The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies
Abstract
:1. Introduction
2. Tetracycline Consumption in Various Fields of Life
3. The Adverse Effect of Tetracycline Antibiotics on the Aquatic Environment
3.1. The Adverse Effects of Tetracycline on Algal and Plankton Communities
3.2. The Adverse Effects of Tetracycline on Fish Community
3.3. Development of Antibiotic Resistance in Bacteria
4. Effective Methods of Tetracycline Removal from the Aquatic Environment
4.1. Removal of Tetracycline by Adsorption
4.2. Removal of Tetracycline by Photodegradation
4.3. Removal of Tetracycline by Physico-Chemical Methods
4.4. Removal of Tetracycline by Biological Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Begum, S.; Begum, T.; Rahman, N.; Khan, R.A. A review on antibiotic resistance and way of combating antimicrobial resistance. GSC Biol. Pharm. Sci. 2021, 14, 87–97. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhu, D.; Li, H. Assessment of bioavailability of biochar-sorbed tetracycline to escherichia coli for activation of antibiotic resistance genes. Environ. Sci. Technol. 2020, 54, 12920–12928. [Google Scholar] [CrossRef]
- Cowieson, A.; Kluenter, A. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Anim. Feed Sci. Technol. 2019, 250, 81–92. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Adel, M.; Dadar, M.; Oliveri Conti, G. Antibiotics and malachite green residues in farmed rainbow trout (Oncorhynchus mykiss) from the Iranian markets: A risk assessment. Int. J. Food Prop. 2017, 20, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Scaria, J.; Anupama, K.; Nidheesh, P. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci. Total Environ. 2021, 771, 145291. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, 3463–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wencewicz, T.A. Crossroads of antibiotic resistance and biosynthesis. J. Mol. Biol. 2019, 431, 3370–3399. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, B.K.; Shaked, S.; Marrs, C.F.; Nelson, P.; Raxter, I.; Xi, C.; McKone, T.E.; Jolliet, O. Modeling the emergence of antibiotic resistance in the environment: An analytical solution for the minimum selection concentration. Antimicrob. Agents Chemother. 2018, 62, e01686-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, T.H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, D.E.; Clemons, W.M., Jr.; Carter, A.P.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30s ribosomal subunit. Cell 2000, 103, 1143–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuoco, D. Classification framework and chemical biology of tetracycline-structure-based drugs. Antibiotics 2012, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Liu, J.; Li, Z.; Zou, X.; Guo, J.; Liu, Z.; Yang, J.; Zhou, Y. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the three Gorges Reservoir area, China. Ecol. Indic. 2020, 113, 106275. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017, 2017, 1–25. [Google Scholar] [CrossRef]
- Leng, Y.; Xiao, H.; Li, Z.; Wang, J. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in coastal areas of Beibu Gulf, China. Sci. Total Environ. 2020, 714, 136899. [Google Scholar] [CrossRef]
- Monahan, C.; Harris, S.; Morris, D.; Cummins, E. A comparative risk ranking of antibiotic pollution from human and veterinary antibiotic usage–An Irish case study. Sci. Total Environ. 2022, 826, 154008. [Google Scholar] [CrossRef]
- Dong, H.; Yuan, X.; Wang, W.; Qiang, Z. Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: A field study. J. Environ. Manag. 2016, 178, 11–19. [Google Scholar] [CrossRef]
- Kafaei, R.; Papari, F.; Seyedabadi, M.; Sahebi, S.; Tahmasebi, R.; Ahmadi, M.; Sorial, G.A.; Asgari, G.; Ramavandi, B. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci. Total Environ. 2018, 627, 703–712. [Google Scholar] [CrossRef]
