Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Popular Machine Learning (ML) Algorithms in the Field of AMR
3. Machine Learning (ML) Applications in the Field of AMR
3.1. Diagnosis of AMR
3.2. Prediction of AMR
3.3. Machine-Learning-Assisted Antibiotic Prescription
3.4. Machine Learning-Assisted Clinical Decision Support Systems (ML-CDSS)
3.5. Prediction of AMR in the Environment Employing AI/ML
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med. 2022, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Skarmoutsou, N.; Michelidou, S.; Velentza, A.; Martsoukou, M.; Valakis, K.; Petropoulou, S.; Koutalas, E. A 2-Year Single-Centre Audit on Antibiotic Resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae Strains from an Intensive Care Unit and Other Wards in a General Public Hospital in Greece. Antibiotics 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022; Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 1 August 2022).
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Shorr, A.F.; Bassetti, M.; Timsit, J.F.; Micek, S.T.; Michelson, A.P.; Garnacho-Montero, J. Timing of antibiotic therapy in the ICU. Crit. Care 2021, 25, 360. [Google Scholar] [CrossRef]
- Fanelli, U.; Chiné, V.; Pappalardo, M.; Gismondi, P.; Esposito, S. Improving the quality of hospital antibiotic use: Impact on multidrug-resistant bacterial infections in children. Front. Pharmacol. 2020, 11, 745. [Google Scholar] [CrossRef]
- CDC. Core Elements of Hospital Antibiotic Stewardship Programs; US Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html. (accessed on 1 August 2022).
- Rawson, T.M.; Moore, L.S.P.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Macesic, N.; Polubriaginof, F.; Tatonetti, N.P. Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Curr. Opin. Infect. Dis. 2017, 30, 511–517. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Tang, R.; Luo, R.; Tang, S.; Song, H.; Chen, X. Machine learning in predicting antimicrobial resistance: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2022, 60, 106684. [Google Scholar] [CrossRef] [PubMed]
- Peiffer-Smadja, N.; Rawson, T.M.; Ahmad, R.; Buchard, A.; Georgiou, P.; Lescure, F.X.; Birgand, G.; Holmes, A.H. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect. 2020, 26, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: An Emerging Model for Translational Research. J. Clin. Microbiol. 2021, 59, e0126020. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.F.; Vollmer, M.; Decruyenaere, J.; Nijsten, M.W.; Glasner, C.; Sinha, B. Machine learning in infection management using routine electronic health records: Tools, techniques, and reporting of future technologies. Clin. Microbiol. Infect. 2020, 26, 1291–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didelot, X.; Pouwels, K.B. Machine-learning-assisted selection of antibiotic prescription. Nat. Med. 2019, 25, 1033–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Chen, X.; Liang, Z.; Fan, S.; Gao, X.; Jia, H.; Li, B.; Shi, L.; Zhai, A.; Wu, C. Epidemiology and prediction of multidrug-resistant bacteria based on hospital level. J. Glob. Antimicrob. Resist. 2022, 29, 155–162. [Google Scholar] [CrossRef]
- Cánovas-Segura, B.; Campos, M.; Morales, A.; Juarez, J.M.; Palacios, F. Development of a clinical decision support system for antibiotic management in a hospital environment. Prog. Artif. Intell. 2016, 5, 181–197. [Google Scholar] [CrossRef]
- Moran, E.; Robinson, E.; Green, C.; Keeling, M.; Collyer, B. Towards personalized guidelines: Using machine-learning algorithms to guide antimicrobial selection. J. Antimicrob. Chemother. 2020, 75, 2677–2680. [Google Scholar] [CrossRef]
- Inglis, T.J.J.; Paton, T.F.; Kopczyk, M.K.; Mulroney, K.T.; Carson, C.F. Same-day antimicrobial susceptibility test using acoustic-enhanced flow cytometry visualized with supervised machine learning. J. Med. Microbiol. 2020, 69, 657–669. [Google Scholar] [CrossRef]
