Transcriptomic Responses to Polymyxin B and Analogues in Human Kidney Tubular Cells
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed Genes (DEGs) Shared by Polymyxin B, FADDI-251 and FADDI-287
2.2. Polymyxin B Uniquely Induced Signaling Transduction by FGFR2 and MAPK
2.3. Networks Perturbed by Polymyxin B and Analogues
3. Discussion
4. Materials and Methods
4.1. Polymyxin B and Polymyxin Analogues
4.2. Assessment of Cell Viability
4.3. Extraction of mRNA
4.4. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randall, R.E.; Bridi, G.S.; Setter, J.G.; Brackett, N.C. Recovery from colistimethate nephrotoxicity. Ann. Intern. Med. 1970, 73, 491–492. [Google Scholar] [CrossRef] [PubMed]
- Price, D.J.; Graham, D.I. Effects of large doses of colistin sulphomethate sodium on renal function. Br. Med. J. 1970, 4, 525–527. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the last-line polymyxins: Achievements and challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Milne, R.W.; Nation, R.L.; Turnidge, J.D.; Smeaton, T.C.; Coulthard, K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob. Agents Chemother. 2003, 47, 1766–1770. [Google Scholar] [CrossRef] [Green Version]
- Zavascki, A.P.; Goldani, L.Z.; Cao, G.; Superti, S.V.; Lutz, L.; Barth, A.L.; Ramos, F.; Boniatti, M.M.; Nation, R.L.; Li, J. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin. Infect. Dis. 2008, 47, 1298–1304. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Li, J.; Tang, S.; Li, J.; Xiao, X. Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob. Agents Chemother. 2014, 58, 4075–4085. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.; Akter, J.; Rogers, K.L.; Nation, R.L.; Velkov, T.; Li, J. Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob. Agents Chemother. 2015, 59, 2136–2143. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.; Finnin, B.A.; Poudyal, A.; Davis, K.; Li, J.; Hill, P.A.; Nation, R.L.; Velkov, T.; Li, J. Polymyxin B induces apoptosis in kidney proximal tubular cells. Antimicrob. Agents Chemother. 2013, 57, 4329–4335. [Google Scholar] [CrossRef] [Green Version]
- Velkov, T.; Roberts, K.D.; Nation, R.L.; Wang, J.; Thompson, P.E.; Li, J. Teaching ‘old’ polymyxins new tricks: New-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem. Biol. 2014, 9, 1172–1177. [Google Scholar] [CrossRef]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure--activity relationships of polymyxin antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Zhang, Y.; Ma, J.; Dong, Y.; Gao, Q.; Feng, J. Design, synthesis and antimicrobial studies of some polymyxin analogues. J. Antibiot. 2020, 73, 158–166. [Google Scholar] [CrossRef]
- Roberts, K.D.; Zhu, Y.; Azad, M.A.K.; Han, M.L.; Wang, J.; Wang, L.; Yu, H.H.; Horne, A.S.; Pinson, J.A.; Rudd, D.; et al. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat. Commun. 2022, 13, 1625. [Google Scholar] [CrossRef]
- Roberts, K.D.; Wang, J.; Yu, H.; Wang, L.; Lomovskaya, O.; Griffith, D.; Hecker, S.; Dudley, M.; Thompson, P.E.; Nation, R.L.; et al. Developing Safer Polymyxins: Structure-Activity (SAR) and Structure-Toxicity (STR) Relationships of Modifications to Positions 6 and 7. In Proceedings of the ASM Microbe, Boston, MA, USA, 16–20 June 2016. [Google Scholar]
- Bergen, P.J.; Landersdorfer, C.B.; Zhang, J.; Zhao, M.; Lee, H.J.; Nation, R.L.; Li, J. Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: What is new? Diagn. Microbiol. Infect. Dis. 2012, 74, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- Licata, L.; Lo Surdo, P.; Iannuccelli, M.; Palma, A.; Micarelli, E.; Perfetto, L.; Peluso, D.; Calderone, A.; Castagnoli, L.; Cesareni, G. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Res. 2020, 48, D504–D510. [Google Scholar] [CrossRef]
- Li, J.; Nation, R.L.; Kaye, K.S. Polymyxin Antibiotics: From Laboratory Bench to Bedside; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1145. [Google Scholar]