- Javid, A.; Mesdaghinia, A.; Nasseri, S.; Mahvi, A.H.; Alimohammadi, M.; Gharibi, H. Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. J. Environ. Health Sci. Eng. 2016, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Hong, P.Y.; Yannarell, A.; Mackie, R.I. The contribution of antibiotic residues and antibiotic resistance genes from livestock operations to antibiotic resistance in the environment and food chain. In Zoonotic Pathogens in The Food Chain; CABI: Wallingford, UK, 2011; pp. 119–139. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, C.; Deng, D.; Li, Y.; Luo, L. Factors affecting sorption behaviors of tetracycline to soils: Importance of soil organic carbon, pH and Cd contamination. Ecotoxicol. Environ. Saf. 2020, 197, 110572. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; He, J. Effect of antibiotics in the environment on microbial populations. Appl. Microbiol. Biotechnol. 2010, 87, 925–941. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.R.; Huang, C.H. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ. Pollut. 2011, 159, 1092–1100. [Google Scholar] [CrossRef]
- Wirtz, V.J.; Dreser, A.; Gonzales, R. Trends in antibiotic utilization in eight Latin American countries, 1997–2007. Revista Panamericana de Salud Pública 2010, 27, 219–225. [Google Scholar] [CrossRef]
- Sanderson, H.; Ingerslev, F.; Brain, R.A.; Halling-Sorensen, B.; Bestari, J.K.; Wilson, C.J.; Johnson, D.J.; Solomon, K.R. Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC-UV and LC/MS/MS under aquatic semi-field microcosm conditions. Chemosphere 2005, 60, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Lundström, S.V.; Östman, M.; Bengtsson-Palme, J.; Rutgersson, C.; Thoudal, M.; Sircar, T.; Blanck, H.; Eriksson, K.M.; Tysklind, M.; Flach, C.F. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci. Total Environ. 2016, 553, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Li, J.; Sun, Y.; Mao, D.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone-and macrolide-resistance genes in livestock feedlots in Northern China. Env. Sci. Pollut. Res. 2015, 22, 6932–6940. [Google Scholar] [CrossRef] [PubMed]
- Woźniak-Biel, A.; Bugla-Płoskońska, G.; Kielsznia, A.; Korzekwa, K.; Tobiasz, A.; Korzeniowska-Kowal, A.; Wieliczko, A. High prevalence of resistance to fluoroquinolones and tetracycline Campylobacter spp. isolated from poultry in Poland. Microb. Drug Resist. 2018, 24, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Pena-Ortiz, M. Linking Aquatic Biodiversity Loss to Animal Product Consumption: A Review; MSc Biological Sciences, University of Amsterdam: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Mahamallik, P.; Saha, S.; Pal, A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem. Eng. J. 2015, 276, 155–165. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Paramonov, S.; Zelikova, D.; Sklyarova, L.; Alkhutova, I. Environmental risks of micro-contamination of the environment with tetracycline. Pharm. Formulas 2022, 4, 76–88. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Owens, G.; Kwon, S.I.; So, K.H.; Lee, D.B.; Ok, Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Chen, A.; Chen, Y.; Ding, C.; Liang, H.; Yang, B. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal. RSC Adv. 2015, 5, 59326–59334. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, X.; Gao, S.; Geng, J.; Wang, X. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma 2012, 183, 12–18. [Google Scholar] [CrossRef]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622, 293–305. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, J.; Li, J.; Cheng, Z.; Chaemfa, C.; Liu, D.; Zhang, G. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China. Sci. Total Environ. 2013, 450, 197–204. [Google Scholar] [CrossRef]