- Lechowicz, L.; Urbaniak, M.; Adamus-Białek, W.; Kaca, W. The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin. Acta Biochim. Pol. 1970, 60, 713–718. [Google Scholar] [CrossRef]
- Feucherolles, M.; Nennig, M.; Becker, S.L.; Martiny, D.; Losch, S.; Penny, C.; Cauchie, H.-M.; Ragimbeau, C. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. Front. Microbiol. 2022, 12, 804484. [Google Scholar] [CrossRef] [PubMed]
- Faron, M.L.; Buchan, B.W.; Hyke, J.; Madisen, N.; Lillie, J.L.; Granato, P.A.; Wilson, D.A.; Procop, G.W.; Novak-Weekley, S.; Marlowe, E.; et al. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates. PLoS ONE 2015, 10, e0141350. [Google Scholar] [CrossRef] [PubMed]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. J. Appl. Microbiol. 2020, 129, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2018, 57, e01405-18. [Google Scholar] [CrossRef] [Green Version]
- Goodman, K.E.; Lessler, J.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Han, J.H.; Milstone, A.M.; Massey, C.J.; Tamma, P.D.; Antibacterial Resistance Leadership Group. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected with an Extended-Spectrum β-Lactamase-Producing Organism. Clin. Infect. Dis. 2016, 63, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.; Pérez-Rodríguez, M.T.; Suarez, M.; Val, N.; Martínez-Lamas, L.; Nodar, A.; Crespo, M. Validation of a clinical decision tree to predict if a patient has a bacteraemia due to a β-lactamase producing organism. Infect. Dis. 2019, 51, 32–37. [Google Scholar] [CrossRef]
- Vazquez-Guillamet, M.C.; Vazquez, R.; Micek, S.T.; Kollef, M.H. Predicting Resistance to Piperacillin-Tazobactam, Cefepime and Meropenem in Septic Patients with Bloodstream Infection Due to Gram-Negative Bacteria. Clin. Infect. Dis. 2017, 65, 1607–1614. [Google Scholar] [CrossRef]
- Henderson, H.I.; Napravnik, S.; Kosorok, M.R.; Gower, E.W.; Kinlaw, A.C.; Aiello, A.E.; Williams, B.; Wohl, D.A.; van Duin, D. Predicting Risk of Multidrug-Resistant Enterobacterales Infections Among People with HIV. Open Forum. Infect. Dis. 2022, 9, ofac487. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; ID-INNOVATION Study Group; Puerta-Alcalde, P.; Cardozo, C.; Orellana, M.A.; Besanson, G.; Lagunas, J.; Marco, F.; Del Rio, A.; Martínez, J.A.; et al. Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients. Infect. Dis. Ther. 2021, 10, 971–983. [Google Scholar] [CrossRef]
- Pascual-Sánchez, L.; Mora-Jiménez, I.; Martínez-Agüero, S.; Álvarez-Rodríguez, J.; Soguero-Ruiz, C. Predicting multidrug resistance using temporal clinical data and machine learning methods. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 2826–2833. [Google Scholar] [CrossRef]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Lada, M.; Christopoulos, C.; Dimitrellos, E.; Martsoukou, M.; Skarmoutsou, N.; Petropoulou, S.; et al. Using Machine Learning Algorithms to Predict Antimicrobial Resistance and Assist Empirical Treatment. Stud. Health Technol. Inform. 2020, 272, 75–78. [Google Scholar] [CrossRef]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiotics 2020, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Martsoukou, M.; Skarmoutsou, N.; Christopoulos, C.; Lada, M.; Velentza, A.; Petropoulou, S.; et al. Using Machine Learning to Predict Antimicrobial Resistance of Acinetobacter Baumannii, Klebsiella Pneumoniae and Pseudomonas Aeruginosa Strains. Stud. Health Technol. Inform. 2021, 281, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Agüero, S.; Mora-Jiménez, I.; Lérida-García, J.; Álvarez-Rodríguez, J.; Soguero-Ruiz, C. Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy 2019, 21, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yelin, I.; Snitser, O.; Novich, G.; Katz, R.; Tal, O.; Parizade, M.; Chodick, G.; Koren, G.; Shalev, V.; Kishony, R. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 2019, 25, 1143–1152. [Google Scholar] [CrossRef]
