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Abstract: Genomic antimicrobial susceptibility testing (AST) has been shown to be accurate for many
pathogens and antimicrobials. However, these methods have not been systematically evaluated for
clinical metagenomic data. We investigate the performance of in-silico AST from clinical metagenomes
(MG-AST). Using isolate sequencing data from a multi-center study on antimicrobial resistance (AMR)
as well as shotgun-sequenced septic urine samples, we simulate over 2000 complicated urinary tract
infection (cUTI) metagenomes with known resistance phenotype to 5 antimicrobials. Applying
rule-based and machine learning-based genomic AST classifiers, we explore the impact of sequenc-
ing depth and technology, metagenome complexity, and bioinformatics processing approaches on
AST accuracy. By using an optimized metagenomics assembly and binning workflow, MG-AST
achieved balanced accuracy within 5.1% of isolate-derived genomic AST. For poly-microbial infec-
tions, taxonomic sample complexity and relatedness of taxa in the sample is a key factor influencing
metagenomic binning and downstream MG-AST accuracy. We show that the reassignment of puta-
tive plasmid contigs by their predicted host range and investigation of whole resistome capabilities
improved MG-AST performance on poly-microbial samples. We further demonstrate that machine
learning-based methods enable MG-AST with superior accuracy compared to rule-based approaches
on simulated native patient samples.

Keywords: antimicrobial resistance; antimicrobial susceptibility testing; machine learning; bioinfor-
matics; NGS; clinical metagenomics

1. Introduction

Antimicrobial resistance (AMR) is a growing public health concern. The number of
deaths due to bacterial infections is projected to exceed 10 million per year by 2050 [1].
Antimicrobial susceptibility testing (AST) is routinely performed using growth-based
phenotypic methods, which require the culturability of the pathogen in question. With
the availability of bacterial sequencing, methods that infer AMR based on whole-genome
sequencing data have been developed and demonstrated to be accurate for many pathogens
and antimicrobials [2].

Genomic AST software predicts AMR either through rule-based or machine learning
(ML) algorithms. For the former, decision rules based on the presence of AMR markers
in a pathogen’s genome are used to infer resistance [3,4]. For the latter, computational
models are trained on a collection of pathogen genomes paired with reference AST data
to learn the relationship between genomic information and susceptibility/resistance [5–8].
The performance of genomic AST methods has repeatedly been shown to match clinical
diagnostic performance criteria for many organisms and antibiotics [3–5,9,10]. Critical
for genomic AST is the taxonomic identification of a (poly-)microbial sample to select the
appropriate set of decision rules or ML models. A further constraint is a requirement
for the availability of whole genomes for prediction, for example, via pathogen isolation
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and whole-genome sequencing, incurring significant labor and limiting the time to result.
Genomic AST on metagenomics data, i.e., directly from native specimens, offers shorter
turnaround times but remains an unsolved challenge. Compared to isolate sequencing,
metagenomics data encompasses sequencing reads from the host, the host’s normal flora,
contaminant species, and one or more target pathogens of varying sequencing coverage
and requires additional computational pre-processing.

Metagenomic AST (MG-AST) software could be based on decision rules broadly appli-
cable to a range of pathogen taxa and combinations thereof or on ML classifiers trained on
metagenomic sequencing data from diverse taxa to enable discrimination of the metage-
nomic context and accurate resistance calling. Both approaches are limited by the lack of
clinical metagenomic data paired with reference AST information of constituent pathogens.

As a workaround, genomic AST software developed for isolate sequencing data
could be enabled for MG-AST through appropriate pre-processing of sequencing reads,
i.e., a classical genome-centric metagenomics workflow. Genome-centric metagenomics
encompasses first the assembly of all reads from a metagenomic sequencing run into a
singular large metagenomic assembly. Subsequently, contigs are split into metagenomic
bins putatively representing genomes of distinct microbial populations in the input sample.
This is performed using cues evident within assembled contigs pointing to their provenance,
including but not limited to the following: tetranucleotide frequency, presence of universal
marker genes, and differential coverage of contigs in the input read data [11]. Metagenomic
assembly and binning establishes the mapping between genomic data and originating
bacterial populations required by genomic AST software. One limitation is the accuracy
and comprehensiveness of metagenomics bins. Studies have shown that the metagenomic
assembly of plasmid contigs and AMR marker genes is significantly less effective than for
general bacterial chromosomes [12], potentially leading to a degradation in the sensitivity
of resistance predictions.

In this work, we investigate the performance of metagenomic binning for the applica-
tion of MG-AST techniques on simulated clinical metagenomics data. While datasets exist
with paired AST and WGS data of bacterial isolates [13], similarly characterized clinical
metagenomic datasets are scarce and may not be optimal for MG-AST validation purposes
as unculturable pathogens represent a significant fraction of clinical cases [14]. The set of
organisms, which can be isolated from a native sample, may misrepresent true sample di-
versity and lead to faulty reference AST assignments to the whole metagenome. We instead
opt for a simulation-based experimental setup where fully determined metagenomes are
created to replicate the bacterial and host background of complicated urinary tract infec-
tions, containing reads derived from isolate genome assemblies with known AST status.
This allows us to vary parameters pertaining both to sequencing itself, such as sequencing
technology and sequencing depth, as well as downstream bioinformatic analysis, such as
settings for metagenomic binning.

