Effect of Hygiene Protocols on the Mechanical and Physical Properties of Two 3D-Printed Denture Resins Characterized by Extrinsic Pigmentation as Well as the Mixed Biofilm Formed on the Surface
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Specimen Preparation
4.2. Hygiene Protocols
4.3. Outcomes of Physical and Mechanical Properties
4.4. Multispecies Biofilm of C. albicans, S. aureus, and S. mutans
4.4.1. Biofilm Formation
4.4.2. Hygiene Protocols
4.4.3. Evaluation of the Microbial Load
4.4.4. Data Analysis
5. Conclusions
- (1)
- The color variations of the Yller resin after 3 and 5 years, and Smart Print after 5 years, were influenced by immersion in 0.25% sodium hypochlorite;
- (2)
- The hardness values of 3D printing resins showed lower compared to the conventional resins, and all protocols promoted a reduction of values in the simulated period of 5 years;
- (3)
- The roughness values of 3D printing resins showed higher than the conventional resins, which varied depending on the hygiene protocols;
- (4)
- All resins showed a decrease in flexural strength when subjected to all hygiene and control protocols after the 5-year simulation.
- (5)
- Brushing associated with immersion in 0.25% sodium hypochlorite was the most efficient protocol, followed by brushing and immersion in 0.15% triclosan. The type of resin did not influence the CFU count, except when the Yller resin was cleaned with brushing and immersion in triclosan and showed a higher count of C. albicans.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuo, H.; Suenaga, H.; Takahashi, M.; Suzuki, O.; Sasaki, K.; Takahashi, N. Deterioration of polymethyl methacrylate dentures in the oral cavity. Dent. Mater. J. 2015, 34, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Alqanas, S.S.; Alfuhaid, R.A.; Alghamdi, S.F.; Al-Qarni, F.D.; Gad, M.M. Effect of denture cleansers on the surface properties and color stability of 3D printed denture base materials. J. Dent. 2022, 120, 104089. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Kalberer, N.; Kamnoedboon, P.; Mekki, M.; Durual, S.; Özcan, M.; Müller, F. 2021. CAD-CAM complete denture resins: An evaluation of biocompatibility, mechanical properties, and surface characteristics. J. Dent. 2021, 114, 103785. [Google Scholar] [CrossRef] [PubMed]
- Taşın, S.; Ismatullaev, A.; Usumez, A. Comparison of surface roughness and color stainability of 3-dimensionally printed interim prosthodontic material with conventionally fabricated and CAD-CAM milled materials. J. Prosthet. Dent. 2022, 128, 1094–1101. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of mechanical properties of 3d-printed, CAD/CAM, and conventional denture base materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef]
- Fouda, S.M.; Gad, M.M.; Abualsaud, R.; Ellakany, P.; AlRumaih, H.S.; Khan, S.Q.; Akhtar, S.; Al-Qarni, F.D.; Al-Harbi, F.A. Flexural Properties and Hardness of CAD-CAM Denture Base Materials. J. Prosthodont. 2023, 32, 318–324. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, A.M.; AlShehri, H.A. Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: A profilometer and scanning electron microscopy analysis. Technol. Health Care 2022, 30, 161–173. [Google Scholar] [CrossRef]
- Fei, J.; Rong, Y.; Zhu, L.; Li, H.; Zhang, X.; Lu, Y.; An, J.; Bao, Q.; Huang, X. Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review. Macromol. Rapid Commun. 2023, 44, e2300211. [Google Scholar] [CrossRef]
