Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Size
2.3. Sample Collection, Transportation, and Processing Procedures
2.4. Microbiological Isolation
2.4.1. Isolation and Identification of E. coli
2.4.2. Screening of E. coli Isolates for Antimicrobial Resistance
2.4.3. Polymerase Chain Reaction (PCR) for Tetracycline-Resistant Genes
2.5. Preservation of the Isolates
2.6. Statistical Analysis
3. Results
3.1. E. coli Contamination of Meat Samples
3.2. Antimicrobial Resistance Patterns of Poultry E. coli Isolates
3.3. Multi-Drug Resistance
3.4. Tetracycline-Resistant Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, T.Z.; Bonab, S.F. Antibiotics susceptibility pattern of Escherichia coli strains isolated from chickens with colisepticemia in Tabriz province, Iran. Int. J. Poult. Sci. 2006, 5, 677–684. [Google Scholar]
- Kittana, H.; Gomes-Neto, J.C.; Heck, K.; Geis, A.L.; Segura Muñoz, R.R.; Cody, L.A.; Schmaltz, R.J.; Bindels, L.B.; Sinha, R.; Hostetter, J.M.; et al. Commensal Escherichia coli strains can promote intestinal inflammation via differential interleukin-6 production. Front. Immunol. 2018, 9, 2318. [Google Scholar] [CrossRef] [Green Version]
- Moulin, G.; Cavalié, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C.J. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother. 2008, 62, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 2003, 16, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M. Scenario of Antibiotic Resistance in Developing Countries. In Antimicrobial Resistance—A One Health Perspective; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Levy, K.; Trueba, G.; Cevallos, W.; Trostle, J.; Foxman, B.; Marrs, C.F.; Eisenberg, J.N.S. Effects of Selection Pressure and Genetic Association on the Relationship between Antibiotic Resistance and Virulence in Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 6733–6740. [Google Scholar] [CrossRef] [Green Version]
- Van den Bogaard, A.; London, N.; Driessen, C.; Stobberingh, E.J. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 2001, 47, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Amin, K.B.; Ahaduzzaman, M.; Alam, M.; Faruk, M.S.; Uddin, I. Antimicrobial resistance pattern against E. coli and Salmonella in layer poultry. Res. J. Vet. Pr. 2014, 2, 30–35. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Microbiol. Spectr. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, P.; Forsythe, S.J. Food Hygiene, Microbiology and HACCP; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Adeyanju, G.T.; Ishola, O. Salmonella and Escherichia coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. Springerplus 2014, 3, 139. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.M.; Kappell, A.D.; Elhadidy, M.; ElMougy, F.; Abd El-Ghany, W.A.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Hemeg, H.A.; Moussa, I.M.; et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Imtiaz, M.A.; Sayeed, M.A.; Shaikat, A.H.; Hassan, M.M. Antimicrobial resistance pattern in domestic animal-wildlife-environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BMC Vet. Res. 2020, 16, 302. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.S.; Shiraj-Um-Mahmuda, S.; Hazzaz-Bin-Kabir, M. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. J. Public Health Dev. Ctries. 2016, 2, 276–284. [Google Scholar]
- Khan, M.; Ferdous, J.; Ferdous, M.; Islam, M.; Rafiq, K.; Rima, U.J.P.A. Study on indiscriminate use of antibiotics in poultry feed and residues in broilers of Mymensingh city in Bangladesh. Progress. Agric. 2018, 29, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Grossman, T.H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [Green Version]
- Dean, A. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 2.3.1. 2010. Available online: http://www.openepi.com (accessed on 20 December 2022).
- Parvin, M.S.; Talukder, S.; Ali, M.Y.; Chowdhury, E.H.; Rahman, M.T.; Islam, M.T. Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh. Pathogens 2020, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Godambe, L.P.; Bandekar, J.; Shashidhar, R. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech 2017, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- OXOID. Performance Standards for Antimicrobial Susceptibility Testing, Disc Diffusion Supplemental Tables 2013. Available online: http://www.oxoid.com/pdf/uk/2013-CLSIFDA-table-update.pdf (accessed on 28 January 2023).
