Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments
Abstract
:1. Introduction
2. Materials and Methods
3. Mechanisms of Resistance
3.1. Porins
P. aeruginosa | Blood Culture | |
---|---|---|
Antibiotic | MIC | SIR * |
Meropenem/Vaborbactam | =4/4 | S |
Imipenem/Relebactam | =2/2 | S |
Amikacin | =8.0 | S |
Cefepime | =4.0 | I |
Ceftazidime | =4.0 | I |
Ceftazidime/Avibactam | =2.0 | S |
Ceftolozane/Tazobactam | =1.0 | S |
Ciprofloxacin | =0.125 | I |
Colistin | =1.0 | S |
Imipenem | >8 | R |
Meropenem | =4 | I |
Piperacillin/Tazobactam | =8.0 | I |
3.2. Efflux Pump Systems
Efflux System | Antibiotics Affected by Altered Expression |
---|---|
MexAB-OprM | Aztreonam, β-lactams a, macrolides, tetracyclines, lincomycin, chloramphenicol, fluoroquinolones [11,50,54], higher in MIC or resistance to relebactam [69] could raise MIC of cefiderocol b [41]. |
MexXY-OprM | Aminoglycosides, cefepime, fluoroquinolones, tetracyclines and macrolides [53,59,69]. |
MexCD-OprJ | Fluoroquinolones, penems, and cefepime [59,61,62], carbanecillin, piperacillin, ceftolozane/tazobactam, and ceftazidime/avibactam c [63,64]. |
MexEF-OprN | Chloramphenicol, fluoroquinolones, trimethoprim, colistin, and imipenem d [65,66,67,68]. |
P. aeruginosa | Blood Culture | |
---|---|---|
Antibiotic | MIC | SIR * |
Aztreonam | >16 | R |
Amikacin | ≤8.0 | S |
Tobramycin | ≤2 | S |
Cefepime | =8 | I |
Ceftazidime | =8 | I |
Ceftazidime/Avibactam | =4.0 | S |
Ceftolozane/Tazobactam | =1.0 | S |
Ciprofloxacin | =0.125 | I |
Colistin | =1.0 | S |
Imipenem | ≤1 | I |
Meropenem | =4 | I |
Piperacillin/Tazobactam | =64 | R |
P. aeruginosa | Blood Culture | |
---|---|---|
Antibiotic | MIC | SIR * |
Aztreonam | ≤8 | S |
Amikacin | >16 | R |
Tobramycin | >2 | R |
Cefepime | 16 | R |
Ceftazidime | ≤2 | I |
Ceftazidime/Avibactam | ≤2.0 | S |
Ceftolozane/Tazobactam | ≤1.0 | S |
Ciprofloxacin | >0.5 | R |
Levofloxacin | >2 | R |
Colistin | >4 | R |
Imipenem | ≤1 | I |
Meropenem | ≤0.125 | S |
Piperacillin/Tazobactam | 8 | I |
3.3. Penicillin-Binding Protein Mutations
3.4. Antibiotic Inactivating Enzymes
3.4.1. β-Lactamases
3.4.2. Class A β-Lactamases
3.4.3. Class B β-Lactamases
3.4.4. Class C β-Lactamases
3.4.5. Class D β-Lactamases
3.5. Interference with Antibacterial Agents
3.6. Fosfomycin Resistance Mechanisms
4. New Treatment Options
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Lewenza, S.; Abboud, J.; Poon, K.; Kobryn, M.; Humplik, I.; Bell, J.R.; Mardan, L.; Reckseidler-Zenteno, S. Pseudomonas aeruginosa Displays a Dormancy Phenotype during Long-Term Survival in Water. PLoS ONE 2018, 13, e0198384. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, C.F.; Moore, G.; Thompson, K.A.; Webb, J.; Walker, J.T. Contamination of Hospital Tap Water: The Survival and Persistence of Pseudomonas aeruginosa on Conventional and “antimicrobial” Outlet Fittings. J. Hosp. Infect. 2017, 97, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Lanini, S.; D’Arezzo, S.; Puro, V.; Martini, L.; Imperi, F.; Piselli, P.; Montanaro, M.; Paoletti, S.; Visca, P.; Ippolito, G. Molecular Epidemiology of a Pseudomonas aeruginosa Hospital Outbreak Driven by a Contaminated Disinfectant-Soap Dispenser. PLoS ONE 2011, 6, e17064. [Google Scholar] [CrossRef]
- Kelsey, M. Pseudomonas in Augmented Care: Should We Worry? J. Antimicrob. Chemother. 2013, 68, 2697–2700. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.; Lieberman, D. Pseudomonal Infections in Patients with COPD: Epidemiology and Management. Am. J. Respir. Med. 2003, 2, 459–468. [Google Scholar] [CrossRef]
- Davies, J.C. Pseudomonas aeruginosa in Cystic Fibrosis: Pathogenesis and Persistence. Paediatr. Respir. Rev. 2002, 3, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Holder, I.A.P. aeruginosa Burn Infections: Pathogenesis and Treatment. In Pseudomonas aeruginosa as an Opportunistic Pathogen; Springer: Berlin/Heidelberg, Germany, 1993; pp. 275–295. [Google Scholar] [CrossRef]
- Ramírez-Estrada, S.; Borgatta, B.; Rello, J. Pseudomonas aeruginosa Ventilator-Associated Pneumonia Management. Infect. Drug Resist. 2016, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Jiang, Y.Z.; Hsu, C.M.; Chen, L.W. Pseudomonas aeruginosa Ventilator-Associated Pneumonia Induces Lung Injury through TNF-α/c-Jun NH2-Terminal Kinase Pathways. PLoS ONE 2017, 12, e0169267. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Gotoh, N.; Nishino, T. Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay. Antimicrob. Agents Chemother. 2001, 45, 1964. [Google Scholar] [CrossRef]
- Poole, K. Pseudomonas aeruginosa: Resistance to the Max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef] [PubMed]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas Aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell Infect. Microbiol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Angus, B.L.; Carey, A.M.; Caron, D.A.; Kropinski, A.M.; Hancock, R.E. Outer Membrane Permeability in Pseudomonas aeruginosa: Comparison of a Wild-Type with an Antibiotic-Supersusceptible Mutant. Antimicrob. Agents Chemother. 1982, 21, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Bottone, E.J. Pseudomonas aeruginosa Enzyme Profiling: Predictor of Potential Invasiveness and Use as an Epidemiological Tool. J. Clin. Microbiol. 1981, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, J.; Bu, T.; Li, Y.; Ye, X.; Chen, X.; Yao, Z. Alarming and Increasing Prevalence of Multidrug-Resistant Pseudomonas aeruginosa among Healthcare-Associated Infections in China: A Meta-Analysis of Cross-Sectional Studies. J. Glob. Antimicrob. Resist. 2015, 3, 155–160. [Google Scholar] [CrossRef]
- Yang, A.F.; Huang, V.; Samaroo-Campbell, J.; Augenbraun, M. Multi-Drug Resistant Pseudomonas Aeruginosa: A 2019–2020 Single Center Retrospective Case Control Study. Infect. Prev. Pract. 2023, 5, 100296. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Antimicrobial Resistance Surveillance in Europe; ECDC: Solna, Sweden, 2022.