- Freitas, R.F.C.P.; Duarte, S.; Feitosa, S.; Dutra, V.; Lin, W.S.; Panariello, B.H.D.; Carreiro, A.D.F.P. Physical, Mechanical, and Anti-Biofilm Formation Properties of CAD-CAM Milled or 3D Printed Denture Base Resins: In Vitro Analysis. J. Prosthodont. 2023, 32, 38–44. [Google Scholar] [CrossRef]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations. J. Funct. Biomater. 2023, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, M.; Chuchulska, B.; Zlatev, S.; Kazakova, R. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents—An In Vitro Study. Polymers 2022, 14, 3125. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.J.E.; Ramani, R.S.; Ganjigatti, R.; Uy, C.E.; Plaksina, P.; Waddell, J.N. Adhesion of Denture Characterizing Composites to Heat-Cured, CAD/CAM and 3D Printed Denture Base Resins. J. Prosthodont. 2021, 30, 83–90. [Google Scholar] [CrossRef]
- Pong, M.T.; Grymak, A.; Waddell, J.N.; Choi, J.J.E. Bond Strength between CAD/CAM PMMA Denture Base Resins and Characterisation Composites. Oral 2022, 2, 75–87. [Google Scholar] [CrossRef]
- Alp, G.; Johnston, W.M.; Yilmaz, B. Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J. Prosthet. Dent. 2019, 121, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Murat, S.; Alp, G.; Alatalı, C.; Uzun, M. In Vitro Evaluation of Adhesion of Candida albicans on CAD/CAM PMMA-Based Polymers. J. Prosthodont. 2019, 28, 873–879. [Google Scholar] [CrossRef]
- Al-Qarni, F.D.; Goodacre, C.J.; Kattadiyil, M.T.; Baba, N.Z.; Paravina, R.D. Stainability of acrylic resin materials used in CAD-CAM and conventional complete dentures. J. Prosthet. Dent. 2020, 123, 880–887. [Google Scholar] [CrossRef]
- Gruber, S.; Kamnoedboon, P.; Özcan, M.; Srinivasan, M. CAD/CAM Complete Denture Resins: An In Vitro Evaluation of Color Stability. J. Prosthodont. 2021, 30, 430–439. [Google Scholar] [CrossRef]
- Abualsaud, R.; Gad, M.M. Flexural Strength of CAD/CAM Flexural Strength of CAD/CAM Denture Base Materials: Systematic Review and Meta-analysis of In-vitro Studies. J. Int. Soc. Prev. Community Dent. 2022, 12, 160–170. [Google Scholar] [CrossRef]
- Coelho, S.R.G.; da Silva, M.D.D.; Nunes, T.S.B.S.; Viotto, H.E.C.; Marin, D.O.M.; Pero, A.C. Effect of immersion in disinfectants on the color stability of denture base resins and artificial teeth obtained by 3D printing. J. Prosthodont. 2023, 1–7. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Tuwaym, M.; Aldaghri, E.N.; Alojaymi, T.; Alotiabi, H.M.; Taweel, S.M.A.; Al-Otaibi, H.N.; Ali, R.; Alshehri, H.; Labban, N. Efficacy of Denture Cleansers on Microbial Adherence and Surface Topography of Conventional and CAD/CAM-Processed Denture Base Resins. Polymers 2023, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Papadiochou, S.; Polyzois, G. Hygiene practices in removable prosthodontics: A systematic review. Int. J. Dent. Hyg. 2018, 16, 179–201. [Google Scholar] [CrossRef] [PubMed]
- Kassab, N.H.; Mustafa, E.A.; Hasan, R.H. Antifungal effect: Comparison of commercial denture cleansers and microwave energy. Al-Rafdain Dent. J. 2009, 9, 24–31. [Google Scholar] [CrossRef]
- Alifui-Segbaya, F.; Bowman, J.; White, A.R.; George, R.; Fidan, I. Characterization of the Double Bond Conversion of Acrylic Resins for 3D Printing of Dental Prostheses. Compend. Contin. Educ. Dent. 2019, 40, 7–11. [Google Scholar]
- Schmutzler, A.; Rauch, A.; Nitschke, I.; Lethaus, B.; Hahnel, S. Cleaning of removable dental prostheses—A systematic review. J. Evid. Based. Dent. Pract. 2021, 21, 101644. [Google Scholar] [CrossRef]