2. Results
2.1. Mono-Infection Scenarios
2.1.1. Impact of Sequencing Depth and Human Background Reads on MG-AST Accuracy

For each E. coli genome from Ferreira et al. [10], five sets of 300 Mbp paired-end short
read datasets were simulated with CAMISIM, containing an increasing fraction of on-target
E. coli reads from 12.5% (7.5× coverage of the pathogen) to 96% (55× coverage of the
pathogen). MG-AST was performed directly on metagenome-assembled genomes after
the depletion of human reads by alignment to the human reference genome. Resistance
prediction was performed using both the rule-based ResFinder 4 [3] and ML-based WGS-
AST [5] methods (see Methods Section 4.6). No significant performance differences between
MG-AST methods applied to metagenome assemblies and the originating isolate genome
assemblies were apparent, and a drop in predictive accuracy was found only at the lowest
assayed on-target coverage (7.5×) (Supplementary Table S1). This indicates that given
a pathogen genome coverage of at least 15×, in silico depletion of reads aligning to the
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human reference genome, as well as the presence of any human-originating reads not
removed by depletion, does not significantly affect the successful assembly of genomic
features used by the tested methods.

2.1.2. MG-AST Accuracy on Simulated E. coli cUTI Metagenomes

Using taxonomic profiles constructed from sequencing reads of two clinical septic
urine samples derived from a female and from a male patient, we defined metagenome
backgrounds to which E. coli reads from isolates with known AST status were inserted. For
short-read data simulation, E. coli genome assemblies from [10] were used as the target
pathogen, and the same size of the data apparent in the original sequencing run of the
septic urine sample (1.18 Gbp) was simulated. For long-read metagenomes, the contigu-
ity of assemblies from [10] was insufficient to simulate realistic long-reads from Oxford
Nanopore Technologies (ONT). Instead, E. coli genomes assembled from long-read sequenc-
ing runs published in either PATRIC or NDARO databases were used [15,16]. Simulated
metagenomes were preprocessed and assembled. From each simulated metagenome, a
single high-quality metagenomic bin identified by Kraken2 as E. coli was extracted, and
MG-AST methods were applied for each of the five selected target antibiotics using opti-
mized MG-AST workflows (see Section 2.2.1 and Methods Sections 4.4–4.6). Classification
performance metrics, namely, balanced accuracy (bACC) as well as a major error (ME) and
very major error (VME) were computed against phenotypic AST results from originating
bacterial isolates (see Methods Section 4.6). The aggregate clinical performance metrics
of MG-AST showed no significant difference in bACC between baseline predictions on
isolate genome assemblies and predictions on metagenomic bins (Figure 1). This indicates
that, given sufficient sequencing depth, MG-AST can achieve performance comparable to
isolate-sequencing-based genomic AST. This was the case both for metagenomes modeled
after a complicated UTI of a male patient with a high relative fraction of pathogen reads
and low bacterial and human background (<1% and 15%, respectively), as well as for
metagenomes derived from septic urine of a female patient, containing a high percentage
(88%) of reads mapping to either human background or vaginal normal flora organisms.
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Figure 1. Performance metrics of MG-AST methods on simulated E. coli mono-infection complicated 
urinary tract infection (cUTI) metagenomes. The height of bars indicates the value taken on by bal-
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mental setting. Metrics are aggregated over 5 antibiotic compounds. (A), performance on simulated 
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Figure 1. Performance metrics of MG-AST methods on simulated E. coli mono-infection complicated
urinary tract infection (cUTI) metagenomes. The height of bars indicates the value taken on by
balanced accuracy (bACC), major error (ME) and very major error (VME) in each investigated
experimental setting. Metrics are aggregated over 5 antibiotic compounds. (A), performance on
simulated short-read datasets. (B), performance on simulated Oxford Nanopore Technologies (ONT)
sequencing datasets. Diamonds indicate baseline value taken on by the metric, obtained on isolate
genome assemblies used to construct metagenomes. Error bars are 95% confidence intervals obtained
by 1000× bootstrapping.
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2.2. Co-Infection Scenarios
2.2.1. MG-AST for Co-Infections with Metagenomic Binning

We investigated whether metagenomic binning-based workflows can support MG-AST
for the resolution of two-species cUTI co-infections. We first investigated the co-infection
of the two most common cUTI pathogens, E. coli and Klebsiella pneumoniae, at equimolar
concentrations (Figure 2). The genome assembly and binning workflow were applied
to 576 simulated cUTI coinfections derived from 18 E. coli, and 32 K. pneumoniae isolate
genome assemblies.
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and AST data from Ferreira et al., 2020 [10].