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global Epidemiology and Clinical Outcomes of Carbapenem-Resistant Pseudomonas aeruginosa and Associated Carbapenemases (POP): A Prospective Cohort Study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and Novel Approaches to Treatment “Knowing the Enemy” the Threat of Pseudomonas aeruginosa and Exploring Novel Approaches to Treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef]
- Duplantier, M.; Lohou, E.; Sonnet, P. Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals 2021, 14, 1262. [Google Scholar] [CrossRef] [PubMed]
- Salomoni, R.; Léo, P.; Montemor, A.F.; Rinaldi, B.G.; Rodrigues, M.F.A. Antibacterial Effect of Silver Nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Köhler, T.; Luscher, A.; Falconnet, L.; Resch, G.; McBride, R.; Mai, Q.A.; Simonin, J.L.; Chanson, M.; Maco, B.; Galiotto, R.; et al. Personalized Aerosolised Bacteriophage Treatment of a Chronic Lung Infection Due to Multidrug-Resistant Pseudomonas aeruginosa. Nat. Commun. 2023, 14, 3629. [Google Scholar] [CrossRef]
- Vaitekenas, A.; Tai, A.S.; Ramsay, J.P.; Stick, S.M.; Kicic, A. Pseudomonas aeruginosa Resistance to Bacteriophages and Its Prevention by Strategic Therapeutic Cocktail Formulation. Antibiotics 2021, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Losito, A.R.; Raffaelli, F.; Del Giacomo, P.; Tumbarello, M. New Drugs for the Treatment of Pseudomonas aeruginosa Infections with Limited Treatment Options: A Narrative Review. Antibiotics 2022, 11, 579. [Google Scholar] [CrossRef] [PubMed]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661. [Google Scholar] [CrossRef]
- Marino, A.; Stracquadanio, S.; Campanella, E.; Munafò, A.; Gussio, M.; Ceccarelli, M.; Bernardini, R.; Nunnari, G.; Cacopardo, B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics 2022, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Ayoub Moubareck, C.; Hammoudi Halat, D.; Akkawi, C.; Nabi, A.; AlSharhan, M.A.; AlDeesi, Z.O.; Peters, C.C.; Celiloglu, H.; Karam Sarkis, D. Role of Outer Membrane Permeability, Efflux Mechanism, and Carbapenemases in Carbapenem-Nonsusceptible Pseudomonas aeruginosa from Dubai Hospitals: Results of the First Cross-Sectional Survey. Int. J. Infect. Dis. 2019, 84, 143–150. [Google Scholar] [CrossRef]
- Bellido, F.; Martin, N.L.; Siehnel, R.J.; Hancock, R.E. Reevaluation, Using Intact Cells, of the Exclusion Limit and Role of Porin OprF in Pseudomonas aeruginosa Outer Membrane Permeability. J. Bacteriol. 1992, 174, 5196–5203. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Brinkman, F.S.L. Function of Pseudomonas Porins in Uptake and Efflux. Annu. Rev. Microbiol. 2002, 56, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, E.; Nestorovich, E.M.; Bezrukov, S.M.; Nikaido, H. Pseudomonas aeruginosa Porin OprF Exists in Two Different Conformations. J. Biol. Chem. 2006, 281, 16220–16229. [Google Scholar] [CrossRef] [PubMed]
- Bouffartigues, E.; Moscoso, J.A.; Duchesne, R.; Rosay, T.; Fito-Boncompte, L.; Gicquel, G.; Maillot, O.; Bénard, M.; Bazire, A.; Brenner-Weiss, G.; et al. The Absence of the Pseudomonas aeruginosa OprF Protein Leads to Increased Biofilm Formation through Variation in C-Di-GMP Level. Front. Microbiol. 2015, 6, 630. [Google Scholar] [CrossRef]
- Stewart, P.S.; William Costerton, J. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, Y.-F.; Williams, B.J.; Blackwell, T.S.; Xie, C.-M. Structure and Function of OprD Protein in Pseudomonas aeruginosa: From Antibiotic Resistance to Novel Therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhang, L.; Huang, Y.; Qing, Y.; Cao, K.; Tian, G.; Huang, X. OprD Mutations and Inactivation in Imipenem-Resistant Pseudomonas aeruginosa Isolates from China. Infect. Genet. Evol. 2014, 21, 124–128. [Google Scholar] [CrossRef]
- Biggel, M.; Johler, S.; Roloff, T.; Tschudin-Sutter, S.; Bassetti, S.; Siegemund, M.; Egli, A.; Stephan, R.; Seth-Smith, H.M.B. PorinPredict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance. Microbiol. Spectr. 2023, 11, e03588-22. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2018, 62, 01454-17. [Google Scholar] [CrossRef]
- Bell, A.; Bains, M.; Hancock, R.E. Pseudomonas aeruginosa Outer Membrane Protein OprH: Expression from the Cloned Gene and Function in EDTA and Gentamicin Resistance. J. Bacteriol. 1991, 173, 6657–6664. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, E.L.A.; Kwasnicka, A.; Ochs, M.M.; Hancock, R.E.W. PhoP-PhoQ Homologues in Pseudomonas aeruginosa Regulate Expression of the Outer-Membrane Protein OprH and Polymyxin B Resistance. Mol. Microbiol. 1999, 34, 305–316. [Google Scholar] [CrossRef]
- European Committee. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 13.0; EUCAST: Copenhagen, Denmark, 2022.
