Staphylococcus capitis: Review of Its Role in Infections and Outbreaks
Abstract
:1. Introduction
2. Methods
3. Results
4. Characterisation of S. capitis
5. Pathogenesis
6. Biofilm
7. Antimicrobial Resistance
8. Clinical Presentations and Management
9. Staphylococcus capitis Infection and Colonisation in Neonates
10. Neonatal Outbreaks
11. Environmental Sources and Reservoirs
12. Decontamination
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kloos, W.E.; Schleifer, K.H. Isolation and Characterization of Staphylococci from Human Skin II. Descriptions of Four New Species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int. J. Syst. Evol. Microbiol. 1975, 25, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Bannerman, T.L.; Kloos, W.E. Staphylococcus capitis subsp. ureolyticus subsp. nov. from human skin. Int. J. Syst. Bacteriol. 1991, 41, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; He, L.H.; Xiao, D.; Liu, G.; Gu, Y.; Tao, X.X.; Zhang, J.Z. Bacterial flora concurrent with Helicobacter pylori in the stomach of patients with upper gastrointestinal diseases. World J. Gastroenterol. 2012, 18, 1257–1261. [Google Scholar] [CrossRef]
- Butin, M.; Dumont, Y.; Rasigade, J.-P.; Simoes, P.M.; Hoden, L.; Picaud, J.-C.; Laurent, F. Chromogenic detection procedure for the multidrug-resistant, neonatal sepsis-associated clone Staphylococcus capitis NRCS-A. Diagn. Microbiol. Infect. Dis. 2018, 90, 81–82. [Google Scholar] [CrossRef]
- Goodfellow, M.; Mordarski, M.; Tkacz, A.; Szyba, K.; Pulverer, G. Polynucleotide sequence divergence among some coagu-lase-negative staphylococci. Zentralbl. Bakteriol. [A] 1980, 246, 10–22. [Google Scholar]
- Pennington, T.H.; Harker, C.; Thomson-Carter, F. Identification of coagulase-negative staphylococci by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and rRNA restriction patterns. J. Clin. Microbiol. 1991, 29, 390–392. [Google Scholar] [CrossRef] [Green Version]
- Perl, T.M.; Rhomberg, P.; Bale, M.J.; Fuchs, P.C.; Jones, R.N.; Koontz, F.P.; Pfaller, M.A. Comparison of identification systems for Staphylococcus epidermidis and other coagulase-negative Staphylococcus species. Diagn. Microbiol. Infect. Dis. 1994, 18, 151–155. [Google Scholar] [CrossRef]
- Jukes, L.; Mikhail, J.; Bome-Mannathoko, N.; Hadfield, S.J.; Harris, L.G.; El-Bouri, K.; Davies, A.P.; Mack, D. Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR. J. Med. Microbiol. 2010, 59, 1456–1461. [Google Scholar] [CrossRef]
- Trevisoli, L.E.; Bail, L.; Rodrigues, L.S.; Conte, D.; Palmeiro, J.K.; Dalla-Costa, L.M. Matrix-assisted laser desorption ionization-time of flight: A promising alternative method of identifying the major coagulase-negative Staphylococci species. Rev. Soc. Bras. Med. Trop. 2018, 51, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Carpaij, N.; Willems, R.J.; Bonten, M.J.; Fluit, A.C. Comparison of the identification of coagulase-negative staphylococci by ma-trix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1169–1172. [Google Scholar] [CrossRef] [Green Version]
- Spanu, T.; De Carolis, E.; Fiori, B.; Sanguinetti, M.; D’Inzeo, T.; Fadda, G.; Posteraro, B. Evaluation of matrix-assisted laser de-sorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of blood-stream infection staphylococcal isolates. Clin. Microbiol. Infect. 2011, 17, 44–49. [Google Scholar] [CrossRef]
- Abdul-Aziz, A.; Mohamad, S.A.S.; Zain, Z.M.; Abdullah, M.F.F. ERIC-PCR fingerprint profiling and genetic diversity of coagu-lase negative Staphylococcus in Malaysia. Malays. J. Microbiol. 2020, 16, 7–16. [Google Scholar]
- Song, M.; Li, Q.; He, Y.; Lan, L.; Feng, Z.; Fan, Y.; Liu, H.; Qin, F.; Chen, D.; Yang, M. A Comprehensive Multilocus Sequence Typ-ing Scheme for Identification and Genotyping of Staphylococcus Strains. Foodborne Pathog. Dis. 2019, 16, 331–338. [Google Scholar] [CrossRef]