MG-AST prediction was performed using ResFinder 4 as well as previously published
WGS-AST model artifacts for E. coli and K. pneumoniae, which were trained on publicly
available datasets (termed “WGS-AST (Public)”) [3,5]. Results indicated that relative
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to predictions on isolate genomes, a significant increase in very major error (VME) by
15–20 percentage points (pp) was apparent with the default binning strategy. This increase
was seen for both rule-based ResFinder 4 and ML-based WGS-AST predictions (Figure 3A,B,
“Default binning”). We hypothesized that this uniform loss of sensitivity was due to
a failure to include AMR marker genes in metagenomic bins. AMR genes commonly
reside on mobile genetic elements (MGEs), which have been shown to be binned with
poor efficiency owing to differential nucleotide composition and copy number compared
to the bacterial chromosome [12]. To test this hypothesis, we performed an alignment-
based search of the set of AMR marker genes identified in whole metagenome assemblies
and the metagenomic bins versus the isolate genomes used in metagenome simulation.
On average, isolate genomes contained 212 AMR markers, and, on average, 10.2% of
AMR markers identified in an isolate genome assembly were absent in the corresponding
metagenomic bin. Conversely, only 0.36% of expected AMR markers were absent from
whole metagenome assemblies. This suggests that while metagenome assembly was
successful in capturing the resistome capabilities, AMR markers were lost or misassigned
during metagenomic binning.

Antibiotics 2023, 12, 366 5 of 15 
 

 

MG-AST prediction was performed using ResFinder 4 as well as previously pub-
lished WGS-AST model artifacts for E. coli and K. pneumoniae, which were trained on pub-
licly available datasets (termed “WGS-AST (Public)”) [3,5]. Results indicated that relative 
to predictions on isolate genomes, a significant increase in very major error (VME) by 15–
20 percentage points (pp) was apparent with the default binning strategy. This increase 
was seen for both rule-based ResFinder 4 and ML-based WGS-AST predictions (Figure 
3A,B, “Default binning”). We hypothesized that this uniform loss of sensitivity was due 
to a failure to include AMR marker genes in metagenomic bins. AMR genes commonly 
reside on mobile genetic elements (MGEs), which have been shown to be binned with 
poor efficiency owing to differential nucleotide composition and copy number compared 
to the bacterial chromosome [12]. To test this hypothesis, we performed an alignment-
based search of the set of AMR marker genes identified in whole metagenome assemblies 
and the metagenomic bins versus the isolate genomes used in metagenome simulation. 
On average, isolate genomes contained 212 AMR markers, and, on average, 10.2% of AMR 
markers identified in an isolate genome assembly were absent in the corresponding met-
agenomic bin. Conversely, only 0.36% of expected AMR markers were absent from whole 
metagenome assemblies. This suggests that while metagenome assembly was successful 
in capturing the resistome capabilities, AMR markers were lost or misassigned during 
metagenomic binning.  

 
Figure 3. Performance metrics of genomic AST methods on metagenomic bins derived from simu-
lated E. coli/K. pneumoniae co-infection cUTI metagenomes using different binning and AST predic-
tion settings. Height of the bars indicates values taken on by bACC, ME, and VME in each investi-
gated experimental setting. Metrics are averaged over 5 antibiotic compounds. Legend elements 
correspond with bars in each subfigure by color saturation, from lightest to darkest color. Diamonds 
indicate the mean value taken on by metrics of the tested method on isolate genome assemblies used 
to construct the metagenomes. (A), ResFinder 4 performance; (B), Performance of WGS-AST models 
from [5] trained on public data; (C), Performance of WGS-AST models trained analogously to [5] 
but including proprietary data from ARESdb [13]; (D), Performance of default AREScloud [17,18] 
WGS-AST models (optimized for application to isolate genome assemblies) trained on data as in C 
but using an extended feature space. bACC, balanced accuracy. ME, major error. VME, very major 
error. Error bars are 95% confidence interval obtained by 1000× bootstrapping. 

To counter this and improve the predictive accuracy of MG-AST, we devised post-
processing schemes for metagenomic bins. We enriched bins with high-quality contigs 
excluded at the binning refinement stage by DAS Tool, optionally considering only con-
tigs matching to known plasmids (Figure 3, “+DAS Tool unbinned contigs” and “+DAS 
Tool unbinned plasmids”, respectively). This reduced VME significantly, on average, by 
10 pp while increasing major error (ME) by 2 pp. Retraining ML classifiers on a larger and 
more diverse dataset of bacterial isolate sequencing data derived from ARESdb (models 
termed “WGS-AST (ARESdb)” [13] yielded a significant drop in VME on metagenomic 
bins by nearly 20 percentage points down to 15% (Figure 3C). We then applied WGS-AST 

Figure 3. Performance metrics of genomic AST methods on metagenomic bins derived from simulated
E. coli/K. pneumoniae co-infection cUTI metagenomes using different binning and AST prediction
settings. Height of the bars indicates values taken on by bACC, ME, and VME in each investigated
experimental setting. Metrics are averaged over 5 antibiotic compounds. Legend elements correspond
with bars in each subfigure by color saturation, from lightest to darkest color. Diamonds indicate
the mean value taken on by metrics of the tested method on isolate genome assemblies used to
construct the metagenomes. (A), ResFinder 4 performance; (B), Performance of WGS-AST models
from [5] trained on public data; (C), Performance of WGS-AST models trained analogously to [5]
but including proprietary data from ARESdb [13]; (D), Performance of default AREScloud [17,18]
WGS-AST models (optimized for application to isolate genome assemblies) trained on data as in C
but using an extended feature space. bACC, balanced accuracy. ME, major error. VME, very major
error. Error bars are 95% confidence interval obtained by 1000× bootstrapping.