- Azad, M.A.; Roberts, K.D.; Yu, H.H.; Liu, B.; Schofield, A.V.; James, S.A.; Howard, D.L.; Nation, R.L.; Rogers, K.; de Jonge, M.D.; et al. Significant accumulation of polymyxin in single renal tubular cells: A medicinal chemistry and triple correlative microscopy approach. Anal. Chem. 2015, 87, 1590–1595. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.; Azad, M.A.; Wang, J.; Nation, R.L.; Thompson, P.E.; Roberts, K.D.; Velkov, T.; Li, J. Imaging the distribution of polymyxins in the kidney. J. Antimicrob. Chemother. 2015, 70, 827–829. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, S.; Azad, M.A.K.; Roberts, K.D.; Wan, L.; Gong, B.; Yang, K.; Yuan, B.; Uddin, H.; Li, J.; et al. Structure-interaction relationship of polymyxins with the membrane of human kidney proximal tubular cells. ACS Infect. Dis. 2020, 6, 2110–2119. [Google Scholar] [CrossRef]
- Thompson, K.L.; Pine, P.S.; Rosenzweig, B.A.; Turpaz, Y.; Retief, J. Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA. BMC Biotechnol. 2007, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Chiaverini, N.; De Ley, M. Protective effect of metallothionein on oxidative stress-induced DNA damage. Free. Radic. Res. 2010, 44, 605–613. [Google Scholar] [CrossRef]
- Andrews, G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000, 59, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. CMLS 2002, 59, 627–647. [Google Scholar] [CrossRef] [PubMed]
- Yousef, J.M.; Chen, G.; Hill, P.A.; Nation, R.L.; Li, J. Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob. Agents Chemother. 2011, 55, 4044–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, F.; Hoffmann, T.M.; Stretton, C.; Cwiklinski, E.; Taylor, P.M.; Hundal, H.S. Proteasomal modulation of cellular SNAT2 (SLC38A2) abundance and function by unsaturated fatty acid availability. J. Biol. Chem. 2015, 290, 8173–8184. [Google Scholar] [CrossRef] [Green Version]
- Kojima, T.; Shimazui, T.; Hinotsu, S.; Joraku, A.; Oikawa, T.; Kawai, K.; Horie, R.; Suzuki, H.; Nagashima, R.; Yoshikawa, K.; et al. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene 2009, 28, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Jin, W.; Sun, J.; Feng, L.; Lan, H.; Shen, Q.; Ma, Y.; Li, J.; Yue, Y.; Jin, H.; et al. New tumor suppressor CXXC finger protein 4 inactivates mitogen activated protein kinase signaling. FEBS Lett. 2014, 588, 3322–3326. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Dai, D.; Yousafzai, N.A.; Wang, F.; Wang, H.; Zhou, Q.; Lu, H.; Xu, W.; Feng, L.; Jin, H.; et al. CXXC4 activates apoptosis through up-regulating GDF15 in gastric cancer. Oncotarget 2017, 8, 103557–103567. [Google Scholar] [CrossRef] [Green Version]
- Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005, 16, 139–149. [Google Scholar] [CrossRef]
- Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Dailey, L.; Ambrosetti, D.; Mansukhani, A.; Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005, 16, 233–247. [Google Scholar] [CrossRef]
- Roymans, D.; Slegers, H. Phosphatidylinositol 3-kinases in tumor progression. Eur. J. Biochem. 2001, 268, 487–498. [Google Scholar] [CrossRef]
- Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501. [Google Scholar] [CrossRef]
- Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar] [CrossRef] [Green Version]
- Rubinfeld, H.; Seger, R. The ERK cascade: A prototype of MAPK signaling. Mol. Biotechnol. 2005, 31, 151–174. [Google Scholar] [CrossRef]
- Dai, C.; Xiao, X.; Li, J.; Ciccotosto, G.D.; Cappai, R.; Tang, S.; Schneider-Futschik, E.K.; Hoyer, D.; Velkov, T.; Shen, J. Molecular mechanisms of neurotoxicity induced by polymyxins and chemoprevention. ACS Chem. Neurosci. 2019, 10, 120–131. [Google Scholar] [CrossRef]
- Yun, B.; Zhang, T.; Azad, M.A.K.; Wang, J.; Nowell, C.J.; Kalitsis, P.; Velkov, T.; Hudson, D.F.; Li, J. Polymyxin B causes DNA damage in HK-2 cells and mice. Arch. Toxicol. 2018, 92, 2259–2271. [Google Scholar] [CrossRef]