- Piddock, L.J.V. Multidrug-Resistance Efflux Pumps? Not Just for Resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Deng, Z.; Yan, A. Bacterial Multidrug Efflux Pumps: Mechanisms, Physiology and Pharmacological Exploitations. Biochem. Biophys. Res. Commun. 2014, 453, 254–267. [Google Scholar] [CrossRef]
- Hassan, K.A.; Liu, Q.; Elbourne, L.D.H.; Ahmad, I.; Sharples, D.; Naidu, V.; Chan, C.L.; Li, L.; Harborne, S.P.D.; Pokhrel, A.; et al. Pacing across the Membrane: The Novel PACE Family of Efflux Pumps Is Widespread in Gram-Negative Pathogens. Res. Microbiol. 2018, 169, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef]
- Valot, B.; Guyeux, C.; Rolland, J.Y.; Mazouzi, K.; Bertrand, X.; Hocquet, D. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLoS ONE 2015, 10, e0126468. [Google Scholar] [CrossRef] [PubMed]
- Daury, L.; Orange, F.; Taveau, J.-C.; Verchère, A.; Monlezun, L.; Gounou, C.; Marreddy, R.K.R.; Picard, M.; Broutin, I.; Pos, K.M.; et al. Tripartite Assembly of RND Multidrug Efflux Pumps. Nat. Commun. 2016, 7, 10731. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Choudhury, D.; Das Talukdar, A.; Choudhury, M.D.; Maurya, A.P.; Paul, D.; Chanda, D.D.; Chakravorty, A.; Bhattacharjee, A. Transcriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India. PLoS One 2015, 10, e0133842. [Google Scholar] [CrossRef] [PubMed]
- Zahedi bialvaei, A.; Rahbar, M.; Hamidi-Farahani, R.; Asgari, A.; Esmailkhani, A.; Mardani dashti, Y.; Soleiman-Meigooni, S. Expression of RND Efflux Pumps Mediated Antibiotic Resistance in Pseudomonas aeruginosa Clinical Strains. Microb. Pathog. 2021, 153, 104789. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The Increasing Threat of Pseudomonas aeruginosa High-Risk Clones. Drug Resist. Updates 2015, 21–22, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, M.; Tazrout, S.; Bour, M.; Triponey, P.; Muller, C.; Jeannot, K.; Plésiat, P. Reassessment of the Cooperativity between Efflux System MexAB-OprM and Cephalosporinase AmpC in the Resistance of Pseudomonas aeruginosa to β-Lactams. J. Antimicrob. Chemother. 2021, 76, 536–539. [Google Scholar] [CrossRef]
- Mine, T.; Morita, Y.; Kataoka, A.; Mizushima, T.; Tsuchiya, T. Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1999, 43, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Westbrock-Wadman, S.; Sherman, D.R.; Hickey, M.J.; Coulter, S.N.; Zhu, Y.Q.; Warrener, P.; Nguyen, L.Y.; Shawar, R.M.; Folger, K.R.; Stover, C.K. Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability. Antimicrob. Agents Chemother. 1999, 43, 2975–2983. [Google Scholar] [CrossRef]
- Seupt, A.; Schniederjans, M.; Tomasch, J.; Häussler, S. Expression of the MexXY Aminoglycoside Efflux Pump and Presence of an Aminoglycoside-Modifying Enzyme in Clinical Pseudomonas aeruginosa Isolates Are Highly Correlated. Antimicrob. Agents Chemother. 2020, 65, 01166-20. [Google Scholar] [CrossRef]
- Vettoretti, L.; Plésiat, P.; Muller, C.; El Garch, F.; Phan, G.; Attrée, I.; Ducruix, A.; Llanes, C. Efflux Unbalance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Antimicrob. Agents Chemother. 2009, 53, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, K.; Osawa, K.; Kato, A.; Tokimatsu, I.; Arakawa, S.; Shirakawa, T.; Fujisawa, M. Association of Overexpression of Efflux Pump Genes with Antibiotic Resistance in Pseudomonas aeruginosa Strains Clinically Isolated from Urinary Tract Infection Patients. J. Antibiot. 2015, 68, 568–572. [Google Scholar] [CrossRef]
- Poole, K.; Gotoh, N.; Tsujimoto, H.; Zhao, Q.; Wada, A.; Yamasaki, T.; Neshat, S.; Yamagishi, J.; Li, X.-Z.; Nishino, T. Overexpression of the MexC-MexD-OprJ Efflux Operon in NfxB-Type Multidrug-Resistant Strains of Pseudomonas aeruginosa. Mol. Microbiol. 1996, 21, 713–725. [Google Scholar] [CrossRef]
- Masuda, N.; Gotoh, N.; Ohya, S.; Nishino, T. Quantitative Correlation between Susceptibility and OprJ Production in NfxB Mutants of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1996, 40, 909–913. [Google Scholar] [CrossRef]
- Mao, W.; Warren, M.S.; Black, D.S.; Satou, T.; Murata, T.; Nishino, T.; Gotoh, N.; Lomovskaya, O. On the Mechanism of Substrate Specificity by Resistance Nodulation Division (RND)-Type Multidrug Resistance Pumps: The Large Periplasmic Loops of MexD from Pseudomonas aeruginosa Are Involved in Substrate Recognition. Mol. Microbiol. 2002, 46, 889–901. [Google Scholar] [CrossRef]
- Gomis-Font, M.A.; Pitart, C.; del Barrio-Tofiño, E.; Zboromyrska, Y.; Cortes-Lara, S.; Mulet, X.; Marco, F.; Vila, J.; López-Causapé, C.; Oliver, A. Emergence of Resistance to Novel Cephalosporin–β-Lactamase Inhibitor Combinations through the Modification of the Pseudomonas aeruginosa MexCD-OprJ Efflux Pump. Antimicrob. Agents Chemother. 2021, 65, 00089-21. [Google Scholar] [CrossRef]
- Ko¨hler, T.; Michéa-Hamzehpour, M.; Henze, U.; Gotoh, N.; Kocjancic Curty, L.; Pechère, J. Characterization of MexE–MexF–OprN, a Positively Regulated Multidrug Efflux System of Pseudomonas aeruginosa. Mol. Microbiol. 1997, 23, 345–354. [Google Scholar] [CrossRef]
- Horna, G.; López, M.; Guerra, H.; Saénz, Y.; Ruiz, J. Interplay between MexAB-OprM and MexEF-OprN in Clinical Isolates of Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 16463. [Google Scholar] [CrossRef]
- Sherrard, L.J.; Wee, B.A.; Duplancic, C.; Ramsay, K.A.; Dave, K.A.; Ballard, E.; Wainwright, C.E.; Grimwood, K.; Sidjabat, H.E.; Whiley, D.M.; et al. Emergence and Impact of OprD Mutations in Pseudomonas aeruginosa Strains in Cystic Fibrosis. J. Cyst. Fibros. 2022, 21, e35–e43. [Google Scholar] [CrossRef]
- Mlynarcik, P.; Kolar, M. Molecular Mechanisms of Polymyxin Resistance and Detection of Mcr Genes. Biomed. Pap. 2019, 163, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Monogue, M. SIDP Breakpoints Podcast Episode #59 Resistance in Pseudomonas aeruginosa. In Proceedings of the SIDP Pseudomonas aeruginosa Resistance to Beta-Lactams; Oliver, A., Monogue, M., Eds.; Audacy: Philadelphia, CA, USA, 2022. [Google Scholar]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the Regulation of Peptidoglycan Synthesis to Bacterial Growth and Morphology. Nat. Rev. Microbiol. 2012, 10, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The Penicillin-Binding Proteins: Structure and Role in Peptidoglycan Biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Tascini, C.; Viaggi, B. La Diagnostica Molecolare Sindromica e Convenzionale Come Strumento Clinico per La Scelta Della Terapia Antibiotica Nelle Infezioni Da Gram-Negativi MDR; BioMérieux: Marcy-l’Étoile, France, 2022. [Google Scholar]
- Moyá, B.; Beceiro, A.; Cabot, G.; Juan, C.; Zamorano, L.; Alberti, S.; Oliver, A. Pan-β-Lactam Resistance Development in Pseudomonas aeruginosa Clinical Strains: Molecular Mechanisms, Penicillin-Binding Protein Profiles, and Binding Affinities. Antimicrob. Agents Chemother. 2012, 56, 4771–4778. [Google Scholar] [CrossRef]