To counter this and improve the predictive accuracy of MG-AST, we devised post-
processing schemes for metagenomic bins. We enriched bins with high-quality contigs
excluded at the binning refinement stage by DAS Tool, optionally considering only contigs
matching to known plasmids (Figure 3, “+DAS Tool unbinned contigs” and “+DAS Tool
unbinned plasmids”, respectively). This reduced VME significantly, on average, by 10 pp
while increasing major error (ME) by 2 pp. Retraining ML classifiers on a larger and more
diverse dataset of bacterial isolate sequencing data derived from ARESdb (models termed
“WGS-AST (ARESdb)” [13] yielded a significant drop in VME on metagenomic bins by
nearly 20 percentage points down to 15% (Figure 3C). We then applied WGS-AST classifiers
operating on an extended feature space, which utilizes DNA k-mer counts instead of DNA
k-mer occurrences, as well as protein k-mer counts and protein mutational scoring features
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(Figure 3D, models termed “WGS-AST (AREScloud)”) [17,18]. While performing well on
isolate genomes themselves, overall performance on metagenomic bins was below that of
“WGS-AST (ARESdb)” models. Complex feature space models proved unstable upon the
addition of low-quality unbinned contigs not included in any initial metagenomic bins,
causing a degradation of bACC by nearly 20 pp (Figure 3D, “+all unbinned contigs”).

We thus chose models trained as in [5] but with extended training data for experi-
mentation with metagenomic data, maintaining prediction with extended feature space
models on isolate genome assemblies as our baseline performance. We chose to continue
with postprocessing metagenomic bins by the addition of all contigs excluded by the DAS
Tool, a strategy that exhibited overall optimal predictive performance across binning and
MG-AST algorithm selection (Figure 3C, “+DAS Tool unbinned contigs”). Using this bin-
ning post-correction strategy, the average fraction of expected but missing AMR markers
per metagenomic bin was lowered from 10.2% to 8.3%.

While overall predictive performance benefited from the enrichment of metagenomic
bins with high-quality unbinned contigs, it may introduce spurious correlations between
predictions of individual bins in a metagenome. To quantify the magnitude of this effect,
we calculated the Pearson correlation of predicted and true resistance status of bins within
metagenomes with default binning and binning under the inclusion of unbinned contigs.
Results showed a significant positive correlation across the two major pathogen bins
within metagenomes already for the default binning strategy (Figure 4A,B), indicating the
transfer of resistance markers. The strength of spurious correlations was increased with
the chosen binning optimization strategy (Figure 4C,D), which was deemed acceptable
due to the overall increase in predictive accuracy and correlation strength between the true
and predicted phenotypes of individual bins. Overall, ResFinder 4 predictions exhibited
stronger spurious correlation across bins than WGS-AST predictions.
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Figure 4. Pearson correlation of True and Predicted AST status of metagenomic bins in E. coli/K.
pneumoniae co-infection metagenomes. (A,B), correlation for WGS-AST and ResFinder 4 classifiers,
respectively, on metagenomes binned with default settings. (C,D), correlation for WGS-AST and
ResFinder 4 classifiers, respectively, on metagenomic bins with added DAS Tool unbinned contigs. EC,
Escherichia coli. KP, Klebsiella pneumoniae. (T), true AST status. (P), predicted AST status. Correlations
with significance at p < 0.05 indicated with asterisk.
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Using thus optimized settings, WGS-AST and ResFinder 4 reached relative balanced
accuracy (bACC) within 5 and 3 percentage points of predictive performance on isolate
genome assemblies, respectively. The absolute bACC of WGS-AST exceeded that of Res-
Finder 4 by 9.4 and 7.5 pp on isolate genome assemblies and metagenomic bins, respectively.
This was unsurprising, as no in silico AST panel existed in ResFinder 4 for K. pneumoniae,
and instead low-confidence taxon-unspecific ResFinder calls were used. Performance
differences between isolate and metagenomic bins for rule- and ML-based methods in E.
coli were non-significant (see Supplementary Table S2).