- Koo, H.-J.; Woo, G.-J. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int. J. Food Microbiol. 2011, 145, 407–413. [Google Scholar] [CrossRef]
- WHO. Critically Important Antimicrobials for Human Medicine; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Faruque, M.O.; Mahmud, S.; Munayem, M.A.; Sultana, R.; Molla, M.T.; Ali, M.F.; Wasim, M.; Sarker, S.; Evamoni, F.Z. Bacteriological analysis and public health impact of broiler meat: A study on Nalitabari Paurosova, Sherpur, Bangladesh. Adv. Microbiol. 2019, 9, 581–601. [Google Scholar] [CrossRef] [Green Version]
- Shakya, S.; Patyal, A.; Gade, N.E. Occurrence and characteristics of extended-spectrum β-lactamases producing Escherichia coli in foods of animal origin and human clinical samples in Chhattisgarh, India. Vet. World 2016, 9, 996. [Google Scholar]
- Ranasinghe, R.A.S.S.; Satharasinghe, D.A.; Anwarama, P.S.; Parakatawella, P.M.S.D.K.; Jayasooriya, L.J.P.A.P.; Ranasinghe, R.M.S.B.K.; Rajapakse, R.P.V.J.; Huat, J.T.Y.; Rukayadi, Y.; Nakaguchi, Y.; et al. Prevalence and Antimicrobial Resistance of Escherichia coli in Chicken Meat and Edible Poultry Organs Collected from Retail Shops and Supermarkets of North Western Province in Sri Lanka. J. Food Qual. 2022, 2022, 8962698. [Google Scholar] [CrossRef]
- Seo, K.W.; Kim, Y.B.; Jeon, H.Y.; Lim, S.-K.; Lee, Y.J. Comparative genetic characterization of third-generation cephalosporin-resistant Escherichia coli from chicken meat produced by integrated broiler operations in South Korea. Poult. Sci. 2018, 97, 2871–2879. [Google Scholar] [CrossRef]
- Hossain, M.; Siddique, M.; Hossain, F.; Zinnah, M.; Hossain, M.; Alam, M.; Rahman, M.; Choudury, K. Isolation, identification, toxin profile and antibiogram of Escherichia coli isolated from broilers and layers in Mymensingh district of Bangladesh. Bangladesh J. Vet. Med. 2008, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jakaria, A.; Islam, M.A.; Khatun, M.M. Prevalence, characteristics and antibiogram profiles of Escherichia coli isolated from apparently healthy chickens in Mymensingh, Bangladesh. Microbes Health 2012, 1, 27–29. [Google Scholar] [CrossRef]
- Bashar, T.; Rahman, M.; Rabbi, F.A.; Noor, R.; Rahman, M.M. Enterotoxin profiling and antibiogram of Escherichia coli isolated from poultry feces in Dhaka district of Bangladesh. Stamford J. Microbiol. 2011, 1, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Gill, C. Microbiological conditions of meats from large game animals and birds. Meat Sci. 2007, 77, 149–160. [Google Scholar] [CrossRef]
- Lin, C.-H.; Huang, J.-F.; Sun, Y.-F.; Adams, P.J.; Lin, J.-H.; Robertson, I.D. Detection of chicken carcasses contaminated with Salmonella enterica serovar in the abattoir environment of Taiwan. Int. J. Food Microbiol. 2020, 325, 108640. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.M. The intestinal microflora of poultry and game birds during life and after storage. J. Appl. Bacteriol. 1979, 46, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Hasan, B.; Faruque, R.; Drobni, M.; Waldenström, J.; Sadique, A.; Ahmed, K.U.; Islam, Z.; Parvez, M.H.; Olsen, B.; Alam, M. High prevalence of antibiotic resistance in pathogenic Escherichia coli from large-and small-scale poultry farms in Bangladesh. Avian Dis. 2011, 55, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Hosain, M.S.; Islam, M.A.; Khatun, M.M.; Dey, R.K. Prevalence and antibiogram profiles of Salmonella isolated from pigeons in Mymensingh, Bangladesh. Microbes Health 2012, 1, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.T.; Kabir, S.L.; Rahman, M.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World 2019, 12, 984. [Google Scholar] [CrossRef] [Green Version]