- Smith, J.D.; Kumarasiri, M.; Zhang, W.; Hesek, D.; Lee, M.; Toth, M.; Vakulenko, S.; Fisher, J.F.; Mobashery, S.; Chen, Y. Structural Analysis of the Role of Pseudomonas aeruginosa Penicillin-Binding Protein 5 in β-Lactam Resistance. Antimicrob. Agents Chemother. 2013, 57, 3137–3146. [Google Scholar] [CrossRef]
- Moya, B.; Dötsch, A.; Juan, C.; Blázquez, J.; Zamorano, L.; Haussler, S.; Oliver, A. β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein. PLoS Pathog. 2009, 5, e1000353. [Google Scholar] [CrossRef] [PubMed]
- Ropy, A.; Cabot, G.; Sánchez-Diener, I.; Aguilera, C.; Moya, B.; Ayala, J.A.; Oliver, A. Role of Pseudomonas aeruginosa Low-Molecular-Mass Penicillin-Binding Proteins in AmpC Expression, β-Lactam Resistance, and Peptidoglycan Structure. Antimicrob. Agents Chemother. 2015, 59, 3925–3934. [Google Scholar] [CrossRef] [PubMed]
- Ealand, C.S.; Machowski, E.E.; Kana, B.D. Β-lactam Resistance: The Role of Low Molecular Weight Penicillin Binding Proteins, Β-lactamases and LD-transpeptidases in Bacteria Associated with Respiratory Tract Infections. IUBMB Life 2018, 70, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Glen, K.A.; Lamont, I.L. β-Lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021, 10, 1638. [Google Scholar] [CrossRef]
- Colombo, F.; Waheed, A.; Panese, S.; Scarparo, C.; Solinas, M.; Parisi, S.G.; Geremia, N. Treatment with Cefiderocol in K. Pneumoniae KPC Nosocomial External Ventricular Drainage Meningitis: A Brief Report. Infez. Med. 2022, 30, 454. [Google Scholar] [CrossRef]
- Weldhagen, G.F. Integrons and β-Lactamases—A Novel Perspective on Resistance. Int. J. Antimicrob. Agents 2004, 23, 556–562. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, 00115-20. [Google Scholar] [CrossRef]
- Soriano, A.; Mensa, J. Mechanism of Action of Cefiderocol. Rev. Española Quimioter. 2022, 35, 16–19. [Google Scholar] [CrossRef]
- Dehbashi, S.; Tahmasebi, H.; Alikhani, M.Y.; Keramat, F.; Arabestani, M.R. Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infect. Drug Resist. 2020, 13, 2037–2052. [Google Scholar] [CrossRef] [PubMed]
- Danel, F.; Hall, L.M.C.; Gur, D.; Akalin, H.E.; Livermore, D.M. Transferable Production of PER-1 β-Lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1995, 35, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Polotto, M.; Casella, T.; de Lucca Oliveira, M.G.; Rúbio, F.G.; Nogueira, M.L.; de Almeida, M.T.; Nogueira, M.C. Detection of P. aeruginosa Harboring Bla CTX-M-2, Bla GES-1 and Bla GES-5, Bla IMP-1 and Bla SPM-1causing Infections in Brazilian Tertiary-Care Hospital. BMC Infect. Dis. 2012, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Cao, K.-Y.; Fang, Z.-L.; Huang, Y.-M.; Zhang, X.-F.; Tian, G.-B.; Huang, X. Outbreak of PER-1 and Diversity of β-Lactamases among Ceftazidime-Resistant Pseudomonas aeruginosa Clinical Isolates. J. Med. Microbiol. 2014, 63, 386–392. [Google Scholar] [CrossRef]
- Haghighi, S.; Reza Goli, H. High Prevalence of BlaVEB, BlaGES and BlaPER Genes in Beta-Lactam Resistant Clinical Isolates of Pseudomonas aeruginosa. AIMS Microbiol. 2022, 8, 153–166. [Google Scholar] [CrossRef]
- Poirel, L.; Brinas, L.; Verlinde, A.; Ide, L.; Nordmann, P. BEL-1, a Novel Clavulanic Acid-Inhibited Extended-Spectrum β-Lactamase, and the Class 1 Integron In120 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 3743–3748. [Google Scholar] [CrossRef]
- Schauer, J.; Gatermann, S.G.; Hoffmann, D.; Hupfeld, L.; Pfennigwerth, N. GPC-1, a Novel Class A Carbapenemase Detected in a Clinical Pseudomonas aeruginosa Isolate. J. Antimicrob. Chemother. 2020, 75, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Bălăşoiu, M.; Bălăşoiu, A.T.; Mănescu, R.; Avramescu, C.; Ionete, O. Pseudomonas aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods. Curr. Health Sci. J. 2014, 40, 85. [Google Scholar] [PubMed]
- Ortiz de la Rosa, J.-M.; Nordmann, P.; Poirel, L. ESBLs and Resistance to Ceftazidime/Avibactam and Ceftolozane/Tazobactam Combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef]
- Sahni, R.; Mathai, D.; Sudarsanam, T.; Balaji, V.; Brahamadathan, K.; Jesudasan, M.; Lalitha, M. Extended-Spectrum Beta-Lactamase Producers: Detection for the Diagnostic Laboratory. J. Glob. Infect. Dis. 2018, 10, 140. [Google Scholar] [CrossRef]
- Frase, H.; Shi, Q.; Testero, S.A.; Mobashery, S.; Vakulenko, S.B. Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of β-Lactamases. J. Biol. Chem. 2009, 284, 29509–29513. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Nicolau, D.P.; Aktas, E.; Alfouzan, W.; Bourassa, L.; Brink, A.; Burnham, C.-A.D.; Canton, R.; Carmeli, Y.; Falcone, M.; et al. Phenotypic and Genotypic Profile of Ceftolozane/Tazobactam-Non-Susceptible, Carbapenem-Resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2023, 78, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Villegas, M.V.; Lolans, K.; Correa, A.; Kattan, J.N.; Lopez, J.A.; Quinn, J.P. First Identification of Pseudomonas aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing β-Lactamase. Antimicrob. Agents Chemother. 2007, 51, 1553–1555. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, J.B.; Pfennigwerth, N.; Gatermann, S.G.; von Baum, H.; Essig, A. KPC-2 Carbapenemase-Producing Pseudomonas aeruginosa Reaching Germany. J. Antimicrob. Chemother. 2018, 73, 1812–1814. [Google Scholar] [CrossRef]
- Pasteran, F.; Mendez, T.; Guerriero, L.; Rapoport, M.; Corso, A. Sensitive Screening Tests for Suspected Class A Carbapenemase Production in Species of Enterobacteriaceae. J. Clin. Microbiol. 2009, 47, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Gill, C.M.; Asempa, T.E.; Tickler, I.A.; dela Cruz, C.; Tenover, F.C.; Nicolau, D.P. Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2020, 58, 01098-20. [Google Scholar] [CrossRef]
- Kabir, M.H.; Meunier, D.; Hopkins, K.L.; Giske, C.G.; Woodford, N. A Two-Centre Evaluation of RAPIDEC ® CARBA NP for Carbapenemase Detection in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. J. Antimicrob. Chemother. 2016, 71, 1213–1216. [Google Scholar] [CrossRef]
- Fajardo, A.; Hernando-Amado, S.; Oliver, A.; Ball, G.; Filloux, A.; Martinez, J.L. Characterization of a Novel Zn2+-Dependent Intrinsic Imipenemase from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2014, 69, 2972–2978. [Google Scholar] [CrossRef]
- del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa Epidemic High-Risk Clones and Their Association with Horizontally-Acquired β-Lactamases: 2020 Update. Int. J. Antimicrob. Agents 2020, 56, 106196. [Google Scholar] [CrossRef]