Several metagenomic binning tools used in this work utilize taxon-specific genomic
signatures such as tetranucleotide frequencies [19] and single-copy marker genes [20]
to accurately split contigs into draft metagenomic bins. We thus investigated the effect
of taxonomic relatedness of pathogens on the effectiveness of binning-enabled MG-AST.
We repeated co-infection metagenome experiments with two more distantly related taxa,
namely, A. baumannii and K. pneumoniae, using optimized binning settings derived from the
previous experiment. In total, 608 metagenomes were simulated using 19 A. baumannii and
32 K. pneumoniae isolate genomes. As there was no in silico AST panel for either organism
in ResFinder 4, the resulting predictive accuracy of ResFinder 4 in this experiment was
significantly below that of WGS-AST on both isolate assemblies and metagenomic bins.
Thus, focusing on WGS-AST performance, we observed bACC to be 3.4 pp below that of
the corresponding isolate genome WGS-AST. This constitutes a 1.5 pp increase compared
to the previous experiment, which investigated two more closely related taxa. Importantly,
this increase was not solely due to higher overall performance of WGS-AST on A. baumannii
compared to E. coli, as the performance on K. pneumoniae metagenomic bins was improved
by 3.4 pp over the previous experiment (see Supplementary Table S2). We again compared
the AMR marker sets apparent in metagenomic bins and whole metagenomes to those
of their corresponding input isolate genome assemblies. On average, isolate genomes
contained 172 AMR marker genes, and only on average 1.66% of markers were lost during
processing of A. baumannii/K. pneumoniae metagenomic bins, with, on average, 0.17% of
expected markers absent from whole metagenome assemblies. These results indicate that
metagenomic binning was more successful in correctly assigning AMR markers than in the
previous experiment.

Offerings by Illumina remain the dominant sequencing technology used in clinical
applications, with 90% of sequencing runs newly submitted to SRA in 2021 having been
performed on Illumina devices [21]. However, long-read sequencing paradigms spear-
headed by Pacific Biosciences (PacBio) and ONT are increasingly evaluated as alternatives.
We repeated co-infection experiments of E. coli and K. pneumoniae using simulated metage-
nomic long reads and found that the optimal binning strategy devised with short-read
metagenomes caused a relative increase in false resistance calls. We reasoned that since
genome contiguity achieved with long-read sequencing data was significantly higher than
with short-read data, the severity of misassigning unbinned contigs would be increased
as well. We thus devised an additional binning correction scheme. We applied the MOB-
recon tool to all finished bins derived from long-read metagenomes, noting the predicted
taxon of origin for thus identified plasmid contigs. We marked any contig exhibiting a
discrepant taxon of origin compared to its containing metagenomic bin as re-assignable.
Reassignment was then performed for contigs where a metagenomic bin matching the
predicted taxon of origin (up to genus level) was identified in the metagenome too. Using
this strategy, a relative bACC of AST determination from metagenomic bins compared to
isolate genome assemblies of 4.6 and 6 percentage points was observed for WGS-AST and
ResFinder 4, respectively (see Supplementary Table S2). This is comparable to performance
differences observed for short-read data. Analysis of AMR marker sets obtained from
metagenomic bins, resistomes and isolate assemblies showed that inclusion of marker
genes into metagenomic bins was improved compared to short-read experiments. While
the overall average number of AMR markers identified per isolate assembly was compa-
rable with 215, on average, only 1.82% of marker genes were missing from metagenomic
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bins. Whole metagenome assemblies were missing a fraction of AMR markers (0.29%),
comparable to short-read experiments.

Finally, we investigated three-species cUTI co-infection scenarios using ten genomes
per pathogen taxon, which were selected manually from datasets used in short-read
metagenome experiments (see Methods Section 4.2). Performance metrics indicated a
relative performance differential of 5 and 13 percentage points in bACC compared to isolate
genomes for WGS-AST and ResFinder 4, respectively (see Supplementary Table S2).

2.2.2. Resolving Co-Infection Scenarios with Resistome Analysis

Genome-level AST assignments are desirable, particularly in the presence of commen-
sal taxa, which may contribute to the overall resistome of the sample while not being of
major diagnostic importance. Given sufficiently low metagenome complexity and sufficient
coverage for retrieval of high-quality metagenomic bins, MG-AST performance approached
accuracy levels achieved on isolate genome assemblies. As is apparent from the investi-
gation of AMR marker presence, loss of genomic information at the binning stage plays a
significant role in explaining residual performance differences. Thus, in addition to AST
calls made at the metagenomic bin level, we evaluated the performance of genomic AST
methods directly on whole metagenome assemblies. Since taxon assignments are required
by the assayed genomic AST methods, we applied each method to each metagenome for
each pathogen taxon identified by binning. To obtain a single resistance or susceptibility
call per tested compound, we evaluated two schemes to merge predictions. Firstly, we
evaluated merging predictions such that any resistance call led to overall resistance for
the whole resistome (the “max” strategy). However, WGS-AST classifiers yield not only a
binary S/R call but instead the calibrated probability of resistance (0.0–1.0), which can be
interpreted as the confidence of the ML model in its prediction, given the supplied data. We
thus evaluated another strategy termed “most certain”, where WGS-AST predictions were
merged by selecting the prediction with the confidence score furthest from the decision
boundary of 0.5. Resistome AST performance metrics showed the “most certain” strategy
to be slightly superior to the “max” strategy with respect to overall bACC but exhibiting a
higher overall VME. The “max” strategy exhibited a bACC drop relative to averaged isolate
performance by 3.3 percentage points, slightly better than individual AST calls made on
metagenomic bins (Table 1 and Supplementary Table S2).