- Ederveen, T.H.A.; Smits, J.P.H.; Hajo, K.; van Schalkwijk, S.; Kouwenhoven, T.A.; Lukovac, S.; Wels, M.; Bogaard, E.H.V.D.; Schalkwijk, J.; Boekhorst, J.; et al. A generic workflow for Single Locus Sequence Typing (SLST) design and subspecies characterization of microbiota. Sci. Rep. 2019, 9, 19834. [Google Scholar] [CrossRef] [Green Version]
- Slany, M.; Vanerkova, M.; Nemcova, E.; Zaloudikova, B.; Ruzicka, F.; Freiberger, T. Differentiation of Staphylococcus spp. by high-resolution melting analysis. Can. J. Microbiol. 2010, 56, 1040–1049. [Google Scholar] [CrossRef]
- Kumar, R.; Jangir, P.K.; Das, J.; Taneja, B.; Sharma, R. Genome Analysis of Staphylococcus capitis TE8 Reveals Repertoire of Antimicrobial Peptides and Adaptation Strategies for Growth on Human Skin. Sci. Rep. 2017, 7, 10447. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.R.; Jiang, J.-H.; Hassan, K.A.; Elbourne, L.D.H.; Tuck, K.L.; Paulsen, I.T.; Peleg, A.Y. Insights on virulence from the complete genome of Staphylococcus capitis. Front. Microbiol. 2015, 6, 980. [Google Scholar] [CrossRef] [Green Version]
- Brandi, G.; Biavati, B.; Calabrese, C.; Granata, M.; Nannetti, A.; Mattarelli, P.; Di Febo, G.; Saccoccio, G.; Biasco, G. Urease-positive bacteria other than Helicobacter pylori in human gastric juice and mucosa. Am. J. Gastroenterol. 2006, 101, 1756–1761. [Google Scholar] [CrossRef]
- Szczuka, E.; Jabłońska, L.; Kaznowski, A. Coagulase-negative staphylococci: Pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. J. Med. Microbiol. 2016, 65, 1405–1413. [Google Scholar] [CrossRef]
- Koksal, F.; Yasar, H.; Samasti, M. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol. Res. 2009, 164, 404–410. [Google Scholar] [CrossRef]
- Cui, B.; Smooker, P.M.; Rouch, D.A.; Daley, A.J.; Deighton, M.A. Differences between two clinical Staphylococcus capitis sub-species as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling. J. Clin. Microbiol. 2013, 51, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco-Stewart, V.S.; Ali, H.; Kumaran, D.; Kalab, M.; Rood, I.G.H.; de Korte, D.; Ramirez-Arcos, S. Biofilm formation by Staphy-lococcus capitis strains isolated from contaminated platelet concentrates. J. Med. Microbiol. 2013, 62 Pt 7, 1051–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Garcia, S.; Ortega-Pena, S.; De Haro-Cruz, M.D.J.; Aguilera-Arreola, M.G.; Alcantar-Curiel, M.D.; Betanzos-Cabrera, G.; Jan-Roblero, J.; Perez-Tapia, S.M.; Rodriguez-Martinez, S.; Cancino-Diaz, M.E.; et al. Non-biofilm-forming commensal Staphylococcus epidermidis isolates produce biofilm in the presence of trypsin. MicrobiologyOpen 2019, 8, e906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitti, T.; Seng, R.; Thummeepak, R.; Boonlao, C.; Jindayok, T.; Sitthisak, S. Biofilm Formation of Methicillin-resistant Coagu-lase-Negative Staphylococci Isolated from Clinical Samples in Northern Thailand. J. Glob. Infect. Dis. 2019, 11, 112–117. [Google Scholar]
- Cui, B.; Smooker, P.M.; Rouch, D.A.; Deighton, M.A. Effects of erythromycin on the phenotypic and genotypic biofilm expres-sion in two clinical Staphylococcus capitis subspecies and a functional analysis of Ica proteins in S. capitis. J. Med. Microbiol. 2015, 64, 591–604. [Google Scholar] [CrossRef]
- Qu, Y.; Daley, A.J.; Istivan, T.S.; Garland, S.M.; Deighton, M.A. Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: Comprehensive comparisons of bacteria at different stages of biofilm formation. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zheng, B.; Xiao, F.; Jin, Y.; Guo, L.; Xu, H.; Luo, Q.; Xiao, Y. Effect of Short-Term Antimicrobial Therapy on the Tolerance and Antibiotic Resistance of Multidrug-Resistant Staphylococcus capitis. Infect. Drug Resist. 2020, 13, 2017–2026. [Google Scholar] [CrossRef]