- Oonsivilai, M.; Mo, Y.; Luangasanatip, N.; Lubell, Y.; Miliya, T.; Tan, P.; Loeuk, L.; Turner, P.; Cooper, B.S. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res. 2018, 3, 131. [Google Scholar] [CrossRef]
- Kanjilal, S.; Oberst, M.; Boominathan, S.; Zhou, H.; Hooper, D.C.; Sontag, D. A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Sci. Transl. Med. 2020, 12, eaay5067. [Google Scholar] [CrossRef]
- Tzelves, L.; Lazarou, L.; Feretzakis, G.; Kalles, D.; Mourmouris, P.; Loupelis, E.; Basourakos, S.; Berdempes, M.; Manolitsis, I.; Mitsogiannis, I.; et al. Using machine learning techniques to predict antimicrobial resistance in stone disease patients. World J. Urol. 2022, 40, 1731–1736. [Google Scholar] [CrossRef]
- Hebert, C.; Gao, Y.; Rahman, P.; Dewart, C.; Lustberg, M.; Pancholi, P.; Stevenson, K.; Shah, N.S.; Hade, E.M. Prediction of Antibiotic Susceptibility for Urinary Tract Infection in a Hospital Setting. Antimicrob. Agents Chemother. 2020, 64, e02236-19. [Google Scholar] [CrossRef]
- Lewin-Epstein, O.; Baruch, S.; Hadany, L.; Stein, G.Y.; Obolski, U. Predicting Antibiotic Resistance in Hospitalized Patients by Applying Machine Learning to Electronic Medical Records. Clin. Infect. Dis. 2021, 72, e848–e855. [Google Scholar] [CrossRef]
- Corbin, C.K.; Sung, L.; Chattopadhyay, A.; Noshad, M.; Chang, A.; Deresinksi, S.; Baiocchi, M.; Chen, J.H. Personalized antibiograms for machine learning driven antibiotic selection. Commun. Med. 2022, 2, 38. [Google Scholar] [CrossRef]
- Rich, S.N.; Jun, I.; Bian, J.; Boucher, C.; Cherabuddi, K.; Morris, J.G., Jr.; Prosperi, M. Development of a Prediction Model for Antibiotic-Resistant Urinary Tract Infections Using Integrated Electronic Health Records from Multiple Clinics in North-Central Florida. Infect. Dis. Ther. 2022, 11, 1869–1882. [Google Scholar] [CrossRef] [PubMed]
- Stracy, M.; Snitser, O.; Yelin, I.; Amer, Y.; Parizade, M.; Katz, R.; Rimler, G.; Wolf, T.; Herzel, E.; Koren, G.; et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 2022, 375, 889–894. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, T.S. Artificial Intelligence to Guide Empirical Antimicrobial Therapy–Ready for Prime Time? Clin. Infect. Dis. 2021, 72, e856–e858. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Hernandez, B.; Moore, L.S.P.; Herrero, P.; Charani, E.; Ming, D.; Wilson, R.C.; Blandy, O.; Sriskandan, S.; Gilchrist, M.; et al. A Real-world Evaluation of a Case-based Reasoning Algorithm to Support Antimicrobial Prescribing Decisions in Acute Care. Clin. Infect. Dis. 2021, 72, 2103–2111. [Google Scholar] [CrossRef]
- Wong, J.G.; Aung, A.H.; Lian, W.; Lye, D.C.; Ooi, C.K.; Chow, A. Risk prediction models to guide antibiotic prescribing: A study on adult patients with uncomplicated upper respiratory tract infections in an emergency department. Antimicrob. Resist. Infect. Control 2020, 9, 171. [Google Scholar] [CrossRef]
- Rawson, T.M.; Hernandez, B.; Wilson, R.C.; Ming, D.; Herrero, P.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Georgiou, P.; et al. Supervised machine learning to support the diagnosis of bacterial infection in the context of COVID-19. JAC Antimicrob. Resist. 2021, 3, dlab002. [Google Scholar] [CrossRef]
- Elligsen, M.; Pinto, R.; Leis, J.A.; Walker, S.A.N.; Daneman, N.; MacFadden, D.R. Improving Decision Making in Empiric Antibiotic Selection (IDEAS) for Gram-negative Bacteremia: A Prospective Clinical Implementation Study. Clin. Infect. Dis. 2021, 73, e417–e425. [Google Scholar] [CrossRef]