- Gerloff, N.A.; Khan, S.U.; Zanders, N.; Balish, A.; Haider, N.; Islam, A.; Chowdhury, S.; Rahman, M.Z.; Haque, A.; Hosseini, P. Genetically diverse low pathogenicity avian influenza A virus subtypes co-circulate among poultry in Bangladesh. PLoS ONE 2016, 11, e0152131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.M.; El Zowalaty, M.E.; Lundkvist, Å.; Järhult, J.D.; Nayem, M.R.K.; Tanzin, A.Z.; Badsha, M.R.; Khan, S.A.; Ashour, H.M. Residual antimicrobial agents in food originating from animals. Trends Food Sci. Technol. 2021, 111, 141–150. [Google Scholar] [CrossRef]
- Hassan, M.M.; Kalam, M.A.; Alim, M.A.; Shano, S.; Nayem, M.R.; Badsha, M.R.; Al Mamun, M.A.; Hoque, A.; Tanzin, A.Z.; Nath, C.; et al. Knowledge, Attitude, and Practices on Antimicrobial Use and Antimicrobial Resistance among Commercial Poultry Farmers in Bangladesh. Antibiotics 2021, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; Lamikanra, A.; Edelman, R. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg. Infect. Dis. 1999, 5, 18. [Google Scholar] [CrossRef]
- Kalam, M.; Alim, M.; Shano, S.; Nayem, M.; Khan, R.; Badsha, M.; Mamun, M.; Al, A.; Hoque, A.; Tanzin, A.Z. Knowledge, Attitude, and Practices on Antimicrobial Use and Antimicrobial Resistance among Poultry Drug and Feed Sellers in Bangladesh. Vet. Sci. 2021, 8, 111. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Levy, S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates 2000, 3, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B. The challenge of antibiotic resistance. Sci. Am. 1998, 278, 46–53. [Google Scholar] [CrossRef]
- Hoque, R.; Ahmed, S.M.; Naher, N.; Islam, M.A.; Rousham, E.K.; Islam, B.Z.; Hassan, S. Tackling antimicrobial resistance in Bangladesh: A scoping review of policy and practice in human, animal and environment sectors. PloS ONE 2020, 15, e0227947. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, J.; Bradshaw, A.; Islam, S.A.; Zamil, S.; Islam, A.; Ahad, A.; Fournie, G.; Anwer, M.S.; Hoque, M.A. Antimicrobial residues in chicken and fish, Chittagong, Bangladesh. EcoHealth 2019, 16, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Sattar, S.; Hassan, M.M.; Islam, S.; Alam, M.; Al Faruk, M.S.; Chowdhury, S.; Saifuddin, A.J. Antibiotic residues in broiler and layer meat in Chittagong district of Bangladesh. Vet. World 2014, 7, 738–743. [Google Scholar] [CrossRef] [Green Version]
- Couper, M. Strategies for the rational use of antimicrobials. Clin. Infect. Dis. 1997, 24, S154–S156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, T.; Gibson, J.S.; Foysal, M.; Das, S.B.; Gupta, S.D.; Fournié, G.; Hoque, M.A.; Henning, J. A cross-sectional study of antimicrobial usage on commercial broiler and layer chicken farms in Bangladesh. Front. Vet. Sci. 2020, 7, 576113. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Fricke, J.A.; Inglis, T. Antimicrobial drug use in poultry. Antimicrob. Ther. Vet. Med. 2013, 4, 569–587. [Google Scholar]
- Shroha, A.; Bidhan, D.S.; Yadav, D.C.; Rohila, H.J. Ajwain as non-antibiotic growth promoter in Broiler industry: A review. Pharma Innov 2019, 8, 518–524. [Google Scholar]