- Forero-Hurtado, D.; Corredor-Rozo, Z.L.; Ruiz-Castellanos, J.S.; Márquez-Ortiz, R.A.; Abril, D.; Vanegas, N.; Lafaurie, G.I.; Chambrone, L.; Escobar-Pérez, J. Worldwide Dissemination of BlaKPC Gene by Novel Mobilization Platforms in Pseudomonas aeruginosa: A Systematic Review. Antibiotics 2023, 12, 658. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Jeong, S.H. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 614058. [Google Scholar] [CrossRef]
- Frère, J.-M.; Galleni, M.; Bush, K.; Dideberg, O. Is It Necessary to Change the Classification of β-Lactamases? J. Antimicrob. Chemother. 2005, 55, 1051–1053. [Google Scholar] [CrossRef]
- Palzkill, T. Metallo-β-lactamase Structure and Function. Ann. N. Y. Acad. Sci. 2013, 1277, 91–104. [Google Scholar] [CrossRef]
- Miriagou, V.; Cornaglia, G.; Edelstein, M.; Galani, I.; Giske, C.G.; Gniadkowski, M.; Malamou-Lada, E.; Martinez-Martinez, L.; Navarro, F.; Nordmann, P.; et al. Acquired Carbapenemases in Gram-Negative Bacterial Pathogens: Detection and Surveillance Issues. Clin. Microbiol. Infect. 2010, 16, 112–122. [Google Scholar] [CrossRef]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-β-Lactamases: The Quiet before the Storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Wise, M.G.; Hackel, M.A.; Sahm, D.F.; Yamano, Y. In Vitro Activity of Cefiderocol against MBL-Producing Gram-Negative Bacteria Collected in North America and Europe in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies (2014–2019). J. Antimicrob. Chemother. 2023, 78, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Paul, M.; Shields, R.K.; Echols, R.; Baba, T.; Yamano, Y.; Portsmouth, S. Cefiderocol for the Treatment of Infections Due to Metallo-B-Lactamase–Producing Pathogens in the CREDIBLE-CR and APEKS-NP Phase 3 Randomized Studies. Clin. Infect. Dis. 2022, 75, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, P.; Huang, Z.; Yan, H.; Wu, A.H.; Zhang, G.; Mao, Q. Study on drug resistance of Pseudomonas aeruginosa plasmid-mediated AmpC β-lactamase. Mol. Med. Rep. 2013, 7, 664–668. [Google Scholar] [CrossRef]
- Livermore, D.M. Clinical Significance of Beta-Lactamase Induction and Stable Derepression in Gram-Negative Rods. Eur. J. Clin. Microbiol. 1987, 6, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Drawz, S.M.; Bonomo, R.A. Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef]
- Rafiee, R.; Eftekhar, F.; Tabatabaei, S.A.; Minaee Tehrani, D. Prevalence of Extended-Spectrum and Metallo β-Lactamase Production in AmpC β-Lactamase Producing Pseudomonas aeruginosa Isolates from Burns. Jundishapur J. Microbiol. 2014, 7, e16436. [Google Scholar] [CrossRef]
- Zamorano, L.; Moyà, B.; Juan, C.; Mulet, X.; Blázquez, J.; Oliver, A. The Pseudomonas aeruginosa CreBC Two-Component System Plays a Major Role in the Response to β-Lactams, Fitness, Biofilm Growth, and Global Regulation. Antimicrob. Agents Chemother. 2014, 58, 5084–5095. [Google Scholar] [CrossRef]
- Bagge, N.; Ciofu, O.; Hentzer, M.; Campbell, J.I.A.; Givskov, M.; Høiby, N. Constitutive High Expression of Chromosomal β-Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS 1669) Located in AmpD. Antimicrob. Agents Chemother. 2002, 46, 3406–3411. [Google Scholar] [CrossRef]
- Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, V.Y.; Broutin, I.; Loeffert, S.; Fournier, D.; Plésiat, P. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob. Agents Chemother. 2015, 59, 6248–6255. [Google Scholar] [CrossRef] [PubMed]
- Fraile-Ribot, P.A.; Zamorano, L.; Orellana, R.; del Barrio-Tofiño, E.; Sánchez-Diener, I.; Cortes-Lara, S.; López-Causapé, C.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; et al. Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrob. Agents Chemother. 2020, 64, 02165-19. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Beisken, S.; Bergman, Y.; Posch, A.E.; Cosgrove, S.E.; Tamma, P.D. Cefiderocol Activity Against Clinical Pseudomonas aeruginosa Isolates Exhibiting Ceftolozane-Tazobactam Resistance. Open Forum. Infect. Dis. 2021, 8, ofab311. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, J.-M.; Poirel, L.; Nordmann, P. Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, J.-P.; Mobashery, S. Critical Involvement of a Carbamylated Lysine in Catalytic Function of Class D β-Lactamases. Proc. Natl. Acad. Sci. USA 2001, 98, 14280–14285. [Google Scholar] [CrossRef]
- Evans, B.A.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef]
- Antunes, N.; Fisher, J. Acquired Class D β-Lactamases. Antibiotics 2014, 3, 398–434. [Google Scholar] [CrossRef]
- Poirel, L.; Cabanne, L.; Collet, L.; Nordmann, P. Class II Transposon-Borne Structure Harboring Metallo-β-Lactamase Gene Bla VIM-2 in Pseudomonas Putida. Antimicrob. Agents Chemother. 2006, 50, 2889–2891. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef]
- Aubert, D.; Poirel, L.; Chevalier, J.; Leotard, S.; Pages, J.-M.; Nordmann, P. Oxacillinase-Mediated Resistance to Cefepime and Susceptibility to Ceftazidime in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2001, 45, 1615–1620. [Google Scholar] [CrossRef]
- Girlich, D.; Naas, T.; Nordmann, P. Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2004, 48, 2043–2048. [Google Scholar] [CrossRef]
- Fraile-Ribot, P.A.; Mulet, X.; Cabot, G.; del Barrio-Tofiño, E.; Juan, C.; Pérez, J.L.; Oliver, A. In Vivo Emergence of Resistance to Novel Cephalosporin–β-Lactamase Inhibitor Combinations through the Duplication of Amino Acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, 01117-17. [Google Scholar] [CrossRef] [PubMed]
- Saki, M.; Farajzadeh Sheikh, A.; Seyed-Mohammadi, S.; Asareh Zadegan Dezfuli, A.; Shahin, M.; Tabasi, M.; Veisi, H.; Keshavarzi, R.; Khani, P. Occurrence of Plasmid-Mediated Quinolone Resistance Genes in Pseudomonas aeruginosa Strains Isolated from Clinical Specimens in Southwest Iran: A Multicentral Study. Sci. Rep. 2022, 12, 2296. [Google Scholar] [CrossRef] [PubMed]
- Cayci, Y.T.; Coban, A.; Gunaydin, M. Investigation of Plasmid-Mediated Quinolone Resistance in Pseudomonas aeruginosa Clinical Isolates. Indian J. Med. Microbiol. 2014, 32, 285–289. [Google Scholar] [CrossRef]
- Díez-Aguilar, M.; Cantón, R. New Microbiological Aspects of Fosfomycin. Rev. Española Quimioter. 2019, 32, 8. [Google Scholar]
- Kadner, R.J.; Winkler, H.H. Isolation and Characterization of Mutations Affecting the Transport of Hexose Phosphates in Escherichia coli. J. Bacteriol. 1973, 113, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Argast, M.; Ludtke, D.; Silhavy, T.J.; Boos, W. A Second Transport System for Sn-Glycerol-3-Phosphate in Escherichia coli. J. Bacteriol. 1978, 136, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Antimicrobial Agents Targeting Bacterial Cell Walls and Cell Membranes. Rev. Sci. Et. Tech. L’oie 2012, 31, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.E.; Fox, K.; Oh, G.; Morthland, V.H. β-Lactam Enhancement of Aminoglycoside Activity under Conditions of Reduced PH and Oxygen Tension That May Exist in Infected Tissues. J. Infect. Dis. 1992, 165, 676–682. [Google Scholar] [CrossRef]