- Badaró, M.M.; Prates, T.P.; Leite-Fernandes, V.M.F.; Oliveira, V.C.; Paranhos, H.F.O.; Silva-Lovato, C.H. In Vitro Evaluation of Resilient Liner after Brushing with Conventional and Experimental Ricinus communis-Based Dentifrices. J. Prosthodont. 2019, 28, 857–862. [Google Scholar] [CrossRef]
- Pisani, M.X.; Macedo, A.P.; Paranhos, H.F.O.; da Silva, C.H.L. Effect of experimental Ricinus communis solution for denture cleaning on the properties of acrylic resin teeth. Braz. Dent. J. 2012, 23, 15–21. [Google Scholar] [CrossRef]
- Araujo, C.B.; Ribeiro, A.B.; Fortes, C.V.; Bueno, F.L.; De Wever, B.; Oliveira, V.C.; Macedo, A.P.; Paranhos, H.F.O.; da Silva, C.H.L. Effect of local hygiene protocols on denture-related stomatitis, biofilm, microbial load, and odor: A randomized controlled trial. J. Prosthet. Dent. 2022, 128, 664–673. [Google Scholar] [CrossRef]
- Al-Fouzan, A.F.; Al-Mejrad, L.A.; Albarrag, A.M. Adherence of Candida to complete denture surfaces in vitro: A comparison of conventional and CAD/CAM complete dentures. J. Adv. Prosthodont. 2017, 9, 402–408. [Google Scholar] [CrossRef]
- International Organization for Standardization. Technical Specification 20795-1. Dentistry-Base Polymers—Part 1: Denture Base Polymers, 2nd ed.; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Badaró, M.M.; Bueno, F.L.; Arnez, R.M.; Oliveira, V.C.; Macedo, A.P.; Souza, R.F.; Paranhos, H.F.O.; Silva-Lovato, C.H. The effects of three disinfection protocols on Candida spp., denture stomatitis, and biofilm: A parallel group randomized controlled trial. J. Prosthet. Dent. 2020, 124, 690–698. [Google Scholar] [CrossRef]
- de Sousa Porta, S.R.; de Lucena-Ferreira, S.C.; da Silva, W.J.; Del Bel Cury, A.A. Evaluation of sodium hypochlorite as a denture cleanser: A clinical study. Gerodontology 2015, 32, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.J.; Parikh, S.; Xiao, G.; Tonge, P.J.; Kisker, C. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J. Mol. Biol. 1999, 290, 859–865. [Google Scholar] [CrossRef]
- Schweizer, H.P. Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001, 202, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yueh, M.F.; Tukey, R.H. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272. [Google Scholar] [CrossRef]
- Hughes, C.; Ferguson, J. Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 2017, 49, 633–637. [Google Scholar] [CrossRef]
- Felipucci, D.N.; Davi, L.R.; Paranhos, H.F.; Bezzon, O.L.; Silva, R.F.; Pagnano, V.O. Effect of different cleansers on the surface of removable partial denture. Braz. Dent. J. 2011, 22, 392–397. [Google Scholar] [CrossRef]
- Käsdorf, B.T.; Weber, F.; Petrou, G.; Srivastava, V.; Crouzier, T.; Lieleg, O. Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules 2017, 18, 2454–2462. [Google Scholar] [CrossRef]
- Coimbra, F.C.T.; Rocha, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H.; Paranhos, H.F.O. Antimicrobial activity of effervescent denture tablets on multispecies biofilms. Gerodontology 2021, 38, 87–94. [Google Scholar] [CrossRef]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Flexural Strength and Hardness of Filler-Reinforced PMMA Targeted for Denture Base Application. Materials 2021, 14, 2659. [Google Scholar] [CrossRef]
