Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse
Abstract
:1. Introduction
2. Results
2.1. Resistance/Sensitivity Testing
2.2. Identification of ESBL Producers
2.3. Identification of MCR-1 Producers
2.4. Molecular Typing
2.5. Plasmid Characterization
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation and Antimicrobial Susceptibility Testing
4.2. Genotypic Characterization of Resistance Determinants
4.3. Mating-Out Assays and Plasmid Analysis
4.4. Clonality Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- WHO Advisory Group and Intergrated Surveillance of Antimicrobial Resistance (AGISA). Critically Important Antimicrobials for Human Medicine, 4th ed.; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- World Organization for Animal Health (OIE). OIE List of Antimicrobial Agents of Veterinary Importance; OIE: Paris, France, 2015. [Google Scholar]
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin. Microbiol. Infect. 2015, 21, 899–905. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Yin, W.; Shen, Z.; Wang, Y.; Shen, J.; Walsh, T.R. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J. Antimicrob. Chemother. 2020, 75, 3087–3095. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S.K.; Semmler, T. Genomic Diversity and Virulence Potential of ESBL and AmpC-ß-Lactamase-Producing Escherichia coli Strains From Healthy Food Animals Across Europe. Front. Microbiol. 2021, 12, 626774. [Google Scholar] [CrossRef] [PubMed]
- Tsekouras, N.; Athanasakopoulou, Z.; Diezel, C.; Kostoulas, P.; Braun, S.D.; Sofia, M.; Monecke, S.; Ehricht, R.; Chatzopoulos, D.C.; Gary, D.; et al. Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. Animals 2022, 12, 1560. [Google Scholar] [CrossRef]
- Lagrange, J.; Amat, J.-P.; Ballesteros, C.; Damborg, P.; Grönthal, T.; Haenni, M.; Jouy, E.; Kaspar, H.; Kenny, K.; Klein, B.; et al. Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA. Front. Microbiol. 2023, 14, 1188423. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, 7867. [Google Scholar]
- Michael, G.B.; Kaspar, H.; Siqueira, A.K.; de Freitas Costa, E.; Corbellini, L.G.; Kadlec, K.; Schwarz, S. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet. Microbiol. 2017, 200, 142–150. [Google Scholar] [CrossRef]
- Mavroidi, A.; Tzelepi, E.; Miriagou, V.; Gianneli, D.; Legakis, N.J.; Tzouvelekis, L.S. CTX-M-3 ß -lactamase-producing Escherichia coli from Greece. Microb. Drug Resist. 2002, 8, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Mavroidi, A.; Miriagou, V.; Liakopoulos, A.; Tzelepi, Ε.; Stefos, A.; Dalekos, G.N.; Petinaki, E. Ciprofloxacin-resistant Escherichia coli in Central Greece: Mechanisms of resistance and molecular identification. BMC Infect. Dis. 2012, 12, 371. [Google Scholar] [CrossRef]
- Phan, M.D.; Nhu, N.T.K.; Achard, M.E.S.; Forde, B.M.; Hong, K.W.; Chong, T.M.; Yin, W.F.; Chan, K.G.; West, N.P.; Walker, M.J.; et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli. J. Antimicrob. Chemother. 2017, 72, 2729–2736. [Google Scholar] [CrossRef]
- Cannatelli, A.; Di Pilato, V.; Giani, T.; Arena, F.; Ambretti, S.; Gaibani, P.; D’Andrea, M.M.; Rossolini, G.M. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob. Agents Chemother. 2014, 58, 4399–4403. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.A.; Dierikx, C.M.; van Essen-Zandbergen, A.; van Roermund, H.J.; Mevius, D.J.; Stegeman, A.; Klinkenberg, D. The IncI1 plasmid carrying the blaCTX-M-1 gene persists in in vitro culture of an Escherichia coli strain from broilers. BMC Microbiol. 2014, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Valcek, A.; Roer, L.; Overballe-Petersen, S.; Hansen, F.; Bortolaia, V.; Leekitcharoenphon, P.; Korsgaard, H.B.; Seyfarth, A.M.; Hendriksen, R.S.; Hasman, H.; et al. IncI1 ST3 and IncI1 ST7 plasmids from CTX-M-1-producing Escherichia coli obtained from patients with bloodstream infections are closely related to plasmids from E. coli of animal origin. J. Antimicrob. Chemother. 2019, 74, 2171–2175. [Google Scholar] [CrossRef]
- Sadek, M.; Ortiz de la Rosa, J.M.; Ramadan, M.; Nordmann, P.; Poirel, L. Molecular characterization of extended-spectrum ß-lactamase producers, carbapenemase producers, polymyxin-resistant, and fosfomycin-resistant Enterobacterales among pigs from Egypt. J. Glob. Antimicrob. Resist. 2022, 30, 81–87. [Google Scholar] [CrossRef]
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Public. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 1 January 2021).