- Machado, A.B.M.P.; Reiter, K.C.; Paiva, R.M.; Barth, A.L. Distribution of staphylococcal cassette chromosome mec (SCCmec) types I, II, III and IV in coagulase-negative staphylococci from patients attending a tertiary hospital in southern Brazil. J. Med. Microbiol. 2007, 56, 1328–1333. [Google Scholar] [CrossRef]
- Simões, P.M.; Lemriss, H.; Dumont, Y.; Lemriss, S.; Rasigade, J.-P.; Assant-Trouillet, S.; Ibrahimi, A.; El Kabbaj, S.; Butin, M.; Laurent, F. Single-Molecule Sequencing (PacBio) of the Staphylococcus capitis NRCS-A Clone Reveals the Basis of Multidrug Resistance and Adaptation to the Neonatal Intensive Care Unit Environment. Front. Microbiol. 2016, 7, 1991. [Google Scholar] [CrossRef] [Green Version]
- Martins Simoes, P.; Rasigade, J.P.; Lemriss, H.; Butin, M.; Ginevra, C.; Lemriss, S.; Goering, R.V.; Ibrahimi, A.; Picaud, J.C.; El Kabbaj, S.; et al. Characterization of a novel composite staphylococcal cassette chromosome mec (SCC-mec-SCCcad/ars/cop) in the neonatal sepsis-associated Staphylococcus capitis pulsotype NRCS-A. Antimicrob. Agents Chemother. 2013, 57, 6354–6357. [Google Scholar] [CrossRef] [Green Version]
- Butin, M.; Martins-Simoes, P.; Picaud, J.C.; Kearns, A.; Claris, O.; Vandenesch, F.; Laurent, F.; Rasigade, J.P. Adaptation to van-comycin pressure of multiresistant Staphylococcus capitis NRCS-A involved in neonatal sepsis. J. Antimicrob. Chemother. 2015, 70, 3027–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Mello, D.; Daley, A.J.; Rahman, M.S.; Qu, Y.; Garland, S.; Pearce, C.; Deighton, M.A. Vancomycin heteroresistance in blood-stream isolates of Staphylococcus capitis. J. Clin. Microbiol. 2008, 46, 3124–3126. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Lv, Y.; Cui, L.; Li, Y.; Ke, Q.; Zhao, Y. cfr-mediated linezolid-resistant clinical isolates of methicillin-resistant coagu-lase-negative staphylococci from China. J. Glob. Antimicrob. Resist. 2017, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Chen, Y.; Yang, Q.; Qu, T.T.; Liu, L.L.; Wang, H.P.; Yu, Y.S. Emergence of cfr-harbouring coagulase-negative staphy-lococci among patients receiving linezolid therapy in two hospitals in China. J. Med. Microbiol. 2013, 62 Pt 6, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Li, P.; Yang, Y.; Lin, D.; Xu, X. The epidemiology and molecular characteristics of linezolid-resistant Staphylococcus capitis in Huashan Hospital, Shanghai. J. Med. Microbiol. 2020, 69, 1079–1088. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, D.; Cao, X.; Ning, M.; Zhang, Z.; Shen, H.; Zhang, K. Clonal dissemination of linezolid-resistant Staphylococcus capitis with G2603T mutation in domain V of the 23S rRNA and the cfr gene at a tertiary care hospital in China. BMC Infect. Dis. 2015, 15, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butin, M.; Martins-Simoes, P.; Pichon, B.; Leyssene, D.; Bordes-Couecou, S.; Meugnier, H.; Rouard, C.; Lemaitre, N.; Schramm, F.; Kearns, A.; et al. Emergence and dissemina-tion of a linezolid-resistant Staphylococcus capitis clone in Europe. J. Antimicrob. Chemother. 2017, 72, 1014–1020. [Google Scholar]
- Li, X.; Lei, M.; Song, Y.; Gong, K.; Li, L.; Liang, H.; Jiang, X. Whole genome sequence and comparative genomic analysis of multi-drug-resistant Staphylococcus capitis subsp. urealyticus strain LNZR-1. Gut Pathog. 2014, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, V.C.; Romero, L.C.; Pinheiro-Hubinger, L.; Oliveira, A.; Martins, K.B.; Cunha, M.D.L.R.D.S.D. Coagulase-negative staphylococci: A 20-year study on the antimicrobial resistance profile of blood culture isolates from a teaching hospital. Braz. J. Infect. Dis. 2020, 24, 160–169. [Google Scholar] [CrossRef]