- Morrissey, I.; Smith, J.T. The Importance of Oxygen in the Killing of Bacteria by Ofloxacin and Ciprofloxacin. Microbios 1994, 79, 43–53. [Google Scholar]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How Antibiotics Kill Bacteria: From Targets to Networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Watanabe, T.; Tsuruoka, T.; Kitasato, I. An Increase in the Antimicrobial Activity In Vitro of Fosfomycin under Anaerobic Conditions. J. Antimicrob. Chemother. 1989, 24, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Rigsby, R.E.; Rife, C.L.; Fillgrove, K.L.; Newcomer, M.E.; Armstrong, R.N. Phosphonoformate: A Minimal Transition State Analogue Inhibitor of the Fosfomycin Resistance Protein, FosA. Biochemistry 2004, 43, 13666–13673. [Google Scholar] [CrossRef]
- Rigsby, R.E.; Fillgrove, K.L.; Beihoffer, L.A.; Armstrong, R.N. Fosfomycin Resistance Proteins: A Nexus of Glutathione Transferases and Epoxide Hydrolases in a Metalloenzyme Superfamily. Methods Enzymol. 2005, 401, 367–379. [Google Scholar]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete Genome Sequence of Pseudomonas aeruginosa PAO1, an Opportunistic Pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Castaneda-García, A.; Rodríguez-Rojas, A.; Guelfo, J.R.; Blázquez, J. The Glycerol-3-Phosphate Permease GlpT Is the Only Fosfomycin Transporter in Pseudomonas aeruginosa. J. Bacteriol. 2009, 191, 6968–6974. [Google Scholar] [CrossRef]
- Worlitzsch, D.; Tarran, R.; Ulrich, M.; Schwab, U.; Cekici, A.; Meyer, K.C.; Birrer, P.; Bellon, G.; Berger, J.; Weiss, T.; et al. Effects of Reduced Mucus Oxygen Concentration in Airway Pseudomonas Infections of Cystic Fibrosis Patients. J. Clin. Investig. 2002, 109, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.S.; Hennigan, R.F.; Hilliard, G.M.; Ochsner, U.A.; Parvatiyar, K.; Kamani, M.C.; Allen, H.L.; DeKievit, T.R.; Gardner, P.R.; Schwab, U.; et al. Pseudomonas aeruginosa Anaerobic Respiration in Biofilms. Dev. Cell 2002, 3, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Kurabayashi, K.; Tanimoto, K.; Tomita, H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of GlpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front. Microbiol. 2018, 9, 1950. [Google Scholar] [CrossRef] [PubMed]
- Grabein, B.; Graninger, W.; Rodríguez Baño, J.; Dinh, A.; Liesenfeld, D.B. Intravenous Fosfomycin—Back to the Future. Systematic Review and Meta-Analysis of the Clinical Literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella Pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, 00779-19. [Google Scholar] [CrossRef]
- Cassir, N.; Rolain, J.-M.; Brouqui, P. A New Strategy to Fight Antimicrobial Resistance: The Revival of Old Antibiotics. Front. Microbiol. 2014, 5, 551. [Google Scholar] [CrossRef]
- Gribble, M.J.; Chow, A.W.; Naiman, S.C.; Smith, J.A.; Bowie, W.R.; Sacks, S.L.; Grossman, L.; Buskard, N.; Growe, G.H.; Plenderleith, L.H. Prospective Randomized Trial of Piperacillin Monotherapy versus Carboxypenicillin-Aminoglycoside Combination Regimens in the Empirical Treatment of Serious Bacterial Infections. Antimicrob. Agents Chemother. 1983, 24, 388. [Google Scholar] [CrossRef]
- Landman, D.; Bratu, S.; Kochar, S.; Panwar, M.; Trehan, M.; Doymaz, M.; Quale, J. Evolution of Antimicrobial Resistance among Pseudomonas aeruginosa, Acinetobacter Baumannii and Klebsiella Pneumoniae in Brooklyn, NY. J. Antimicrob. Chemother. 2007, 60, 78–82. [Google Scholar] [CrossRef]
- Burgess, D.S.; Nathisuwan, S. Cefepime, Piperacillin/Tazobactam, Gentamicin, Ciprofloxacin, and Levofloxacin Alone and in Combination against Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 2002, 44, 35–41. [Google Scholar] [CrossRef]
- Paul, M.; Leibovici, L.; Maki, D.G.; Safdar, N. Combination Antibiotic Therapy for Pseudomonas aeruginosa Bacteraemia. Lancet Infect. Dis. 2005, 5, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.D. Bactericidal Synergism between Beta-Lactams and Aminoglycosides: Mechanism and Possible Therapeutic Implications. Rev. Infect. Dis. 1982, 4, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Breidenstein, E.B.M.; de la Fuente-Núñez, C.; Hancock, R.E.W. Pseudomonas aeruginosa: All Roads Lead to Resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Cluck, D.; Lewis, P.; Stayer, B.; Spivey, J.; Moorman, J. Ceftolozane-Tazobactam: A New-Generation Cephalosporin. Am. J. Health Syst. Pharm. 2015, 72, 2135–2146. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Falcone, M.; Tiseo, G.; Giannella, M.; Pascale, R.; Meschiari, M.; Digaetano, M.; Oliva, A.; et al. Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study). Open Forum. Infect. Dis. 2020, 7, ofaa139. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination with Activity against Multidrug-Resistant Gram-Negative Bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Castón, J.J.; De la Torre, Á.; Ruiz-Camps, I.; Sorlí, M.L.; Torres, V.; Torre-Cisneros, J. Salvage Therapy with Ceftolozane-Tazobactam for Multidrug-Resistant Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2017, 61, 02136-16. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Satlin, M.J.; Elabor, A.; Saraiya, N.; McCreary, E.K.; Molnar, E.; El-Beyrouty, C.; Jones, B.M.; Dixit, D.; Heil, E.L.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: A Multicenter Study. Open Forum. Infect. Dis. 2018, 5, ofy280. [Google Scholar] [CrossRef]
- Albin, O.R.; Henig, O.; Patel, T.S.; Valley, T.S.; Pogue, J.M.; Petty, L.A.; Mills, J.P.; Brancaccio, A.; Martin, E.T.; Kaye, K.S. Clinical Implications of Microbiologic Treatment Failure in the Setting of Clinical Cure of Bacterial Pneumonia. Clin. Infect. Dis. 2020, 71, 3033–3041. [Google Scholar] [CrossRef] [PubMed]
- Bonine, N.G.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Lodise, T. Impact of Delayed Appropriate Antibiotic Therapy on Patient Outcomes by Antibiotic Resistance Status from Serious Gram-Negative Bacterial Infections. Am. J. Med. Sci. 2019, 357, 103–110. [Google Scholar] [CrossRef]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-Based Regimens for the Treatment of Drug-Resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef]
- Talbot, G.H.; Das, A.; Cush, S.; Dane, A.; Wible, M.; Echols, R.; Torres, A.; Cammarata, S.; Rex, J.H.; Powers, J.H.; et al. Evidence-Based Study Design for Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia. J. Infect. Dis. 2019, 219, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Cantón, R.; Jehl, F.; Rossolini, G.M.; Soriano, A.; Tascini, C.; Viaggi, B. Mdr Infections in Critically Ill Patients. From the Microlab Bench to the Patient’s Bedside; EDIMES: Pavia, Italy, 2022. [Google Scholar]