- Tang, J.; Wang, S.; Fan, J.; Long, S.; Wang, L.; Tang, C.; Yang, Y. Predicting distribution coefficients for antibiotics in a river water-sediment using quantitative models based on their spatiotemporal variations. Sci. Total Environ. 2019, 655, 1301–1310. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Burke, V.; Richter, D.; Greskowiak, J.; Mehrtens, A.; Schulz, L.; Massmann, G. Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany. Water Environ. Res. 2016, 88, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environ. Sci. Pollut. Res. 2016, 23, 1722–1731. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Cheng, W.; Li, J.; Wu, Y.; Xu, L.; Su, C.; Qian, Y.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J. Hazard. Mater. 2016, 304, 18–25. [Google Scholar] [CrossRef]
- Taşkan, E. Effect of tetracycline antibiotics on performance and microbial community of algal photo-bioreactor. Appl. Biochem. Biotechnol. 2016, 179, 947–958. [Google Scholar] [CrossRef]
- Xu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Saf. 2019, 174, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.M.I.; Cho, M.G. The effect of kanamycin and tetracycline on growth and photosynthetic activity of two chlorophyte algae. BioMed Res. Int. 2016, 2016, 5656304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.J.; Brain, R.A.; Sanderson, H.; Johnson, D.J.; Bestari, K.T.; Sibley, P.K.; Solomon, K.R. Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ. Sci. Technol. 2004, 38, 6430–6439. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jiang, Y.; Liu, Y.; Zhang, J. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water. Environ. Pollut. 2021, 290, 118057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; McDonough, S.; Ladewig, J.C.; Soares, A.M.; Nogueira, A.J.; Domingues, I. Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2013, 36, 903–912. [Google Scholar] [CrossRef]
- Yu, K.; Li, X.; Qiu, Y.; Zeng, X.; Yu, X.; Wang, W.; Yi, X.; Huang, L. Low-dose effects on thyroid disruption in zebrafish by long-term exposure to oxytetracycline. Aquat. Toxicol. 2020, 227, 105608. [Google Scholar] [CrossRef]
- Zhang, F.; Qin, W.; Zhang, J.P.; Hu, C.Q. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry. PLoS ONE 2015, 10, e0124805. [Google Scholar] [CrossRef]
- Jia, J.; Cheng, M.; Xue, X.; Guan, Y.; Wang, Z. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. Ecotoxicol. Environ. Saf. 2020, 191, 110182. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Y.; Deng, M.; Liu, Y.; Wang, S.; He, X.; Allaire-Leung, M.; Wan, J.; Zou, Y.; Yang, C. Tetracycline antibiotics as PI3K inhibitors in the Nrf2-mediated regulation of antioxidative stress in zebrafish larvae. Chemosphere 2019, 226, 696–703. [Google Scholar] [CrossRef]
- Urbinati, E.C.; de Abreu, J.S.; da Silva Camargo, A.C.; Parra, M.A.L. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture 2004, 229, 389–400. [Google Scholar] [CrossRef]
- Strange, R.J.; Schreck, C.B. Anesthetic and handling stress on survival and cortisol concentration in yearling chinook salmon (Oncorhynchus tshawytscha). J. Fish. Board Can. 1978, 35, 345–349. [Google Scholar] [CrossRef]
- Almeida, A.R.; Domingues, I.; Henriques, I. Zebrafish and water microbiome recovery after oxytetracycline exposure. Environ. Pollut. 2021, 272, 116371. [Google Scholar] [CrossRef]
- Petersen, B.D.; Pereira, T.C.B.; Altenhofen, S.; Nabinger, D.D.; Ferreira, P.M.D.A.; Bogo, M.R.; Bonan, C.D. Antibiotic drugs alter zebrafish behavior. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 242, 108936. [Google Scholar] [CrossRef]
- Gusso, D.; Altenhofen, S.; Fritsch, P.M.; Rübensam, G.; Bonan, C.D. Oxytetracycline induces anxiety-like behavior in adult zebrafish. Toxicol. Appl. Pharmacol. 2021, 426, 115616. [Google Scholar] [CrossRef]