- International Organization for Standardization. Technical Specification 14569-1. Dental Materials—Guidance on Testing of Wear Resistance—Part 1: Wear by Tooth Brushing; ISO: Geneva, Switzerland, 2007. [Google Scholar]
T1 (ΔΕ1) | T3 (ΔΕ2) | T5 (ΔΕ3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CR | SP | YL | CR | SP | YL | CR | SP | YL | ||
# CIELab | B | 1.28 (0.57) Aa* | 1.03 (0.86) Aa* | 1.31 (0.56) Aa* | 1.19 (0.32) Aa* | 0.71 (0.35) Aa* | 1.47 (0.53) Aa* | 1.38 (0.54) Aa* | 0.89 (0.41) Aa* | 1.52 (0.5) Aa* |
W | 1.36 (0.58) Aa*◦ | 0.62 (0.32) Aa* | 1.45 (0.4) Aa* | 1.83 (0.89) Aa* | 0.72 (0.32) Ba* | 1.87 (0.54) Aa*◦ | 1.17 (0.61) Aa◦ | 0.76 (0.22) Aa* | 2.14 (0.62) Ba◦ | |
SH | 1.5 (0.67) Aa* | 0.72 (0.27) Ba* | 1.69 (0.36) Aa* | 1.53 (0.7) ABa* | 0.98 (0.19) Aa* | 1.75 (0.62) Ba* | 1.27 (0.65) Aa* | 1.58 (0.46) ABb◦ | 1.93 (0.7) Ba* | |
T | 1.01 (0.24) Aa*◦ | 0.49 (0.22) Aa* | 1.26 (0.2) Aa* | 1.24 (0.44) Aa* | 0.73 (0.22) Aa* | 1.44 (0.44) Aa* | 0.76 (0.18) Aa◦ | 0.66 (0.17) Aa◦ | 1.56 (0.5) Aa* | |
** NBS | B | 1.18 ◦ | 0.95 ◦ | 1.21 ◦ | 1.09 ◦ | 0.65 ◦ | 1.35 ◦ | 1.27 ◦ | 0.82 ◦ | 1.40 ◦ |
W | 1.25 ◦ | 0.57 ◦ | 1.33 ◦ | 1.68 q | 0.66 ◦ | 1.72 q | 1.08 ◦ | 0.70 ◦ | 1.97 q | |
SH | 1.38 ◦ | 0.66 ◦ | 1.55 q | 1.41 ◦ | 0.90 ◦ | 1.61 q | 1.17 | 1.45 ◦ | 1.78 q | |
T | 0.93 ◦ | 0.45 * | 1.16 ◦ | 1.14 ◦ | 0.67 ◦ | 1.32 ◦ | 0.7 ◦ | 0.61 ◦ | 1.44 ◦ |
T0 | T1 | T3 | T5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CR | SP | YL | CR | SP | YL | CR | SP | YL | CR | SP | YL | |
B | 16.89 (0.84) Aa* | 12.31 (1.9) Ba* | 10.02 (1.94) Aa* | 16.96 (0.28) Aa* | 11.72 (1.5) Bb* | 11.69 (1.92) Ba* | 18.97 (0.6) Aa◦ | 9.47 (0.99) Ba◦ | 12.52 (2.05) Cb* | 18.6 (0.34) Ab◦ | 9.87 (1.49) Ba◦ | 11.54 (1.84) Ca* |
W | 17.62 (0.37) Aa◦ | 11.95 (1.6) Ba* | 9.95 (2.24) Cb* | 15.06 (0.26) Ab* | 9.62 (1.19) Bb◦ | 10.3 (1.42) Ba* | 17.05 (0.32) Aab◦ | 9.23 (1.29) Ba◦ | 11.19 (1.96) Cab◦ | 17.35 (0.31) Aab◦ | 9.15 (1.07) Ba◦ | 9.89 (1.32) Bb* |
SH | 16.94 (0.35) Aa* | 11.03 (2.94) Ba◦ | 9.96 (1.62) Bb* | 15.42 (0.31) Aab◦ | 10.65 (2.12) Bab* | 7.43 (1.12) Cb◦ | 17.27 (0.61) Aab* | 9.39 (1.89) Ba◦ | 9.7 (1.97) Bb* | 17.45 (0.38) Aab* | 9.11 (1.33) Ba◦ | 9.72 (1.48) Bb* |
T | 17.25 (0.22) Aa◦ | 11.9 (0.88) Ba* | 9.59 (1.35) Cb◦ | 14.97 (0.16) Ab* | 13.67 (1.85) Aa◦ | 11.16 (1.58) Ba* | 17.02 (0.2) Ab◦ | 11.36 (1.58) Bb* | 11.59 (1.87) Ba* | 17.02 (0.36) Aa◦ | 10.35 (1.46) Ba* | 10.43 (1.16) Bab* |
* Interaction Resins × Hygiene Protocols | ** Interaction Resins × Times | |||||||
---|---|---|---|---|---|---|---|---|
B | W | SH | T | T0 | T1 | T3 | T5 | |
CR | 0.05 (0.008) Aa | 0.05 (0.01) Aa | 0.06 (0.01) Aa | 0.05 (0.01) Aa | 0.05 (0.01) Aa | 0.05 (0.01) Aa | 0.05 (0.01) Aa | 0.05 (0.01) Aa |
SP | 0.65 (0.13) Ab | 0.82 (0.29) Ab | 0.95 (0.25) Bb | 0.92 (0.15) Bb | 0.90 (0.27) Ab | 0.85 (0.25) Ab | 0.82 (0.23) ABb | 0.80 (0.20) Bb |
YL | 1.36 (0.40) Ac | 1.32 (0.31) Ac | 1.16 (0.25) ABb | 0.94 (0.30) Bb | 1.20 (0.31) Ac | 1.20 (0.40) Ac | 1.18 (0.40) Ac | 1.21 (0.33) Ac |
* T0 | T5 | |
---|---|---|
B | 83.27 (9.73) Aa | 76.30 (12.74) Ba |
W | 83.27 (9.73) Aa | 75.20 (8.41) Ba |
SH | 83.27 (9.73) Aa | 67.08 (7.30) Bb |
T | 83.27 (9.73) Aa | 67.90 (10.90) Bb |
NB | W | T | p | ||
---|---|---|---|---|---|
CR | Mean (SD) | 5.09 (0.47) | 3.20 (0.38) | 1.59 (1.06) | 0.033 |
Median | 4.95 Aa | 3.20 Ca | 1.61 Ba | ||
CI | 4.73–5.46 | 2.90–3.49 | 0.77–2.41 | ||
SP | Mean (SD) | 5.72 (0.75) | 4.06 (0.71) | 1.88 (1.46) | |
Median | 5.89 Aa | 4.44 Ca | 2.72Bab | ||
CI | 5.14–6.30 | 3.51–4.60 | 0.75–3.01 | ||