- Summers, A.O. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim. Biotechnol. 2006, 17, 125–135. [Google Scholar] [CrossRef]
- Li, X.; Watanabe, N.; Xiao, C.; Harter, T.; McCowan, B.; Liu, Y.; Atwill, E.R. Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California. Environ. Monit. Assess. 2014, 186, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Sultana, S.; Das, K.; Sharmin, N.; Hasan, M. Isolation of plasmid-mediated multidrug resistant Escherichia coli from poultry. Int. J. Sustain. Crop Prod. 2008, 3, 46–50. [Google Scholar]
- Schroeder, C.M.; Meng, J.; Zhao, S.; DebRoy, C.; Torcolini, J.; Zhao, C.; McDermott, P.F.; Wagner, D.D.; Walker, R.D.; White, D.G. Antimicrobial resistance of Escherichia coli O26, O103, O111, O128, and O145 from animals and humans. Emerg. Infect. Dis. 2002, 8, 1409. [Google Scholar] [CrossRef] [PubMed]
- Obeng, A.S.; Rickard, H.; Ndi, O.; Sexton, M.; Barton, M. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet. Microbiol. 2012, 154, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Adelowo, O.O.; Fagade, O.E.; Agersø, Y.J.T. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J. Infect. Dev. Ctries 2014, 8, 1103–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandra, S.; Kotwani, A. Need to improve availability of “access” group antibiotics and reduce the use of “watch” group antibiotics in India for optimum use of antibiotics to contain antimicrobial resistance. J. Pharm. Policy Pract. 2019, 12, 20. [Google Scholar] [CrossRef]
- Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): An analysis of paediatric survey data from 56 countries. Lancet Glob. Health 2019, 7, e861–e871. [Google Scholar] [CrossRef] [Green Version]
- Barnett, M.L. The rationale for the daily use of an antimicrobial mouthrinse. J. Am. Dent. Assoc. 2006, 137, S16–S21. [Google Scholar] [CrossRef]
- Moellering, R.C., Jr. Rationale for use of antimicrobial combinations. Am. J. Med. 1983, 75, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Cartoni Mancinelli, A.; Mattioli, S.; Twining, C.; Dal Bosco, A.; Donoghue, A.M.; Arsi, K.; Angelucci, E.; Chiattelli, D.; Castellini, C. Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022, 14, 1969. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing 2020. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 28 January 2023).
Antimicrobial Agent and Disc Concentration | Number (%) of Intermediate (I) Isolates | Number (%) of Resistant (R) Isolates | Number (%) of Non-Susceptible (NS) Isolates (I + R) |
---|---|---|---|
Cephalexin (CL, 30 µg) a | 0 (0%) | 85 (37.1%) | 85 (37.1%) |
Ampicillin (AMP, 10 µg) b | 12 (5.2%) | 189 (82.5%) | 201 (87.8%) |
Tetracycline (TE, 30 µg) a | 14 (6.1%) | 199 (86.9%) | 213 (93.0%) |
Doxycycline (DO, 30 µg) a | 65 (28.4%) | 122 (53.3%) | 187 (81.7%) |
Gentamicin (CN, 10 µg) b | 22 (9.6%) | 74 (32.3%) | 96 (41.9%) |
Ciprofloxacin (CIP, 5 µg) b | 42 (18.3%) | 139 (60.7%) | 181 (79.0%) |
Colistin sulfate (CT, 10 µg) b | 0 (0%) | 47 (20.5%) | 47 (20.5%) |
Sulphamethoxazole–trimethoprim (SXT, 25 µg) a | 4 (1.7%) | 203 (88.6%) | 207 (90.4%) |
Source | Organ | Level of Resistance * | Antimicrobial Resistance Pattern, n (%). | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CL | CT | CIP | DO | CN | SXT | AMP | TE | |||
Supermarket | Liver (n = 56) | I | 0 (0.0) | 0 (0.0) | 9 (16.1) | 15 (26.8) | 4 (7.1) | 0 (0.0) | 2 (3.6) | 2 (3.6) |