- Lin, J.; Nishino, K.; Roberts, M.C.; Tolmasky, M.; Aminov, R.I.; Zhang, L. Mechanisms of antibiotic resistance. Front. Microbiol. 2015, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, E.L.; Jones, A.L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl. Environ. Microbiol. 1999, 65, 4898–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepi, M.; Focardi, S. Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean Area. Int. J. Environ. Res. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Gin, K.Y.H. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci. Total Environ. 2017, 599, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ding, Y.; Li, H.; Xagoraraki, I. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere 2012, 88, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol. 2010, 44, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Włodarczyk-Makuła, M. The Effectiveness in the Removal of PAHs from Aqueous Solutions in Physical and Chemical Processes: A Review. Polycycl. Aromat. Compd. 2007, 37, 292–313. [Google Scholar] [CrossRef]
- Tian, W.J.; Bai, J.; Liu, K.K.; Sun, H.M.; Zhao, Y.G. Occurrence and removal of polycyclic aromatic hydrocarbons in the wastewater treatment process. Ecotoxicol. Environ. Saf. 2012, 82, 1–7. [Google Scholar] [CrossRef]
- Krakko, D.; Heieren, B.T.; Illes, A.; Kvamme, K.; Dóbé, S.; Záray, G. (V)UV degradation of the antibiotic tetracycline: Kinetics, transformation products and pathway. Process Saf. Environ. Prot. 2022, 163, 395–404. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Ma, J.; Han, S. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci. Rep. 2014, 4, 5326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhangi, B.K.; Ray, S. Adsorption and photocatalytic degradation of tetracycline from water by kappa-carrageenan and iron oxide nanoparticle-filled poly (acrylonitrile-co-N-vinyl pyrrolidone) composite gel. Polym. Eng. Sci. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Song, G.; Guo, Y.; Li, G.; Zhao, W.; Yu, Y. Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp. Desalination Water Treat. 2019, 160, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Shen, Z.; Hu, X.; Schulman, E.; Cui, C.; Guo, Q.; Tian, H. Adsorption of tetracycline by shrimp shell waste from aqueous solutions: Adsorption isotherm, kinetics modeling, and mechanism. ACS Omega 2020, 5, 3467–3477. [Google Scholar] [CrossRef]
- da Silva Bruckmann, F.; Schnorr, C.E.; da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Bohn Rhoden, C.R. Highly efficient adsorption of tetracycline using chitosan-based magnetic adsorbent. Polymers 2022, 14, 4854. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Dalmázio, I.; Almeida, M.O.; Augusti, R.; Alves, T. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulnaz, O.; Sezer, G. Ozonolytic degradation of tetracycline antibiotic: Effect of PH. Fresenius Environ. Bull. 2016, 25, 2928–2934. [Google Scholar]
- Krakkó, D.; Illés, Á.; Domján, A.; Demeter, A.; Dóbé, S.; Záray, G. UV and (V) UV irradiation of sitagliptin in ultrapure water and WWTP effluent: Kinetics, transformation products and degradation pathway. Chemosphere 2022, 288, 132393. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.T.; Lee, K. Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation. Water Sci. Technol. 2014, 70, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Deng, J.; Cai, A.; Ma, X.; Li, J.; Li, Q.; Li, X. Comparison of UVC and UVC/persulfate processes for tetracycline removal in water. Chem. Eng. J. 2020, 384, 123320. [Google Scholar] [CrossRef]
- de Andrade, F.V.; Augusti, R.; de Lima, G.M. Ultrasound for the remediation of contaminated waters with persistent organic pollutants: A short review. Ultrason. Sonochem. 2021, 78, 105719. [Google Scholar] [CrossRef]
- Hou, L.; Wang, L.; Royer, S.; Zhang, H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 2016, 302, 458–467. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Chen, L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor. Catal. Today 2011, 175, 283–292. [Google Scholar] [CrossRef]
- Wang, X.; Jia, J.; Wang, Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282. [Google Scholar] [CrossRef]