- Esperatti, M.; Ferrer, M.; Theessen, A.; Liapikou, A.; Valencia, M.; Saucedo, L.M.; Zavala, E.; Welte, T.; Torres, A. Nosocomial Pneumonia in the Intensive Care Unit Acquired by Mechanically Ventilated versus Nonventilated Patients. Am. J. Respir. Crit. Care Med. 2010, 182, 1533–1539. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-Tazobactam versus Meropenem for Treatment of Nosocomial Pneumonia (ASPECT-NP): A Randomised, Controlled, Double-Blind, Phase 3, Non-Inferiority Trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Kollef, M.H.; Timsit, J.-F.; Martin-Loeches, I.; Wunderink, R.G.; Huntington, J.A.; Jensen, E.H.; Yu, B.; Bruno, C.J. Outcomes in Participants with Failure of Initial Antibacterial Therapy for Hospital-Acquired/Ventilator-Associated Bacterial Pneumonia Prior to Enrollment in the Randomized, Controlled Phase 3 ASPECT-NP Trial of Ceftolozane/Tazobactam versus Meropenem. Crit. Care 2022, 26, 373. [Google Scholar] [CrossRef] [PubMed]
- Bergas, A.; Albasanz-Puig, A.; Fernández-Cruz, A.; Machado, M.; Novo, A.; van Duin, D.; Garcia-Vidal, C.; Hakki, M.; Ruiz-Camps, I.; del Pozo, J.L.; et al. Real-Life Use of Ceftolozane/Tazobactam for the Treatment of Bloodstream Infection Due to Pseudomonas aeruginosa in Neutropenic Hematologic Patients: A Matched Control Study (ZENITH Study). Microbiol. Spectr. 2022, 10, e02292-21. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, I.L.; Luisa Sorlí, M.M.; Horcajada, J.P. Ceftolozane-Tazobactam: When, How and Why Using It? Rev. Esp. Quim. 2021, 34 (Suppl. 1), 35–37. [Google Scholar] [CrossRef]
- Zhong, H.; Zhao, X.Y.; Zhang, Z.L.; Gu, Z.C.; Zhang, C.; Gao, Y.; Cui, M. Evaluation of the Efficacy and Safety of Ceftazidime/Avibactam in the Treatment of Gram-Negative Bacterial Infections: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2018, 52, 443–450. [Google Scholar] [CrossRef]
- Fröhlich, C.; Sørum, V.; Thomassen, A.M.; Johnsen, P.J.; Leiros, H.-K.S.; Samuelsen, Ø. OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere 2019, 4, e00024-19. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, 00031-19. [Google Scholar] [CrossRef]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-Avibactam or Best Available Therapy in Patients with Ceftazidime-Resistant Enterobacteriaceae and Pseudomonas aeruginosa Complicated Urinary Tract Infections or Complicated Intra-Abdominal Infections (REPRISE): A Randomised, Pathogen-Directed, Phase 3 Study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Mazuski, J.E.; Wagenlehner, F.; Torres, A.; Carmeli, Y.; Chow, J.W.; Wajsbrot, D.; Stone, G.G.; Irani, P.; Bharucha, D.; Cheng, K.; et al. Clinical and Microbiological Outcomes of Ceftazidime-Avibactam Treatment in Adults with Gram-Negative Bacteremia: A Subset Analysis from the Phase 3 Clinical Trial Program. Infect. Dis. Ther. 2021, 10, 2399. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Campanella, E.; Stracquadanio, S.; Calvo, M.; Migliorisi, G.; Nicolosi, A.; Cosentino, F.; Marletta, S.; Spampinato, S.; Prestifilippo, P.; et al. Ceftazidime/Avibactam and Meropenem/Vaborbactam for the Management of Enterobacterales Infections: A Narrative Review, Clinical Considerations, and Expert Opinion. Antibiotics 2023, 12, 1521. [Google Scholar] [CrossRef]
- Stone, G.G.; Newell, P.; Gasink, L.B.; Broadhurst, H.; Wardman, A.; Yates, K.; Chen, Z.; Song, J.; Chow, J.W. Clinical Activity of Ceftazidime/Avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: Pooled Data from the Ceftazidime/Avibactam Phase III Clinical Trial Programme. J. Antimicrob. Chemother. 2018, 73, 2519–2523. [Google Scholar] [CrossRef] [PubMed]
- Daikos, G.L.; da Cunha, C.A.; Rossolini, G.M.; Stone, G.G.; Baillon-Plot, N.; Tawadrous, M.; Irani, P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics 2021, 10, 1126. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17. [Google Scholar] [CrossRef]
- Ybanez Garcia, L.; Manzano Lorenzo, R.; Martinez Segasti, F.; Martinez Sesmero, J.M. Real-Life Experience with Cefiderocol for the Treatment of Difficult-to-Treat Gram-Negative Infections. Infect. Dis. Trop. Med. 2023, 9, e1157. [Google Scholar]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62, 01968-17. [Google Scholar] [CrossRef]
- Lasarte-Monterrubio, C.; Fraile-Ribot, P.A.; Vázquez-Ucha, J.C.; Cabot, G.; Guijarro-Sánchez, P.; Alonso-García, I.; Rumbo-Feal, S.; Galán-Sánchez, F.; Beceiro, A.; Arca-Suárez, J.; et al. Activity of Cefiderocol, Imipenem/Relebactam, Cefepime/Taniborbactam and Cefepime/Zidebactam against Ceftolozane/Tazobactam- and Ceftazidime/Avibactam-Resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2022, 77, 2809–2815. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2022, 66, e01990-21. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T. Den Cefiderocol versus Imipenem-Cilastatin for the Treatment of Complicated Urinary Tract Infections Caused by Gram-Negative Uropathogens: A Phase 2, Randomised, Double-Blind, Non-Inferiority Trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Reig, S.; Le Gouellec, A.; Bleves, S. What Is New in the Anti–Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert? Front. Cell. Infect. Microbiol. 2022, 12, 862. [Google Scholar] [CrossRef]
- Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob. Agents Chemother. 2017, 61, 02209-16. [Google Scholar] [CrossRef]
- Mushtaq, S.; Meunier, D.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of Imipenem/Relebactam against Pseudomonas aeruginosa Producing ESBLs and Carbapenemases. J. Antimicrob. Chemother. 2021, 76, 434–442. [Google Scholar] [CrossRef]
- Motsch, J.; De Oliveira, C.U.M.; Stus, V.; Kö Ksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-Blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients with Imipenem-Nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-Blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults wth Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Isler, B.; Harris, P.; Stewart, A.G.; Paterson, D.L. An Update on Cefepime and Its Future Role in Combination with Novel β-Lactamase Inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2021, 76, 550–560. [Google Scholar] [CrossRef]
- ClinicalTrials.gov Safety and Efficacy Study of Cefepime-AAI101 in the Treatment of Complicated Urinary Tract Infections. Available online: https://clinicaltrials.gov/study/NCT03687255?intr=cefepime%2Fenmetazobactam&rank=4#publications (accessed on 11 October 2023).
- ClinicalTrials.gov Safety and Efficacy Study of Cefepime/VNRX-5133 in Patients with Complicated Urinary Tract Infections. Available online: https://clinicaltrials.gov/study/NCT03840148?intr=cefepime-taniborbactam&rank=2#publications (accessed on 11 October 2023).
- ClinicalTrials.gov Study of Cefepime-Zidebactam (FEP-ZID) in Complicated Urinary Tract Infection (CUTI) or Acute Pyelonephritis (AP). Available online: https://clinicaltrials.gov/study/NCT04979806 (accessed on 11 October 2023).