R | 15 (26.8) | 7 (12.5) | 28 (50.0) | 29 (51.8) | 13 (23.2) | 52 (92.9) | 45 (80.4) | 48 (85.7) | ||
NS | 15 (26.8) | 7 (12.5) | 37 (66.1%) | 44 (78.6 | 17 (30.4) | 52 (92.9) | 47 (83.9) | 50 (89.3) | ||
Muscle (n = 68) | I | 0 (0.0) | 0 (0.0) | 16 (23.5) | 23 (33.8) | 4 (5.9) | 1 (1.5) | 5 (7.4) | 3 (4.4) | |
R | 25 (36.8) | 14 (20.6) | 36 (52.5) | 26 (38.2) | 26 (38.2) | 56 (82.4) | 52 (76.5) | 58 (85.3) | ||
NS | 25 (36.8) | 14 (20.6) | 52 (76.5) | 49 (72.1) | 30 (44.1) | 57 (83.8) | 57 (83.8) | 61 (89.7) | ||
Live bird market | Liver (n = 57) | I | 0 (0.0) | 0 (0.0) | 10 (17.5) | 14 (24.6) | 9 (15.8) | 2 (3.5) | 4 (7.0) | 3 (5.3) |
R | 29 (50.9) | 13 (22.8) | 41 (71.9) | 37 (64.9) | 15 (26.3) | 52 (91.2) | 49 (86.0) | 53 (93.0) | ||
NS | 29 (50.9) | 13 (22.8) | 51 (89.5) | 51 (89.5) | 24 (42.1) | 54 (94.7) | 53 (93.0) | 56 (98.2) | ||
Muscle (n = 48) | I | 0 (0.0) | 0 (0.0) | 7 (14.6) | 13 (27.1) | 5 (10.4) | 1 (2.1) | 1 (2.1) | 6 (12.5) | |
R | 16 (33.3) | 13 (27.1) | 34 (70.8) | 30 (62.5) | 20 (41.7) | 43 (89.6) | 43 (89.6) | 40 (83.3) | ||
NS | 16 (33.3) | 13 (27.1) | 41 (85.4) | 43 (89.6) | 25 (52.1) | 44 (91.7) | 44 (91.7) | 46 (95.8) |
95% CI | ||||
---|---|---|---|---|
OR | Lower | Upper | p-Value | |
Market Type | ||||
Super Market | ref. | 0.005 | ||
LBM | 4.27 | 1.67 | 13.17 | |
Tissue Type | ||||
Liver | ref. | 0.785 | ||
Muscle | 0.89 | 0.38 | 2.03 | |
Intercept | 4.94 | 2.66 | 10.00 | <0.001 |
Source | Organ | Tetracycline-Resistant Isolates | Prevalence of Tetracycline-Resistant Gene, n (%) (95% CI) | |||
---|---|---|---|---|---|---|
tet-A | tet-B | tet-C | tet-D | |||
SM | Liver | 48 | 43 (89.6) (77.34–96.53) | 4 (8.3) (02.31–19.99) | 0 (0) | 2 (4.2) (0.5–14.25) |
Muscle | 58 | 49 (84.5) (72.58–92.65) | 4 (6.9) (1.91–16.73) | 1 (1.7) (0.04–9.24) | 1 (1.7) (0.04–9.24) | |
p-value | 0.4364 | 0.7804 | 0.3607 | 0.4504 | ||
LBM | Liver | 53 | 41 (77.4) (63.8–87.72) | 2 (3.8) (0.5–13.00) | 0 (0.0) | 3 (5.7) (1.18–15.66) |
Muscle | 40 | 35 (87.5) (73.2–95.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
p-value | 0.2103 | 0.2142 | 1.0000 | 0.1261 | ||
SM*LBM | p-value | 0.3249 | 0.0821 | 0.3477 | 0.8706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, G.S.; Hassan, M.M.; Ahaduzzaman, M.; Nath, C.; Dutta, P.; Khanom, H.; Khan, S.A.; Pasha, M.R.; Islam, A.; Magalhaes, R.S.; et al. Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh. Antibiotics 2023, 12, 418. https://doi.org/10.3390/antibiotics12020418
Alam GS, Hassan MM, Ahaduzzaman M, Nath C, Dutta P, Khanom H, Khan SA, Pasha MR, Islam A, Magalhaes RS, et al. Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh. Antibiotics. 2023; 12(2):418. https://doi.org/10.3390/antibiotics12020418
Chicago/Turabian StyleAlam, Gazi Sofiul, Mohammad Mahmudul Hassan, Md. Ahaduzzaman, Chandan Nath, Pronesh Dutta, Hamida Khanom, Shahneaz Ali Khan, Md Ridoan Pasha, Ariful Islam, Ricardo Soares Magalhaes, and et al. 2023. "Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh" Antibiotics 12, no. 2: 418. https://doi.org/10.3390/antibiotics12020418
APA StyleAlam, G. S., Hassan, M. M., Ahaduzzaman, M., Nath, C., Dutta, P., Khanom, H., Khan, S. A., Pasha, M. R., Islam, A., Magalhaes, R. S., & Cobbold, R. (2023). Molecular Detection of Tetracycline-Resistant Genes in Multi-Drug-Resistant Escherichia coli Isolated from Broiler Meat in Bangladesh. Antibiotics, 12(2), 418. https://doi.org/10.3390/antibiotics12020418