- Mendes, R.E.; Sader, H.S.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Telavancin activity when tested by a revised susceptibility test-ing method against uncommonly isolated Gram-positive pathogens responsible for documented infections in hospitals worldwide (2011–2013). J. Glob. Antimicrob. Resist. 2015, 3, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, B.; Hellmark, B.; Söderquist, B. Genomic analysis of Staphylococcus capitis isolated from blood cultures in neonates at a neonatal intensive care unit in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2069–2075. [Google Scholar] [CrossRef] [Green Version]
- Nwibo, D.D.; Panthee, S.; Hamamoto, H.; Sekimizu, K. Molecular characterization of multi-drug resistant coagulase negative cocci in non-hospital environment. Drug Discov. Ther. 2019, 13, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohzari, Y.; Aljobair, F.; Alrashed, A.; Asdaq, S.M.B.; Alshuraim, R.A.; Asfour, S.S.; Al-Mouqdad, M.M.; Bamogaddam, R.F.; Al-Anazi, D.; Zeilinger, C.E.; et al. Safety and efficacy of daptomycin in neonates with coagu-lase-negative staphylococci: Case series analysis. Antibiotics 2021, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Ussher, J.E.; Da Silva, A.G.; Baines, S.L.; Heffernan, H.; Riley, T.V.; Broadbent, R.; van der Linden, A.; Lee, J.; Monk, I.R.; et al. Genomic Analysis of Multiresistant Staphylococcus capitis Associated with Neonatal Sepsis. Antimicrob. Agents Chemother. 2018, 62, e00898-18. [Google Scholar] [CrossRef] [Green Version]
- Palusińska-Szysz, M.; Zdybicka-Barabas, A.; Frąc, M.; Gruszecki, W.I.; Wdowiak-Wróbel, S.; Reszczyńska, E.; Skorupska, D.; Mak, P.; Cytryńska, M. Identification and characterization of Staphylococcus spp. and their susceptibility to insect apolipophorin III. Futur. Microbiol. 2020, 15, 1015–1032. [Google Scholar] [CrossRef]
- Li, C.-R.; Li, Y.; Li, G.-Q.; Yang, X.-Y.; Zhang, W.-X.; Lou, R.-H.; Liu, J.-F.; Yuan, M.; Huang, P.; Cen, S.; et al. In vivo antibacterial activity of nemonoxacin, a novel non-fluorinated quinolone. J. Antimicrob. Chemother. 2010, 65, 2411–2415. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, K.; Zhu, W.; Ye, X.; Ding, L.; Jiang, H.; Li, F.; Chen, Z.; Luo, X. Two new cationic α-helical peptides identified from the venom gland of Liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021, 196, 63–73. [Google Scholar] [CrossRef] [PubMed]
- De Vry, D.J.; Barker, P.H.; Vardanyan, M.; Milosavljevic, S.L.; Dygert, T.N.; Jurva, J.W.; Van Ballmoos, M.C.W.; Gandhi, S.D.; Almassi, G.H.; Pagel, P.S. Pneumonia and Inflammatory Arthritis Caused by Unusual Occupational Exposure or a Life-Threatening Infection Resulting From a More Commonly Encountered Mechanism? J. Cardiothorac. Vasc. Anesth. 2015, 29, 1096–1099. [Google Scholar] [CrossRef]
- Mosele, M.; Veronese, N.; Bolzetta, F.; Pengo, V.; Franchin, A.; Manzato, E.; Sergi, G. Mitral valve endocarditis due to Staphylo-coccus capitis in a very old woman. G. Gerontol. 2012, 60, 247–249. [Google Scholar]
- Breuer, G.; Yinnon, A.; Halevy, J. Infective endocarditis associated with upper endoscopy: Case report and review. J. Infect. 1998, 36, 342–344. [Google Scholar] [CrossRef]
- Kamalesh, M.; Aslam, S. Aortic valve endocarditis due to Staphylococcus capitis. Echocardiography 2000, 17, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Sandoe, J.; Kerr, K.G.; Reynolds, G.W.; Jain, S. Staphylococcus capitis endocarditis: Two cases and review of the literature. Heart 1999, 82, e1. [Google Scholar] [CrossRef] [PubMed]
- Nalmas, S.; Bishburg, E.; Meurillio, J.; Khoobiar, S.; Cohen, M. Staphylococcus capitis prosthetic valve endocarditis: Report of two rare cases and review of literature. Heart Lung 2008, 37, 380–384. [Google Scholar] [CrossRef]
- Brooks, D.; Thomas, V.; Snowden, J. Staphylococcus capitis Osteomyelitis: Case Report. Glob. Pediatr. Health. 2019, 6, 2333794X19833736. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.-S.; Kim, S.-H.; Nam, G.-B.; Choi, K.-J.; Kim, Y.-H. Very late-onset lead-associated endocarditis. Can. J. Infect. Dis. Med. Microbiol. 2011, 22, 147–148. [Google Scholar] [CrossRef]