- Papagiannitsis, C.C.; Tryfinopoulou, K.; Giakkoupi, P.; Pappa, O.; Polemis, M.; Tzelepi, E.; Tzouvelekis, L.S.; Carbapenemase Study Group; Vatopoulos, A.C. Diversity of acquired ß-lactamases amongst Klebsiella pneumoniae in Greek hospitals. Int. J. Antimicrob. Agents 2012, 39, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Dioli, C.; Pappa, O.; Siatravani, E.; Bratakou, S.; Tatsiopoulos, A.; Giakkoupi, P.; Miriagou, V.; Beloukas, A. Molecular Characterization and Prevalence of Antimicrobial-Resistant Escherichia coli Isolates Derived from Clinical Specimens and Environmental Habitats. Microorganisms 2023, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.M.; Harding, G.P.; Zuccarelli, A.J. A general method for detecting and sizing large plasmids. Anal. Biochem. 1995, 226, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef]
No | Isolation Date | ESBL | AmpC | MCR-1 | MLST | ESBL Plasmid | Mcr-1 Plasmid | MIC Col (mg/L) | Resistance to Antibiotics Other than β-Lactams and Colistin | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conjugation Frequency | PBRT | S1 Based Size | Conjugation Frequency | PBRT | S1 Based Size | ||||||||
A358 | 6/2/2021 | CTX-M-3 | - | + | 1076 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 32 | |
A359 | 6/2/2021 | CTX-M-3 | - | + | 367 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 16 | sxt, cm, cip |
A363 | 6/2/2021 | CTX-M-3 | - | + | 835 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 16 | |
A364 | 6/2/2021 | CTX-M-3 | - | + | 1076 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 16 | |
A365 | 6/2/2021 | CTX-M-3 | - | + | 823 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 4 | |
A375 | 6/2/2021 | CTX-M-3 | - | + | 66 | 10−4 | IncI1 | ~50 kb | 10−5 | IncX4 | ND | 8 | |
A370 | 6/2/2021 | CTX-M-3 | - | - | 7 | 10−4 | IncI1 | ~50 kb | - | - | - | 4 | cm |
A371 | 6/2/2021 | CTX-M-3 | - | - | 7 | 10−4 | IncI1 | ~50 kb | - | - | - | 16 | sxt, cm |
A354 | 6/2/2021 | SHV-12 | - | + | 77 | 10−6 | IncI2 | ~70 kb | 10−5 | IncX4 | ND | 16 | sxt, cm |
A361 | 6/2/2021 | SHV-12 | - | + | 77 | 10−6 | IncI2 | ~70 kb | 10−5 | IncX4 | ND | 8 | sxt, cm |
A355 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 8 | |
A356 | 6/2/2021 | - | - | - | ND | - | - | - | - | - | - | 32 | cm |
A357 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 4 | sxt, cm, cip |
A360 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 8 | |
A362 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 4 | cm |
A366 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 8 | |
A367 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 4 | |
A368 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 16 | sxt, cm |
A369 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 16 | sxt, cm |
A372 | 6/2/2021 | - | - | - | ND | - | - | - | - | - | - | 8 | sxt, cm |
A373 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 16 | sxt, cm, cip |
A374 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 32 | |
A376 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 32 | sxt, cm |
A377 | 6/2/2021 | - | - | - | ND | - | - | - | - | - | - | 4 | sxt, cm, cip |
A378 | 6/2/2021 | - | - | + | ND | - | - | - | - | - | - | 8 | sxt, cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avgere, E.; Zafeiridis, C.; Procter, K.A.; Beloukas, A.; Giakkoupi, P. Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics 2023, 12, 1625. https://doi.org/10.3390/antibiotics12111625
Avgere E, Zafeiridis C, Procter KA, Beloukas A, Giakkoupi P. Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics. 2023; 12(11):1625. https://doi.org/10.3390/antibiotics12111625
Chicago/Turabian StyleAvgere, Ermioni, Christos Zafeiridis, Kassandra A. Procter, Apostolos Beloukas, and Panagiota Giakkoupi. 2023. "Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse" Antibiotics 12, no. 11: 1625. https://doi.org/10.3390/antibiotics12111625
APA StyleAvgere, E., Zafeiridis, C., Procter, K. A., Beloukas, A., & Giakkoupi, P. (2023). Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics, 12(11), 1625. https://doi.org/10.3390/antibiotics12111625