- Ghoreishian, S.M.; Raju, G.S.R.; Pavitra, E.; Kwak, C.H.; Han, Y.K.; Huh, Y.S. Ultrasound-assisted heterogeneous degradation of tetracycline over flower-like rGO/CdWO4 hierarchical structures as robust solar-light-responsive photocatalysts: Optimization, kinetics, and mechanism. Appl. Surf. Sci. 2019, 489, 110–122. [Google Scholar] [CrossRef]
- Heidari, S.; Haghighi, M.; Shabani, M. Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution. Ultrason. Sonochem. 2018, 43, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Huang, Q.; Li, S. Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole. J. Hazard. Mater. 2017, 331, 182–188. [Google Scholar] [CrossRef]
- Huang, S.; Yu, J.; Li, C.; Zhu, Q.; Zhang, Y.; Lichtfouse, E.; Marmier, N. The effect review of various biological, physical and chemical methods on the removal of antibiotics. Water 2022, 14, 3138. [Google Scholar] [CrossRef]
- Duran, N.; Esposito, E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B Environ. 2000, 28, 83–99. [Google Scholar] [CrossRef]
- Leng, Y.; Bao, J.; Xiao, H.; Song, D.; Du, J.; Mohapatra, S.; Wang, J. Transformation mechanisms of tetracycline by horseradish peroxidase with/without redox mediator ABTS for variable water chemistry. Chemosphere 2020, 258, 1–10. [Google Scholar] [CrossRef]
- Sun, X.; Leng, Y.; Wan, D.; Chang, F.; Huang, Y.; Li, Z.; Wang, J. Transformation of tetracycline by manganese peroxidase from phanerochaete chrysosporium. Molecules 2021, 26, 6803. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Della Giustina, S.V.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—Egradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef]
- Cárdenas-Moreno, Y.; Espinosa, L.A.; Vieyto, J.C.; González-Durruthy, M.; del Monte-Martinez, A.; Guerra-Rivera, G.; Sánchez López, M.I. Theoretical study on binding interactions of laccase-enzyme from Ganoderma weberianum with multiples ligand substrates with environmental impact. Ann. Proteom. Bioinform. 2019, 3, 001–009. [Google Scholar]
- Yin, Z.; Xia, D.; Shen, M.; Zhu, D.; Cai, H.; Wu, M.; Kang, Y. Tetracycline degradation by Klebsiella sp. strain TR5: Proposed degradation pathway and possible genes involved. Chemosphere 2020, 253, 126729. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Bao, J.; Chang, G.; Zheng, H.; Li, X.; Du, J.; Li, X. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. J. Hazard. Mater. 2016, 318, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Shao, S.; Wu, X. Microbial degradation of tetracycline in the aquatic environment: A review. Crit. Rev. Biotechnol. 2020, 40, 1010–1018. [Google Scholar] [CrossRef]
- Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019, 124, 448–461. [Google Scholar] [CrossRef]
- Zhong, S.F.; Yang, B.; Xiong, Q.; Cai, W.W.; Lan, Z.G.; Ying, G.G. Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs. Ecotoxicol. Environ. Saf. 2022, 229, 113063. [Google Scholar] [CrossRef]
- Xu, R.; Wu, Z.; Zhou, Z.; Meng, F. Removal of sulfadiazine and tetracycline in membrane bioreactors: Linking pathway to microbial community shift. Environ. Technol. 2019, 40, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Cong, H.; Zhang, S.; Meng, F. Interactive effects between tetracycline and nitrosifying sludge microbiota in a nitritation membrane bioreactor. Chem. Eng. J. 2018, 341, 556–564. [Google Scholar] [CrossRef]
First Author, Year of Publication, Reference | Initial Concentration of Tetracycline | Matrix | Removal Method | Reported Effectiveness |
---|---|---|---|---|
Yu et al., 2014 [76] | 7.3–151.6 mg/L−1 | Deionized water | Adsorption (Oxidized multi-walled carbon nanotubes) | The removal rate approximated 70% (at pH range of 3.3–8.0). |
Bhangi and Ray, 2022 [77] | 50–300 mg/L−1 | Deionized water | Adsorption and photocatalytic degradation by kappa-carrageenan and iron oxide nanoparticle-filled poly composite gel | The efficiency of photo-degradation was 86.1% after 2 hours. |
Song et al., 2019 [78] | 500 mg/L−1 | Deionized water | Adsorption (biochar derived from seaweed) | The removal efficiency ranged from 89.2 to 91.2%. |