- Vázquez-Ucha, J.C.; Lasarte-Monterrubio, C.; Guijarro-Sánchez, P.; Oviaño, M.; Álvarez-Fraga, L.; Alonso-García, I.; Arca-Suárez, J.; Bou, G.; Beceiro, A. Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel β-Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam against a Multicenter Collection of Carbapenemase-Producing Enterobacterales. Antimicrob. Agents Chemother. 2022, 66, e01676-21. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A Novel Aminoglycoside for the Treatment of Resistant Gram-Negative Bacterial Infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Golkar, T.; Bassenden, A.V.; Maiti, K.; Arya, D.P.; Schmeing, T.M.; Berghuis, A.M. Structural Basis for Plazomicin Antibiotic Action and Resistance. Commun. Biol. 2021, 4, 729. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, L.E.; Miller, L.G.; Friedland, I.; Dwyer, J.P. Once-Daily Plazomicin for Complicated Urinary Tract Infections. J. Urol. 2019, 202, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, M.; Hall, D.; Stoneburner, A.; Shinabarger, D.; Serio, A.W.; Krause, K.M.; Marra, A.; Pillar, C. Activity of Plazomicin in Combination with Other Antibiotics against Multidrug-Resistant Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2018, 92, 338–345. [Google Scholar] [CrossRef]
Class | Active Site | Enzyme Type | Substrates |
---|---|---|---|
A | Serine | Penicillinases: | |
Broad-spectrum | Benzylpenicillin, aminopenicillins, carboxypenicillins, ureidopenicillins, narrow-spectrum Cephalosporins | ||
Extended-spectrum (β-lactamase) | Substrates of broad-spectrum plus oxymino-β-lactams (cefotaxime, ceftazidime, ceftriaxone) and aztreonam | ||
Carbapenemases | Substrates of extended-spectrum plus cephamycins and carbapenems | ||
B | Zn2+ | Carbapenemases | Substrates of extended-spectrum plus cephamycins and carbapenems |
C | Serine | Cephalosporinases | Substrates of extended-spectrum plus cephamycins |
D | Serine | Oxacillinases: | |
Broad-spectrum | Aminopenicillins, ureidopenicillin, cloxacillin, methicillin, oxacillin, and some narrow-spectrum cephalosporins | ||
Extended-spectrum (β-lactamase) | Substrates of broad-spectrum plus oxymino-β-lactams and monobactams | ||
Carbapenemases | Substrates of extended-spectrum plus cephamycins and carbapenems |
Strain | ESBL | MIC (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IMP | MEM | CAZ | CAZ-AVI a | CAZ-AVI b | CAZ-AVI c | TOL-TZB d | TOL-TZB e | TOL-TZB f | PIP-TZB | ||
R1189 | GES-1 | 1 | 2 | 16 | 2 | 2 | 2 | 32 | 32 | 16 | 16 |
R184 | GES-2 | 16 | 32 | 64 | 4 | 2 | 2 | 16 | 8 | 4 | 128 |
R186 | GES-5 | 32 | 128 | 64 | 16 | 8 | 8 | 8 | 8 | 8 | 128 |
R3451 | GES-6 | 16 | 64 | 32 | 2 | 2 | 2 | 32 | 32 | 32 | 64 |
R1188 | CTX-M | 1 | 8 | 32 | 8 | 4 | 4 | 4 | 1 | 1 | 32 |
R1192 | PER-1 | 0.5 | 1 | >512 | 64 | 16 | 16 | 512 | 128 | 64 | 64 |
R1185 | BEL-1 | 1 | 2 | 32 | 4 | 2 | 2 | 8 | 8 | 8 | 64 |
R1187 | BEL-2 | 0.5 | 2 | 128 | 8 | 4 | 2 | 32 | 32 | 32 | 128 |
R1205 | VEB-1 | 8 | 16 | 256 | 8 | 4 | 4 | 64 | 32 | 32 | 32 |
R1217 | TEM-4 | 1 | 0.5 | 8 | 2 | 1 | 1 | 0.5 | 0.5 | 0.5 | 4 |
R136 | SHV-2a | 1 | 2 | 32 | 4 | 4 | 2 | 4 | 4 | 2 | 256 |
P. aeruginosa | Rectal Swab | |
---|---|---|
Antibiotic | MIC | SIR * |
Amikacin | ≤4.0 | S |
Cefepime | >16.0 | R |
Ceftazidime | >64.0 | R |
Ceftazidime/Avibactam | =8.0 | S |
Ceftolozane/Tazobactam | =64.0 | R |
Ciprofloxacin | =0.5 | I |
Colistin | =1.0 | S |
Meropenem | =16.0 | R |
Piperacillin/Tazobactam | >128.0 | R |
P. aeruginosa | Blood Culture | |
---|---|---|
GeneXprt® | ||
KPC | Not detected | |
VIM | Detected | |
IMP | Not detected | |
NDM | Not detected | |
OXA-48 | Not detected | |
Antibiotic | MIC | SIR * |
Amikacin | =16.0 | S |
Cefepime | >16.0 | R |
Ceftazidime | >64.0 | R |
Ceftazidime/Avibactam | >64.0 | R |
Ceftolozane/Tazobactam | >64.0 | R |
Ciprofloxacin | >1.0 | R |
Colistin | =1.0 | S |
Meropenem | >64.0 | R |
Piperacillin/Tazobactam | >128.0 | R |
Cefiderocol | ≤2.0 | S |
P. aeruginosa | Ecoculture | |
---|---|---|
Antibiotic | MIC | SIR * |
Amikacin | =8.0 | S |
Cefepime | =4.0 | I |
Ceftazidime | =16.0 | R |
Ceftazidime/Avibactam | =2.0 | S |
Ceftolozane/Tazobactam | =1.0 | S |
Ciprofloxacin | =0.125 | I |
Colistin | =1.0 | S |
Meropenem | =0.25 | S |
Piperacillin/Tazobactam | =32.0 | R |
P. aeruginosa | Bronchoalveolar Lavage | |
---|---|---|
Antibiotic | MIC | SIR * |
Amikacin | ≤4.0 | S |
Cefepime | =8.0 | I |
Ceftazidime | =64.0 | R |
Ceftazidime/Avibactam | =64.0 | R |
Ceftolozane/Tazobactam | =64.0 | R |
Ciprofloxacin | =0.5 | I |
Colistin | ≤0.5 | S |
Meropenem | =8.0 | I |
Piperacillin/Tazobactam | =16.0 | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovagnorio, F.; De Vito, A.; Madeddu, G.; Parisi, S.G.; Geremia, N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics 2023, 12, 1621. https://doi.org/10.3390/antibiotics12111621
Giovagnorio F, De Vito A, Madeddu G, Parisi SG, Geremia N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics. 2023; 12(11):1621. https://doi.org/10.3390/antibiotics12111621
Chicago/Turabian StyleGiovagnorio, Federico, Andrea De Vito, Giordano Madeddu, Saverio Giuseppe Parisi, and Nicholas Geremia. 2023. "Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments" Antibiotics 12, no. 11: 1621. https://doi.org/10.3390/antibiotics12111621
APA StyleGiovagnorio, F., De Vito, A., Madeddu, G., Parisi, S. G., & Geremia, N. (2023). Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics, 12(11), 1621. https://doi.org/10.3390/antibiotics12111621