- Elligsen, M.; Pinto, R.; Leis, J.A.; Walker, S.A.N.; MacFadden, D.R.; Daneman, N. Using Prior Culture Results to Improve Initial Empiric Antibiotic Prescribing: An Evaluation of a Simple Clinical Heuristic. Clin Infect Dis. 2021, 72, e630–e638. [Google Scholar] [CrossRef]
- Sick-Samuels, A.C.; Goodman, K.E.; Rapsinski, G.; Colantouni, E.; Milstone, A.M.; Nowalk, A.J.; Tamma, P.D. A Decision Tree Using Patient Characteristics to Predict Resistance to Commonly Used Broad-Spectrum Antibiotics in Children with Gram-Negative Bloodstream Infections. J. Pediatr. Infect. Dis. Soc. 2020, 9, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Zhao, Q.; Xu, X.; Zhou, Y.; Huang, M. Early prediction of carbapenem-resistant Gram-negative bacterial carriage in intensive care units using machine learning. J. Glob. Antimicrob. Resist. 2022, 29, 225–231. [Google Scholar] [CrossRef]
- Goodman, K.E.; Lessler, J.; Harris, A.D.; Milstone, A.M.; Tamma, P.D. A methodological comparison of risk scores versus decision trees for predicting drug-resistant infections: A case study using extended-spectrum beta-lactamase (ESBL) bacteremia. Infect. Control Hosp. Epidemiol. 2019, 40, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.H.; To, C.C.K.; Lee, A.L.S.; Chan, R.C.K.; Wong, J.S.H.; Wong, C.W.; Chow, V.C.Y.; Lai, R.W.M. Deep learning model for prediction of extended-spectrum beta-lactamase (ESBL) production in community-onset Enterobacteriaceae bacteraemia from a high ESBL prevalence multi-centre cohort. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Cazer, C.L.; Westblade, L.F.; Simon, M.S.; Magleby, R.; Castanheira, M.; Booth, J.G.; Jenkins, S.G.; Gröhn, Y.T. Analysis of Multidrug Resistance in Staphylococcus aureus with a Machine Learning-Generated Antibiogram. Antimicrob. Agents Chemother. 2021, 65, e02132-20. [Google Scholar] [CrossRef] [PubMed]
- Sakagianni, A.; Feretzakis, G.; Kalles, D.; Loupelis, E.; Rakopoulou, Z.; Dalainas, I.; Fildisis, G. Discovering Association Rules in Antimicrobial Resistance in Intensive Care Unit. Stud. Health Technol. Inform. 2022, 295, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Skarmoutsou, N.; Martsoukou, M.; Christopoulos, C.; Lada, M.; Petropoulou, S.; Velentza, A.; et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc. Inform. Res. 2021, 27, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Lepper, H.C.; Woolhouse, M.E.J.; van Bunnik, B.A.D. The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study. Antibiotics 2022, 11, 1361. [Google Scholar] [CrossRef]
- Jang, J.; Abbas, A.; Kim, M.; Shin, J.; Kim, Y.M.; Cho, K.H. Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models. Water Res. 2021, 196, 117001. [Google Scholar] [CrossRef]
- Iftikhar, S.; Karim, A.M.; Karim, A.M.; Karim, M.A.; Aslam, M.; Rubab, F.; Malik, S.K.; Kwon, J.E.; Hussain, I.; Azhar, E.I.; et al. Prediction and interpretation of antibiotic-resistance genes occurrence at recreational beaches using machine learning models. J. Environ. Manag. 2023, 328, 116969. [Google Scholar] [CrossRef]
- Li, L.G.; Yin, X.; Zhang, T. Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome 2018, 6, 93. [Google Scholar] [CrossRef]
- Wiens, J.; Shenoy, E.S. Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clin. Infect. Dis. 2018, 66, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef] [PubMed]
- Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S. Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 2007, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rawson, T.M.; Ahmad, R.; Toumazou, C.; Georgiou, P.; Holmes, A.H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 2019, 3, 543–545. [Google Scholar] [CrossRef]
- Joshi, G.; Jain, A.; Adhikari, S.; Garg, H.; Bhandari, M. FDA approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An updated 2022 landscape. medRxiv 2022. [Google Scholar] [CrossRef]
