Antimicrobial Consumption in the Livestock Sector in Bhutan: Volumes, Values, Rates, and Trends for the Period 2017–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Livestock Population
2.2. Population Correction Unit
2.3. Antimicrobial Procurement and Consumption
2.4. Cost of Antimicrobials Consumed
3. Results
3.1. Livestock Populations
3.2. Population Correction Units
3.3. Antimicrobial Consumption
3.3.1. Classes of Antimicrobials
3.3.2. Annual Antimicrobial Consumption in the Livestock Sector
3.3.3. Comparisons of Rates of Antimicrobial Consumption in Livestock in Bhutan with Those in Other Countries
3.4. Annual Expenditure on Veterinary Antimicrobials
4. Discussion
- The governance of antimicrobial use in Bhutan (in both human and animal health) by the Medicine Act of the Kingdom of Bhutan 2003 and the Medicine Rules and Regulations of Bhutan 2019. The legal provisions in this act and these rules and regulations are regulated by the Drug Regulatory Authority of Bhutan. There is an appreciable level of compliance with these regulations by all stakeholders;
- Guidelines in the livestock sector to ensure appropriate use of antimicrobials in livestock production systems. These include Standard Treatment Guidelines, Antibiotic Treatment Guidelines, draft Infection Prevention and Control Guidelines, the Animal Feed Standard, and the National Veterinary Drug Formulary;
- Veterinary antimicrobials in Bhutan are prescription-only medicines. Only certified veterinarians can prescribe antimicrobials. No antimicrobials are available over-the-counter.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Statistics Bureau. 2019 Labour Force Survey Report Bhutan; National Statistics Bureau: Thimphu, Bhutan, 2019; p. 127.
- Department of Agriculture. Twelfth Five Year Plan 2018–2023; Department of Agriculture, Ministry of Agriculture and Forests, Royal Government of Bhutan: Thimphu, Bhutan, 2019.
- National Statistics Bureau. Statistical Yearbook of Bhutan; National Statistics Bureau, Royal Government of Bhutan: Thimphu, Bhutan, 2017.
- National Statistics Bureau. Statistical Yearbook of Bhutan; National Statistics Bureau, Royal Government of Bhutan: Thimphu, Bhutan, 2018.
- National Statistics Bureau. Statistical Yearbook of Bhutan; National Statistics Bureau, Royal Government of Bhutan: Thimphu, Bhutan, 2019.
- National Statistics Bureau. Statistical Yearbook of Bhutan; National Statistics Bureau, Royal Government of Bhutan: Thimphu, Bhutan, 2020.
- National Statistics Bureau. Statistical Yearbook of Bhutan; National Statistics Bureau, Royal Government of Bhutan: Thimphu, Bhutan, 2021.
- National Centre for Animal Health. Annual Progress Report for the Fiscal Year 2020–2021; National Centre for Animal Health, Department of Livestock, Ministry of Agriculture and Forests: Thimphu, Bhutan, 2021.
- Chejor, P.; Tenzin, J.; Dorji, J. Regulation of medicines in Bhutan: Current status, challenges and opportunities. Int. J. Drug Regul. Aff. 2018, 6, 54–58. [Google Scholar] [CrossRef]
- Department of Medical Services. National Drug Policy 2007; Department of Medical Services, Ministry of Health, Royal Government of Bhutan: Thimphu, Bhutan, 2007.
- Hillerton, J.E.; Bryan, M.A.; Beattie, B.H.; Scott, D.; Millar, A.; French, N. Use of antimicrobials for food animals in New Zealand: Updated estimates to identify a baseline to measure targeted reductions. N. Z. Vet. J. 2021, 69, 180–185. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Sales of veterinary antimicrobial agents in 31 European countries in 2019 and 2020. In Trends from 2010 to 2020: Eleventh ESVAC Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The World Bank. GDP per Capita, The World Bank 2022. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.