- Roberts, K.D.; Azad, M.A.; Wang, J.; Horne, A.S.; Thompson, P.E.; Nation, R.L.; Velkov, T.; Li, J. Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: Last-line antibiotics against multidrug-resistant Gram-negative bacteria. ACS Infect. Dis. 2015, 1, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Smyth, G.K.; Speed, T. Normalization of cDNA microarray data. Methods 2003, 31, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Pathway | p-Value | FDR | Upregulated | Downregulated |
---|---|---|---|---|
Metallothioneins bind metals | 0.28 × 10−15 | 0.14 × 10−12 | MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X | _ |
Response to metal ions | 0.24 × 10−14 | 0.58 × 10−12 | MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X | _ |
Cellular responses to external stimuli | 0.8 × 10−5 | 0.13 | MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X | CBX8, NUP85, ID1 |
Toll-like Receptor TLR1:TLR2 Cascade | 0.27 × 10−2 | 0.18 | MT1M, MT1L, IKBKB, IRS1 | _ |
Toll-like Receptor 2 (TLR2) Cascade | 0.27 × 10−2 | 0.18 | MT1M, MT1L, IKBKB, IRS1 | _ |
PIPs transport between Golgi and plasma membranes | 0.5 × 10−2 | 0.18 | MT1H | _ |
Signaling by NTRK1 (TRKA) | 0.6 × 10−2 | 0.18 | MT1M, IRS1 | ID1, RRAD |
Toll-like Receptor 4 (TLR4) Cascade | 0.61 × 10−2 | 0.18 | MT1M, MT1L, IKBKB, IRS1 | _ |
The citric acid (TCA) cycle and respiratory electron transport | 0.65 × 10−2 | 0.18 | COQ10B, LHX6, ND2, DLAT | NDUFS2 |
Nuclear events (kinase and transcription factor activation) | 0.78 × 10−2 | 0.18 | MT1M | ID1, RRAD |
Pathway | p-Value | FDR | Upregulated | Downregulated |
---|---|---|---|---|
SHC-mediated cascade: FGFR2 | 3.62 × 10−5 | 0.03 | DUSP2 | C11orf54, FGFR2 |
Signaling by FGFR2 IIIa TM | 5.36 × 10−5 | 0.03 | C11orf54, FGFR2 | |
Downstream signaling of activated FGFR2 | 1.6 × 10−4 | 0.06 | DUSP2 | C11orf54, FGFR2 |
FGFR2 mutant receptor activation | 4.01 × 10−4 | 0.11 | C11orf54, FGFR2 | |
Phospholipase C-mediated cascade; FGFR2 | 6.2 × 10−4 | 0.11 | C11orf54, FGFR2 | |
FGFR2 ligand binding and activation | 7.38 × 10−4 | 0.11 | C11orf54, FGFR2 | |
IGF1R signaling cascade | 8.13 × 10−4 | 0.11 | DUSP2 | C11orf54, FGFR2 |
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 8.87 × 10−4 | 0.11 | DUSP2 | C11orf54, FGFR2 |
PI-3K cascade: FGFR2 | 0.16 × 10−2 | 0.18 | C11orf54, FGFR2 | |
Signaling by FGFR2 in disease | 0.19 × 10−2 | 0.19 | C11orf54, FGFR2 | |
FRS-mediated FGFR2 signaling | 0.24 × 10−2 | 0.19 | C11orf54, FGFR2 | |
MAPK family signaling cascades | 0.13 × 10−2 | 0.16 | DUSP2, CXCL2, JUN, MFSD1, PAK2 | C11orf54, FGFR2, DLG3, PNRC1, SLC37A4, PFKFB4, PSPN, ELF3 |
RAF/MAP kinase cascade | 0.24 × 10−2 | 0.19 | DUSP2, CXCL2 | C11orf54, FGFR2, DLG3, PNRC1, SLC37A4, PFKFB4, PSPN, ELF3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Azad, M.A.K.; Thompson, P.E.; Roberts, K.D.; Velkov, T.; Zhu, Y.; Li, J. Transcriptomic Responses to Polymyxin B and Analogues in Human Kidney Tubular Cells. Antibiotics 2023, 12, 415. https://doi.org/10.3390/antibiotics12020415
Li M, Azad MAK, Thompson PE, Roberts KD, Velkov T, Zhu Y, Li J. Transcriptomic Responses to Polymyxin B and Analogues in Human Kidney Tubular Cells. Antibiotics. 2023; 12(2):415. https://doi.org/10.3390/antibiotics12020415
Chicago/Turabian StyleLi, Mengyao, Mohammad A. K. Azad, Philip E. Thompson, Kade D. Roberts, Tony Velkov, Yan Zhu, and Jian Li. 2023. "Transcriptomic Responses to Polymyxin B and Analogues in Human Kidney Tubular Cells" Antibiotics 12, no. 2: 415. https://doi.org/10.3390/antibiotics12020415
APA StyleLi, M., Azad, M. A. K., Thompson, P. E., Roberts, K. D., Velkov, T., Zhu, Y., & Li, J. (2023). Transcriptomic Responses to Polymyxin B and Analogues in Human Kidney Tubular Cells. Antibiotics, 12(2), 415. https://doi.org/10.3390/antibiotics12020415