Chang et al., 2020 [79] | 400 mg/L−1 | Deionized water | Adsorption (biochar derived from shrimp shell waste) | The maximum adsorption capacity was 229.98 mg/g for 36 h at 55 °C. |
Da Silva Bruckmann et al., 2022 [80] | 10–200 mg/L−1 | Deionized water | Adsorption (magnetic chitosan, CS·Fe3O4) | The highest adsorption capacity reached 211.21 mg/g−1 (at pH 7.0). |
Dalmázio et al., 2007 [84] | 52.8 mg/L−1 | Deionized water | Ozone/air gas stream | Almost complete degradation after 120 min. |
Gulnaz et al., 2016 [85] | 400 mg/L−1 | Deionized water | Ozone/air gas stream | Complete removal after 40 min. |
Luu and Lee, 2014 [87] | 20 mg/L−1 | Artificial wastewater | Ozone/ultraviolet, Ozone/hydrogen peroxide/ultraviolet | Complete removal. |
Xu et al., 2020 [88] | 18.22 g/L−1 | Natural water (tap water, Xincheng river and Taihu lake) | Ultraviolet C, Ultraviolet C/persulfate | The removal efficiency exceeded 80%. |
First Author, Year of Publication, Reference | Initial Concentration of Tetracycline | Matrix | Removal Method | Reported Effectiveness |
---|---|---|---|---|
Hou et al., 2016 [90] | 100 mg/L−1 | Deionized water | Ultrasound/heterogeneous Fenton process | 93.6% of tetracycline was removed after 60 min. |
Wang et al., 2011 [91] | 100 mg/L−1 | Deionized water | Ultrasound/goethite/ozone | Complete removal. |
Wang et al., 2017 [92] | 30 mg/L−1 | Deionized water | Photocatalysis/hydrodynamic cavitation | 78.2% removal after 90 min. |
Ghoreishian et al., 2019 [93] | 13.54 mg/L−1 | Deionized water | Sonophotocatalysis | Complete removal (after 60 min). |
Heidari et al., 2018 [94] | 10–30 mg/L−1 | Deionized water | Sonophotocatalysis | 80.4% degradation after 90 min. |
First Author, Year of Publication, Reference | Initial Concentration of Tetracycline | Matrix | Removal Method | Reported Effectiveness |
---|---|---|---|---|
Leng et al., 2020 [98] | 0.13 mg/L−1 | Wastewater collected from the Tudhoe Mill Sewage Treatment Plant, UK | Enzymatic treatment with horseradish peroxidase, horseradish peroxidase/redox mediator | The mean degradation was 47.57% after 30 min and 67.90% after 8 h. |
Sun et al., 2021 [99] | 10–50, 100 mg/L−1 | Pure water | Enzymatic treatment with manganese peroxidase | The degradation rate was 80% (<50 mg L−1) and 60% (≥50 mg L−1). |
Becker et al., 2016 [101] | 10 mg/L−1 | Deionized water | Enzymatic treatment with fungal laccase | 70% removal within 24 h. |
Wen et al., 2009 [102] | 50 mg/L−1 | High purity water | Enzymatic treatment with lignin peroxidase | 95% removal after 5 min. |
Tran et al., 2016 [106] | Median concentration 3604 ng/L−1 | Wastewater from a conventional wastewater treatment plant | Conventional activated sludge, membrane bioreactor | Membrane bioreactor removed 83.3–95.5% and conventional process had 44.3–87.6% efficiency. |
Xu et al., 2019 [110] | 1000 μg/L−1 | Wastewater from a conventional wastewater treatment plant | Membrane bioreactor | 90% of tetracycline was removed. |
Sheng et al., 2018 [111] | 1, 10, 100 μg/L−1; 1, 10 mg/L−1 | Activated sludge from a conventional wastewater treatment plant | Nitritation membrane bioreactor | The removal rate was 87.6–100% at low concentration (≤1 mg/L) but poor at higher concentration (≥10 mg/L). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics 2023, 12, 440. https://doi.org/10.3390/antibiotics12030440
Amangelsin Y, Semenova Y, Dadar M, Aljofan M, Bjørklund G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics. 2023; 12(3):440. https://doi.org/10.3390/antibiotics12030440
Chicago/Turabian StyleAmangelsin, Yernar, Yuliya Semenova, Maryam Dadar, Mohamad Aljofan, and Geir Bjørklund. 2023. "The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies" Antibiotics 12, no. 3: 440. https://doi.org/10.3390/antibiotics12030440
APA StyleAmangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., & Bjørklund, G. (2023). The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12(3), 440. https://doi.org/10.3390/antibiotics12030440