Table 1. Summary statistics of genomic AST methods applied to simulated short-read metagenomes
derived from data published in [10]. Performance metrics for metagenomic bins and isolate assem-
blies are aggregated over all short-read experiments (male and female E. coli mono-infection, K.
pneumoniae/E. coli co-infection, K. pneumoniae/A. baumannii co-infection, and three-species co-infection)
and 5 assayed antibiotic compounds. Metrics for resistomes are aggregated over resistome predictions
as above and were scored against the true resistome as defined by the AST status of genomes used in
the metagenome’s simulation. Values in brackets indicate 95% CI obtained by 1000× bootstrapping.

Method Data Type bACC ME VME

WGS-AST
(AREScloud) isolate assembly 0.956 (0.941–0.969) 0.046 (0.032–0.061) 0.042 (0.021–0.071)

WGS-AST
(ARESdb) metagenomic bins 0.915 (0.912–0.919) 0.057 (0.054–0.061) 0.112 (0.106–0.119)

WGS-AST
(ARESdb) resistome (max) 0.923 (0.917–0.928) 0.136 (0.126–0.147) 0.019 (0.016–0.022)

WGS-AST
(ARESdb)

resistome (most
certain) 0.926 (0.922–0.931) 0.023 (0.019–0.029) 0.124 (0.116–0.131)

ResFinder 4 isolate assembly 0.811 (0.781–0.837) 0.184 (0.156–0.213) 0.195 (0.149–0.246)
ResFinder 4 metagenomic bin 0.711 (0.706–0.717) 0.274 (0.267–0.28) 0.303 (0.294–0.312)
ResFinder 4 resistome (max) 0.812 (0.804–0.819) 0.284 (0.269–0.298) 0.093 (0.086–0.1)

3. Discussion

In this work, we investigated the potential of applying genomic AST methods to
sequencing data derived from native clinical samples. We confirm that initial data quality, as
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well as the accuracy of metagenomic binning are of pivotal importance for the performance
of downstream applications such as genomic AST. We derived a metagenomic binning
workflow, which prioritizes the inclusion of AMR marker genes over bin purity to optimize
the balanced accuracy of AST determination. We present a workflow that, for native
samples with low bacterial complexity and sufficient on-target sequencing depth, exhibits
on-par performance with genomic AST on isolate sequencing data. Investigating UTI
co-infections, we find that using the same optimized workflow, an average performance
differential of between 3.4 and 4.6 percentage points bACC was apparent, mostly caused
by an increase in false susceptibility AST calls.

Correct and complete binning of AMR marker genes and accuracy of AST determina-
tion were impaired by pathogen-relatedness in co-infection experiments. This limitation
of default genome binning techniques could be partially addressed for the purpose of
genomic AST by supplementing metagenomic bins with high-quality unbinned genomic
material and by reassignment of putative plasmid contigs with the known taxon of origin.
In this work, we experimented with two widely used metagenomic binning tools. Further
improvements may be possible by adding additional binning signals to serve as input to
DAS Tool. We additionally show that an improvement in the sensitivity of prediction can
be realized by whole resistome analysis, albeit sacrificing the ability to distinguish the
taxon from which resistance originated.

Comparing the performance of MG-AST on short-read and long-read metagenomic
data, we find that relative MG-AST performance was comparable. We note the improved
recovery of AMR markers into metagenomic bins with simulated long-read data, which
may support further improvements in genomic AST accuracy in the future.

We compared two previously published genomic AST algorithms designed to operate
on isolate sequencing data. Results showed that while performance in simple mono-
infection settings of E. coli was comparable, our ML-based technique performed better on
bins derived from two- and three-species co-infection metagenomes. ResFinder 4 exhibited
an a priori lower performance on isolate genomes of K. pneumoniae and A. baumannii,
taxa for which the tool provides no manually curated databases and instead falls back on
taxon-unspecific prediction based on the presence/absence of resistance genes. However,
the relative performance drop from E. coli isolate genomes to metagenomic bins was larger
for ResFinder 4. We show that the spurious correlation between true and predicted AST
statuses across genomes was more severe for ResFinder 4 predictions than for WGS-AST
classifiers, confirming that incorrectly binned genomic information differentially affected
the two methods. A potential explanation for this divergence is the reliance of ResFinder
on a defined set of decision rules predicated on the identification of causal AMR markers
identified within the genome, while WGS-AST classifiers utilize a larger number of decision
criteria (DNA k-mer presence patterns learned from training data). In principle, this allows
WGS-AST classifiers to use all AMR-contributing genomic information present in a sample
and to recover from the loss of a single resistance-contributing gene.