YL | Mean (SD) | 5.89 (0.76) | 2.95 (1.78) | 2.82 (0.65) | |
Median | 5.98 Aa | 3.25 Ba | 3.03 Bb | ||
CI | 5.30–6.48 | 1.58–4.32 | 2.31–3.32 |
NB | W | T | |
---|---|---|---|
Mean (SD) | 7.42 (0.35) | 3.96 (0.38) | 0.58 (1.19) |
Median | 7.5 A | 4.0 B | 0 C |
CI | 7.13–7.70 | 3.67–4.24 | 0.29–0.86 |
Brand Name | Manufacturer | Batch Numbers |
---|---|---|
Heat-polymerized acrylic resin medium pink color | Clássico Artigos Odontológicos, Campo Limpo Paulista, SP, Brazil | 050514 |
Resin Yller Cosmos Denture medium pink color | Yller Biomaterials, Pelotas, RG, Brazil | - |
Resin SmartPrint Bio Denture medium pink color | SmartDent, São Carlos, SP, Brazil | 1547 |
Signum connector | Kulzer Mitsui Chemical Group, São Paulo, SP, Brazil | K010518 |
R50 gingiva flow, Pala Cre active | Kulzer Mitsui Chemical Group, São Paulo, SP, Brazil | K010518 |
Colorfluid pink, Pala Cre active | Kulzer Mitsui Chemical Group, São Paulo, SP, Brazil | K010126 |
Signum insulating gel | Kulzer Mitsui Chemical Group, São Paulo, SP, Brazil | K010128 |
Megaseal | Megadenta Dentalprodukte GmbH, Ribeirão Preto, SP, Brazil | 4G044A |
Toothbrush Tek soft bristles | Johnson & Johnson do Brasil Ind. e Com. Prod. para Saúde Ltda., S. J. dos Campos, SP, Brazil | 540557 |
Neutral soap—sodium lauryl sulfate, diethanolamine, cocamidopropyl, betaine, methylparaben, polyquatemium 7, citric acid, polyethylene glycol, pearl base, perfume and water | Pleasant, Perol Com. e Ind. Ltda., Ribeirão Preto, São Paulo, Brazil | 110127 |
* Triclosan (** 10 mL of 0.056M sodium hydroxide solution + 0.15 g Triclosan = 0.15% (1.5 mg/mL) | * Mix das essências, Belo Horizonte, MG, Brazil. | 107M4876V |
Sodium hypochlorite (** 0.25% sodium hypochlorite) | Super Candida® Indústria Anhembi, Osasco, SP, Brazil | E67144212MD2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.B.; Tinelli, B.M.; Clemente, L.M.; Poker, B.d.C.; Oliveira, V.d.C.; Watanabe, E.; Silva-Lovato, C.H. Effect of Hygiene Protocols on the Mechanical and Physical Properties of Two 3D-Printed Denture Resins Characterized by Extrinsic Pigmentation as Well as the Mixed Biofilm Formed on the Surface. Antibiotics 2023, 12, 1630. https://doi.org/10.3390/antibiotics12111630
Ribeiro AB, Tinelli BM, Clemente LM, Poker BdC, Oliveira VdC, Watanabe E, Silva-Lovato CH. Effect of Hygiene Protocols on the Mechanical and Physical Properties of Two 3D-Printed Denture Resins Characterized by Extrinsic Pigmentation as Well as the Mixed Biofilm Formed on the Surface. Antibiotics. 2023; 12(11):1630. https://doi.org/10.3390/antibiotics12111630
Chicago/Turabian StyleRibeiro, Adriana Barbosa, Beatriz Marcatto Tinelli, Lorena Mosconi Clemente, Beatriz de Camargo Poker, Viviane de Cássia Oliveira, Evandro Watanabe, and Cláudia Helena Silva-Lovato. 2023. "Effect of Hygiene Protocols on the Mechanical and Physical Properties of Two 3D-Printed Denture Resins Characterized by Extrinsic Pigmentation as Well as the Mixed Biofilm Formed on the Surface" Antibiotics 12, no. 11: 1630. https://doi.org/10.3390/antibiotics12111630
APA StyleRibeiro, A. B., Tinelli, B. M., Clemente, L. M., Poker, B. d. C., Oliveira, V. d. C., Watanabe, E., & Silva-Lovato, C. H. (2023). Effect of Hygiene Protocols on the Mechanical and Physical Properties of Two 3D-Printed Denture Resins Characterized by Extrinsic Pigmentation as Well as the Mixed Biofilm Formed on the Surface. Antibiotics, 12(11), 1630. https://doi.org/10.3390/antibiotics12111630