Authors | Year of Publication | Medical Setting | Geographical Setting | Input Data | ML Algorithms | Performance Evaluation | Bacterial Species |
---|---|---|---|---|---|---|---|
Goodman et al. [27] | 2016 | Hospital admissions | USA | Blood cultures/AST | Recursive partitioning, DT | PPV 0.908-NPV 0.919 | Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca |
Vazquez-Guillamet et al. [29] | 2017 | Hospital admissions | USA | EHR data/Blood cultures/AST | Recursive partitioning, DT | AUC 0.61–0.80 | GNB |
Sousa et al. [28] | 2019 | Hospital admissions | Spain | Clinical/demographic data/Blood cultures/AST | DT | AUC 0.76 | BL-GNB |
Moran et al. [20] | 2020 | Hospital admissions and primary care | UK | Blood/urine cultures | XGBoost | AUC 0.70 | Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa |
Feretzakis et al. [33] | 2020 | Medical wards | Greece | Demographics/Cultures/AST/Bacterial Gram stain/Type of sample | MLR | AUC 0.758 | All isolated bacterial species |
Feretzakis et al. [34] | 2020 | Intensive Care Unit | Greece | Demographics/Cultures/AST/Bacterial Gram stain/Type of sample | LR, RF, k-NN, J48, MLP | AUC 0.726 | All isolated bacterial species |
Feretzakis et al. [35] | 2021 | Intensive Care Unit | Greece | Demographics/Cultures/AST/Bacterial Gram stain/Type of sample | JRip, RF, MLP, Class. Regr, REPTree | F-measure 0.884, AUC 0.933 | Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae |
Martínez-Agüero et al. [36] | 2019 | Intensive Care Unit | Spain | Demographics/Clinical data/Type of sample/Cultures/AST | LR, k-NN, DT, RF, MLP | Accuracy for quinolone resistance 88.1 ± 1.6 | Pseudomonas, Strenotrophomonas, Enterococcus |
McGuire et al. [5] | 2021 | Hospital admissions | USA | Demographic, medication, vital sign, laboratory, billing code, procedure, culture, and sensitivity data (67 features) | XGBoost | AUC 0.846 | Bacterial isolates with CR |
Pascual-Sánchez et al. [32] | 2021 | Intensive Care Unit | Spain | EHR data | LR, DT, RF, XGBoost, MLP | AUC 0.76 | MDR bacteria |
Garcia-Vidal et al. [31] | 2021 | FN Hematological Patients | Spain | EHR data | RF, GBM, XGBoost, GLM | AUC 0.79 | MDR-Pseudomonas aeruginosa/ESBL-E |
Henderson et al. [30] | 2022 | HIV patients | USA | EHR data | PLR, naïve Bayes, gradient boosting, SVM, RF | AUC 0.70 | MDR-E |
Author | Year of Publication | Medical Setting | Geographical Setting | Input Data | ML Algorithms | Performance Evaluation | Bacterial Species |
---|---|---|---|---|---|---|---|
Yelin et al. [37] | 2019 | Community and nursing-home | Israel | Demographics/Urine cultures/Past antibiotic prescriptions | LR and GBDT models | AUC 0.7 for amoxicillin-CA to 0.83 for ciprofloxacin | E. coli, K. pneumoniae and P. mirabilis |
Hebert et al. [41] | 2020 | In-hospital patients | USA | Demographics/Urine cultures/Past antibiotic prescriptions | PLR | AUC 0.65 to 0.69 | Bacterial isolates from urine cultures |
Tzelves et al. [40] | 2022 | Emergency department/urology ward | Greece | Demographics/Gram stain/Bacterial species/Sample type/AST | MLR with a ridge estimator | AUC 0.768 (unknown bacteria) AUC 0.874 (known bacteria) | Bacterial isolates from urine cultures |
Kanjilal et al. [39] | 2020 | In-hospital and outpatients | USA | Demographic/Urine cultures/Past antibiotic prescriptions | LR, DT, RF | AUC 0.56–0.64 | Bacterial isolates from urine cultures |
Lewin-Epstein et al. [42] | 2021 | In-hospital patients | USA | Electronic health record data/Antibiotic susceptibility results | LASSO logistic regression, NN, GBDT, ensemble † | AUC 0.73–0.79 (unknown bacteria) AUC 0.8–0.88 (known bacteria) | Bacterial isolates from blood/urine/other cultures |
Corbin et al. [43] | 2022 | Emergency Department | USA | Electronic health record data/Antibiotic susceptibility results | LASSO/Ridge logistic regressions, RF, and GBDT | AUC 0.64–0.74 | Bacterial isolates from blood/urine/other cultures |