In this work, we show that, under the tested conditions, MG-AST performance is
comparable to genomic AST from bacterial isolate sequencing. Cultivation and isolation are
typically the most time-consuming parts of a classical phenotypic AST workflow, requiring
up to several days, depending on the growth rate of the pathogen(s) [22]. Metagenomic
pathogen ID and AST promise to eliminate these steps entirely, thus removing a hard lower
limit on the time-to-result of AST. At the same time, long-read sequencing devices allow
the streaming of data to downstream analyses already during sequencing and without user
intervention, potentially enabling overall processing from sample preparation to MG-AST
and ID results in a single day [23,24]. The total cost of either classical phenotypic AST or
MG-AST significantly depends on the applied technologies and workflows. However, the
overall positive impact of microbial sequencing on healthcare economics has been shown
in several studies [25,26].
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4. Materials and Methods
4.1. Taxonomic Profiles, Genomic and Antimicrobial Susceptibility Data

Relative abundances of contaminant species and human background read used in sim-
ulated cUTI metagenomes were modeled after bulk Illumina sequencing runs of a recurrent
clinical septic urine mono-infection of Escherichia coli sampled from a male patient [27] and
a septic urine mono-infection of Enterococcus faecalis sampled from a female patient (see
Supplementary Table S3). Taxonomic profiles for metagenome simulation were constructed
with Kraken2 [28]. Sequencing reads and the number of reads assigned at the species level
were noted for all species thus identified. Species with less than 1000 reads were discarded.
Finally, reads identified as belonging to the primary pathogen at the species level were
removed from the profile. The fraction of remaining bacterial reads as well as of human
background reads was computed as the number of reads assigned to that taxon divided by
the total number of reads in the sequencing run.

Reference genomes of background and contaminant species were downloaded from
NCBI RefSeq (see Supplementary Table S3) Genome assemblies of E. coli, K. pneumoniae,
and A. baumannii, which were used in simulation of metagenomes, were retrieved from
ARESdb (see Supplementary Table S4 for a list of corresponding NCBI accessions). All AST
data as well as genome assemblies used for training of WGS-AST machine learning models
were retrieved from ARESdb. Genome assemblies used for model training were selected to
exclude genomes used in metagenome simulation [13].

4.2. Metagenome Simulation

Short-read simulation was performed using CAMISIM 1.3 [29] and the ART [30] back-
end with the default MBARC-26 error profile, causing the simulator to output 2 × 150 bp
paired-end reads with an error profile modeled after the Illumina HiSeq 2500 sequencer.
Long-read simulation was performed using PBSIM2 [31]. To obtain a set of metage-
nomic long reads required by PBSIM2 to sample error profiles and read lengths from,
raw FAST5 files with ENA accession number ERR2887850 (an ultra-deep ONT sequenc-
ing run of a mock microbial community [32]) were downloaded and basecalled with
guppy 6.2.7 using the arguments “-c dna_r9.4.1_450 bps_sup.cfg –compress_fastq -q
32000 –chunks_per_runner 768”. Long read simulation was then performed for each input
genome of a to-be-created metagenome using the sampling-based simulation method and
arguments “–difference-ratio 23:31:46 –depth X” where X was the desired coverage depth
in the resulting metagenome.

Genome assemblies from Ferreira et al. [10] (for experiments with simulated short-
read metagenomes) and from public AMR databases (for experiments with simulated
long-read datasets) were used to simulate reads. The Ferreira et al. dataset in particular
was selected as it provides uniformly sequenced and assembled genomes for three key
uropathogenic species. For the investigation of two- and three-species cUTI co-infections,
genome assemblies were deduplicated on the multi-locus sequence type (MLST), and
genomes of the two or three species under investigation were paired up to form the
cartesian product of the input genome sets. Metagenomic sequencing reads were then
simulated using the male patient cUTI species profile such that the overall fraction of
reads occupied by E. coli in the original sequencing run was shared among the pathogen
genomes in a ratio determined by the experimental setup. For the simulation of three-
species metagenomes, ten isolates were selected from isolates of each species previously
used in two-species metagenomes. Using the five antibiotic compounds investigated in this
work, we defined the following three categories of samples: “highly susceptible”, featuring
≤ 1 resistant calls; “highly resistant”, featuring ≥ 4 resistant calls; “mixed”, featuring
2 or 3 resistant calls. For each species, the proportions of samples falling into each of these
categories were calculated, and samples were picked in a random stratified manner to best
represent the original proportions in the retained ten samples, requiring at least one sample
to be picked in each category.
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4.3. WGS-AST Model Selection and Training

WGS-AST model artifacts trained on public data from Lüftinger et al. [5] (“WGS-
AST (Public)”) using the XGBoost algorithm [33] were selected to cover five major classes
of antibiotic compounds (selecting the compounds gentamicin, ciprofloxacin, cefepime,
ceftazidime, and imipenem) and the three pathogens commonly encountered in cUTI,
which were used in metagenome simulation. To investigate the impact of training set size
on the ML model performance, models were retrained on ARESdb, a large and diverse set of
bacterial isolates [13] as described in [5] (models being referred to as “WGS-AST (ARESdb)”).
For retrieval of optimal WGS-AST predictions from short-read isolate genome assemblies
and to investigate the impact of model feature space complexity on the accuracy of MG-AST
predictions, we selected models with matching compound profiles currently deployed
to the AREScloud web application [18] (models referred to as “WGS-AST (AREScloud)”).
These models were trained with data from ARESdb equivalent to “WGS-AST (ARESdb)”
models but using an extended feature space described in [17].