- Koirala, A.; Bhandari, P.; Shewade, H.D.; Tao, W.; Thapa, B.; Terry, R.; Zachariah, R.; Karki, S. Antibiotic use in broiler poultry farms in Kathmandu valley of Nepal: Which antibiotics and why? Trop. Med. Infect. Dis. 2021, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Tahir, M.F.; Ullah, R.W.; Ali, J.; Siddique, N.; Rasheed, A.; Akram, M.; Zaheer, M.U.; Mohsin, M. Quantification and trends of antimicrobial use in commercial broiler chicken production in Pakistan. Antibiotics 2021, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Lambrou, A.S.; Innes, G.K.; O'Sullivan, L.; Luitel, H.; Bhattarai, R.K.; Basnet, H.B.; Heaney, C.D. Policy implications for awareness gaps in antimicrobial resistance (AMR) and antimicrobial use among commercial Nepalese poultry producers. Glob. Health Res. Policy 2021, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low-and Middle-Income Countries. A WHO Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Organisation for Animal Health. OIE List of Antimicrobial Agents of Veterinary Importance; World Organisation for Animal Health: Paris, France, 2018; p. 10. [Google Scholar]
- Australian Strategic and Technical Advisory Group on Antimicrobial Resistance. Importance Ratings and Summary of Antibacterial Uses in Human and Animal Health in Australia; Commonwealth of Australia: Canberra, ACT, Australia, 2018; p. 34. [Google Scholar]
Species | Type | Standard Average Weight (kg) | Description |
---|---|---|---|
Bovine * | Adult bovine | 425 | Average weight of all adult animals |
Heifer bovine | 200 | Also includes young bulls | |
Young bovine | 140 | Up to the age of 1 year | |
Horse | Adult | 400 | Does not include foals |
Pig | 65 | At slaughter age | |
Sheep | 20 | At slaughter age | |
Goat | 20 | At slaughter age | |
Poultry | Chickens | 1 | Includes pullets and adults |
Species | Type | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Bovines | Adult | 229,861 | 241,647 | 232,032 | 213,754 | 226,455 |
Heifer | 52,754 | 52,710 | 51,373 | 50,539 | 62,765 | |
Young | 72,021 | 75,109 | 71,934 | 69,087 | 56,759 | |
Horses | Adult | 18,211 | 17,103 | 16,792 | 14,649 | 12,418 |
Pigs | 18,815 | 24,342 | 20,070 | 17,577 | 22,954 | |
Sheep | 10,444 | 10,858 | 11,466 | 10,793 | 10,694 | |
Goats | 42,689 | 52,227 | 47,735 | 44,119 | 59,577 | |
Poultry | Chickens | 1,118,178 | 1,144,746 | 1,299,810 | 1,383,714 | 1,384,449 |
Total | 1,562,973 | 1,618,742 | 1,751,212 | 1,804,232 | 1,836,071 |
Species | Type | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
Bovines | Adult | 97.75 | 102.85 | 98.60 | 90.95 | 96.05 |
Heifer | 10.6 | 10.60 | 10.20 | 10.20 | 12.60 | |
Young | 10.08 | 10.50 | 10.08 | 10.08 | 7.98 | |
Horses | 7.20 | 6.80 | 6.80 | 6.00 | 7.20 | |
Pigs | 1.24 | 1.56 | 1.30 | 1.17 | 1.50 | |
Sheep/goats | 1.06 | 1.26 | 1.18 | 1.10 | 1.40 | |
Chickens | 1.12 | 1.15 | 1.30 | 1.38 | 1.38 |
Class | Amounts Consumed (kg) | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | |
Aminoglycosides | 14.63 | 9.82 | 2.10 | 17.58 | 25.03 |
Amphenicols | 1.43 | 1.31 | 1.20 | 1.60 | 1.20 |
1st- and 2nd-generation cephalosporins | 66.76 | 15.08 | 24.02 | 0.00 | 1.11 |
3rd- and 4th-generation cephalosporins | 2.81 | 2.99 | 5.23 | 5.42 | 13.36 |
Fluoroquinolones | 3.74 | 4.23 | 7.23 | 3.09 | 4.85 |