Rawson et al. [47] | 2021 | Hospital admissions | United Kingdom | Clinical, microbiological, prescribing information | Case-Based Reasoning (CBR) | OR: 1.77; 95% CI: 1.212–2.588; p < 0.01 | Escherichia coli bloodstream infections |
Rich et al. [44] | 2022 | In-hospital and outpatients | USA | Demographics, previous diagnoses, prescriptions, and antibiotic susceptibility tests | DT, boosted logistic regression (BLR), RF | AUC 0.57–0.66 | Bacterial isolates from urine cultures |
Author | Year of Publication | Medical Setting | Geographical Setting | Input Data | ML Algorithm | Performance Evaluation | Bacterial Species |
---|---|---|---|---|---|---|---|
Oonsivalai et al. [38] | 2018 | Hospital admissions | Cambodia | Clinical, demographic and living condition information | LR, DT, RF, Boost, SVM, k-NN | AUC: 0.74–0.85 | Bacterial isolates in blood cultures |
Elligsen et al. [50] | 2021 | Hospital admissions | Canada | Demographics, acquisition of bacteremia, previous hospital/ICU admission, AST, antibiotic prescriptions | LR models | Antibiotic de-escalation (29 vs. 21%; OR = 1.77; 95% CI, 1.09–2.87; p = 0.02) | GNB bloodstream infections |
Sick-Samuels et al. [52] | 2019 | Pediatric hospital | USA | Demographic, clinical, and microbiological data | Recursive partitioning, DT | AUC 0,70 | GNB BSIs |
Cazer et al. [56] | 2021 | Hospital admissions | USA | Bacterial isolates, infection site, AST, resistance phenotypes | Association Mining | Average cLift: 5 | Staphylococcus aureus isolates |
Sakagianni et al. [57] | 2022 | Intensive Care Unit | Greece | Demographics/bacterial species/sample type/AST | Association Mining | Max Lift: 3.44 | Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae |
Feretzakis et al. [58] | 2021 | Medical wards | Greece | Demographics/Gram stain/bacterial species/sample type/AST | Microsoft Azure AutoML (StackEnsemble, VotingEnsemble, MaxAbsScaler, LightGBM, SparseNormalizer, XGBoost) | AUC: 0.822 | Bacterial isolates |
Lee et al. [55] | 2021 | Hospital admissions | Hong Kong | Patient reference number/Date of culture/Bacterial species/Sample type/AST | Adaptive boosting, gradient boosting, RF, SVM, K-NN and NN * | AUC: 0.761 | Escherichia coli, Klebsiella spp., Proteus mirabilis |
Liang et al. [53] | 2022 | Intensive Care Unit | China | Demographic data, vital signs, basic and primary diseases, important test indicators, operation histories and antibiotic use | RF, XGBoost, DT, multiple LR | AUC 0.78–0.91 | CR-GNB carriage |
Goodman et al. [54] | 2019 | Hospital admissions | USA | Blood cultures/AST | LR, DT | C-statistic LR:0.87 DT:0.77 | ESBL bacteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakagianni, A.; Koufopoulou, C.; Feretzakis, G.; Kalles, D.; Verykios, V.S.; Myrianthefs, P.; Fildisis, G. Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review. Antibiotics 2023, 12, 452. https://doi.org/10.3390/antibiotics12030452
Sakagianni A, Koufopoulou C, Feretzakis G, Kalles D, Verykios VS, Myrianthefs P, Fildisis G. Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review. Antibiotics. 2023; 12(3):452. https://doi.org/10.3390/antibiotics12030452
Chicago/Turabian StyleSakagianni, Aikaterini, Christina Koufopoulou, Georgios Feretzakis, Dimitris Kalles, Vassilios S. Verykios, Pavlos Myrianthefs, and Georgios Fildisis. 2023. "Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review" Antibiotics 12, no. 3: 452. https://doi.org/10.3390/antibiotics12030452
APA StyleSakagianni, A., Koufopoulou, C., Feretzakis, G., Kalles, D., Verykios, V. S., Myrianthefs, P., & Fildisis, G. (2023). Using Machine Learning to Predict Antimicrobial Resistance―A Literature Review. Antibiotics, 12(3), 452. https://doi.org/10.3390/antibiotics12030452