4.4. Pre-Processing and Assembly of Simulated Metagenomes

Simulated metagenomic reads for each experimental condition and each combination
of input genome assemblies were pre-processed and assembled into whole metagenome
assemblies using one of two workflows, depending on the sequencing technology. For
simulated paired-end short read data, reads were first subjected to depletion of human
background reads with Bowtie 2.4.5 [34], retaining only reads which did not align con-
cordantly to the human GRCh38 reference genome. Subsequently, reads were qual-
ity filtered and trimmed using Trimmomatic 0.39 [35] with parameters “ILLUMINA-
CLIP:adapters.fa:2:30:10 LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15 MINLEN:36”.
Host-depleted and filtered reads were then assembled using SPAdes 3.15.4 [36] with the
metaspades.py workflow and default settings. For simulated single-end long-read data,
FASTQ files were first subjected to depletion of human background reads with Minimap
2.24 [37], retaining only reads which did not align with the human GRCh38 reference
genome. Subsequently, reads were quality filtered by nanofilt 2.8 [38], with parameters
“-q 7”. Host depleted and filtered reads were then assembled using Flye 2.9 [39] with
parameters “–iterations 2 –meta –nano-hq” and assemblies were polished with Oxford
Nanopore Medaka 1.6.1 using parameters “-m r941_min_sup_g507” [32,40].

4.5. Metagenomic Binning and Taxon Assignment

We adopted the best-practices nf-core/mag computational pipeline for the purpose of
metagenomic binning [41]. Assembled contigs were grouped into metagenomic bins using
both MaxBin 2.2.7 [42] with default settings and MetaBAT 2.15 [19] with parameters “—
saveCls –seed 42 –minContig 1500”. For metagenomic binning of assemblies derived from
simulated long reads, use of contig coverage information was disabled by passing a zeroed-
out coverage matrix to MaxBin and by not passing the coverage matrix to MetaBAT. All
bins thus obtained were refined by DASTool 1.1.5 [20] with parameters “–score_threshold
0.3 –write_bins –write_unbinned –write_bin_evals”, yielding deduplicated high-quality
metagenomic bins as well as unbinned contigs. Post-processing of metagenomic bins was
performed according to the experimental setting. Since downstream MG-AST analyses
require a taxonomy to be assigned to input samples, Kraken 2 [28] was then applied to
metagenomic bins using a Minikraken database, and taxonomy was assigned by scoring the
sum of nucleotides assigned at the species level across all sequences in the metagenomic bin
and selecting the most highly abundant taxon. Taxonomic assignments were transferred to
the originating whole metagenome assemblies (allowing for the potential assignment of
multiple species to a single metagenome assembly). To obtain host taxon assignments of
plasmids, the MOB-recon tool from MOBsuite 3.1.0 [43] was used with default settings.
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4.6. MG-AST Analysis

Whole genome assemblies and derived metagenomic bins were grouped by their as-
signed taxon. WGS-AST predictions with “WGS-AST (Public)” and “WGS-AST (ARESdb)”
models were applied as in [5]. WGS-AST models trained with an extended feature space en-
compassing protein k-mers, AMR marker detection, and protein mutation scoring, termed
“WGS-AST (AREScloud)”, were applied as in [17]. ResFinder 4 [3] was applied to all input
fasta files, with default settings and using both ResFinder and PointFinder databases as
available. Resistance calls made by WGS-AST and ResFinder were scored against reference
phenotypic AST to obtain absolute clinical performance metrics, namely, balanced accuracy
(bACC, equivalent to the mean of sensitivity and specificity), major error (equivalent to
1-specificity) and very major error (equivalent to 1-sensitivity). Metrics were then also
compared with optimal baseline performance metrics obtained on isolate genome assem-
blies used in metagenome simulation to gauge any performance penalty incurred by the
experimental setting. Unless noted otherwise, WGS-AST predictions were obtained using
“WGS-AST (ARESdb)” models with the exception of baseline WGS-AST predictions for
short-read isolate genome assemblies, for which predictions were obtained using “WGS-
AST (AREScloud)” models. AMR marker genes were determined in genome assemblies
and metagenomic bins as previously described [44].

5. Conclusions

Using a simulation-based approach, we show that existing genomic AST methods
can achieve near-equivalent performance on metagenomic and isolate sequencing data for
several pathogens associated with cUTI infections. For patient samples exhibiting clinically
relevant pathogen load for cUTIs and low sample complexity, MG-AST methods may
reduce time-to-result and complement routine AST. Pending in vitro validation, we believe
our results guide further research into the application of clinical metagenomic sequencing
for infectious disease diagnostics.
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