Penicillins | 65.40 | 49.65 | 74.94 | 20.68 | 12.63 |
Sulphonamides | 23.56 | 129.51 | 211.18 | 222.52 | 167.51 |
Trimethoprim | 27.21 | 23.74 | 38.12 | 37.76 | 29.30 |
Tetracyclines | 285.15 | 295.10 | 95.58 | 59.49 | 105.58 |
Others * | 8.17 | 82.01 | 109.60 | 94.33 | 127.31 |
Total (kg) | 498.86 | 613.43 | 569.20 | 462.47 | 487.89 |
2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|
Total mass of antimicrobials (kg) | 498.86 | 295.10 | 569.20 | 462.47 | 487.89 |
Livestock population size (PCU × 1000) | 129.05 | 134.72 | 129.46 | 120.88 | 128.11 |
Rate of antimicrobial consumption (including horses) | 3.87 | 4.55 | 4.40 | 3.83 | 3.81 |
Rate of antimicrobial consumption (excluding horses) | 4.09 | 4.80 | 4.64 | 4.03 | 4.04 |
Class | Rate of Consumption (mg/PCU) | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | |
Aminoglycosides | 0.11 | 0.07 | 0.02 | 0.15 | 0.20 |
Amphenicols | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
1st- and 2nd-generation cephalosporins | 0.52 | 0.11 | 0.19 | 0.00 | 0.01 |
3rd- and 4th-generation cephalosporins | 0.02 | 0.02 | 0.04 | 0.04 | 0.10 |
Fluoroquinolones | 0.03 | 0.03 | 0.06 | 0.03 | 0.04 |
Penicillins | 0.51 | 0.37 | 0.58 | 0.17 | 0.10 |
Sulphonamides | 0.18 | 0.96 | 1.63 | 1.84 | 1.31 |
Trimethoprim | 0.21 | 0.18 | 0.29 | 0.31 | 0.23 |
Tetracyclines | 2.21 | 2.19 | 0.74 | 0.49 | 0.82 |
Others * | 0.06 | 0.61 | 0.85 | 0.78 | 0.99 |
Class | Cost (USD) | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | |
Aminoglycosides | 11,587 | 3067 | 4041 | 4146 | 2859 |
Amphenicols | 432 | 455 | 453 | 604 | 453 |
Cephalosporins | 13,429 | 3531 | 6060 | 2319 | 5484 |
Fluoroquinolones | 1095 | 1133 | 3121 | 1649 | 1816 |
Penicillins | 11,330 | 11,457 | 9261 | 9766 | 17,977 |
Sulphonamides/trimethoprim | 15,293 | 20,719 | 42,848 | 36,224 | 30,399 |
Tetracyclines | 17,753 | 14,146 | 8551 | 1516 | 9554 |
Others * | 3008 | 4628 | 2203 | 3723 | 3476 |
Total | 73,927 | 59,135 | 76,538 | 59,948 | 72,017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurung, R.B.; Zangmo, K.P.; Gilkerson, J.R.; Browning, G.F.; Ferdinand, A.S.; Coppo, M.J.C. Antimicrobial Consumption in the Livestock Sector in Bhutan: Volumes, Values, Rates, and Trends for the Period 2017–2021. Antibiotics 2023, 12, 411. https://doi.org/10.3390/antibiotics12020411
Gurung RB, Zangmo KP, Gilkerson JR, Browning GF, Ferdinand AS, Coppo MJC. Antimicrobial Consumption in the Livestock Sector in Bhutan: Volumes, Values, Rates, and Trends for the Period 2017–2021. Antibiotics. 2023; 12(2):411. https://doi.org/10.3390/antibiotics12020411
Chicago/Turabian StyleGurung, Ratna B., Karma P. Zangmo, James R. Gilkerson, Glenn F. Browning, Angeline S. Ferdinand, and Mauricio J. C. Coppo. 2023. "Antimicrobial Consumption in the Livestock Sector in Bhutan: Volumes, Values, Rates, and Trends for the Period 2017–2021" Antibiotics 12, no. 2: 411. https://doi.org/10.3390/antibiotics12020411
APA StyleGurung, R. B., Zangmo, K. P., Gilkerson, J. R., Browning, G. F., Ferdinand, A. S., & Coppo, M. J. C. (2023). Antimicrobial Consumption in the Livestock Sector in Bhutan: Volumes, Values, Rates, and Trends for the Period 2017–2021. Antibiotics, 12(2), 411. https://doi.org/10.3390/antibiotics12020411