V.I.; Padungtod, P. Antimicrobial Resistance Pilot
Surveillance of Pigs and Chickens in Vietnam, 2017–2019. Front. Vet. Sci. 2021, 8, 618497. [CrossRef]

87. Government of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2019: Figures and
Tables. Public Health Agency of Canada, Guelph. 2020. Available online: https://publications.gc.ca/collections/collection_2022
/aspc-phac/HP2-4-2019-eng-5.pdf (accessed on 4 November 2023).

88. Ministry of Agriculture, Forestry and Fisheries. Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System
2016–2017. 2020. Available online: https://www.maff.go.jp/nval/yakuzai/pdf/200731_JVARMReport_2016--2017.pdf (accessed
on 20 July 2021).

89. Teshager, T.; Herrero, I.A.; Porrero, M.; Garde, J.; Moreno, M.A.; Domínguez, L. Surveillance of antimicrobial resistance in
Escherichia coli strains isolated from pigs at Spanish slaughterhouses. Int. J. Antimicrob. Agents 2000, 15, 137–142. [CrossRef]

90. Sáenz, Y.; Zarazaga, M.; Briñas, L.; Lantero, M.; Ruiz-Larrea, F.; Torres, C. Antibiotic resistance in Escherichia coli isolates obtained
from animals, foods and humans in Spain. Int. J. Antimicrob. Agents 2001, 18, 353–358. [CrossRef] [PubMed]

91. de Jong, A.; Thomas, V.; Simjee, S.; Godinho, K.; Schiessl, B.; Klein, U.; Butty, P.; Vallé, M.; Marion, H.; Shryock, T.R. Pan-European
monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals.
J. Antimicrob. Chemoth. 2012, 67, 638–651. [CrossRef] [PubMed]

92. de Jong, A.; Garch, F.E.; Hocquet, D.; Prenger-Berninghoff, E.; Dewulf, J.; Migura-Garcia, L.; Perrin-Guyomard, A.; Veldman, K.T.;
Janosi, S.; Skarzynska, M.; et al. European-wide antimicrobial resistance monitoring in commensal Escherichia coli isolated from
healthy food animals between 2004 and 2018. J. Antimicrob. Chemother. 2022, 77, 3301–3311. [CrossRef] [PubMed]

93. Dunlop, R.H.; McEwen, S.A.; Meek, A.H.; Black, W.D.; Friendship, R.M.; Clarke, R.C. Prevalences of resistance to seven
antimicrobials among fecal Escherichia coli of swine on thirty-four farrow-to-finish farms in Ontario, Canada. Prev. Vet. Med. 1998,
34, 265–282. [CrossRef] [PubMed]
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