- Cone, L.A.; Sontz, E.M.; Wilson, J.W.; Mitruka, S. Staphylococcus capitis endocarditis due to a transvenous endocardial pacemaker infection: Case report and review of Staphylococcus capitis endocarditis. Int. J. Infect. Dis. 2005, 9, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Demarie, D.; De Vivo, E.; Cecchi, E.; Marletta, G.; Forsennati, P.G.; Casabona, R.; Sansone, F.; Bignamini, E. Acute endocarditis of the patch caused by Staphylococcus capitis in treated tetralogy of Fallot. An unusual location by an unusual bacterium. Heart Lung Circ. 2012, 21, 189–192. [Google Scholar] [CrossRef]
- Takano, T.; Ohtsu, Y.; Terasaki, T.; Wada, Y.; Amano, J. Prosthetic valve endocarditis caused by Staphylococcus capitis: Report of 4 cases. J. Cardiothorac. Surg. 2011, 6, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frid, P.; Tornes, K.; Nielsen, A.; Skaug, N. Primary chronic osteomyelitis of the jaw—A microbial investigation using cultivation and DNA analysis: A pilot study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 641–647. [Google Scholar] [CrossRef]
- Fukuda, S.; Wada, K.; Yasuda, K.; Iwasa, J.; Yamaguchi, S. Acute Osteomyelitis of the Acetabulum Induced by Staphylococcus capitis in a Young Athlete. Pediatr. Rep. 2010, 2, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.; Lambah, A. Osteomyelitis of the hand. Trauma 2014, 16, 48–50. [Google Scholar] [CrossRef]
- O’Neill, B.J.; Molloy, A.P.; McCarthy, T. Osteomyelitis of the tibia following anterior cruciate ligament reconstruction. Int. J. Surg. Case Rep. 2013, 4, 143–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.; Kern, P.A. A case of pituitary abscess presenting without a source of infection or prior pituitary pathology. Endocrinol. Diabetes Metab. Case Rep. 2016, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeavons, R.P.; Dowen, D.; Rushton, P.R.P.; Chambers, S.; O’Brien, S. Management of significant and widespread, acute subcu-taneous emphysema: Should we manage surgically or conservatively? J. Emerg. Med. 2014, 46, 21–27. [Google Scholar] [CrossRef]
- Mochizuki, K.; Katada, T.; Kawakami, H.; Sawada, A.; Mikamo, H. Polymicrobial Endogenous Endophthalmitis. Retin. Cases Brief Rep. 2008, 2, 342–343. [Google Scholar] [CrossRef]
- Pepe, I.; Russo, L.L.; Cannone, V.; Giammanco, A.; Sorrentino, F.; Ciavarella, D.; Campisi, G. Necrotizing fasciitis of the face: A life-threatening condition. Aging Clin. Exp. Res. 2009, 21, 358–362. [Google Scholar] [CrossRef]
- Bianco, C.; Arena, F.; Rossetti, B.; Tordini, G.; Migliorini, L.; Galluzzi, P.; Cerase, A.; De Luca, A.; Rossolini, G.M.; Montagnani, F. First report of spondylodiscitis due to vancomycin heteroresistant Staphylococcus capitis in immunocompetent host. J. Infect. Chemother. 2014, 20, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Bottagisio, M.; Bidossi, A.; Logoluso, N.; Pellegrini, A.; De Vecchi, E. A spacer infection by Candida albicans secondary to a Staphylococcus capitis prosthetic joint infection: A case report. BMC Infect. Dis. 2021, 21, 416. [Google Scholar] [CrossRef]
- Schwartz, R.; Ben Cnaan, R.; Schein, O.; Giladi, M.; Raz, M.; Leibovitch, I. Periocular and anterior orbital necrosis after upper eyelid gold weight loading: Operation-related or self-inflicted? Clin. Ophthalmol. 2014, 8, 843–846. [Google Scholar] [CrossRef] [Green Version]
- Von Eiff, C.; Vaudaux, P.; Kahl, B.; Lew, D.; Emler, S.; Schmidt, A.; Peters, G.; Proctor, R.A. Bloodstream Infections Caused by Small-Colony Variants of Coagulase-Negative Staphylococci Following Pacemaker Implantation. Clin. Infect. Dis. 1999, 29, 932–934. [Google Scholar] [CrossRef]
- Yang, T.K.; Sim, K.-B. Multiple Liver Abscesses Associated with Ventriculoperitoneal Shunt Infection: Case Report and Review of the Literature. J. Korean Neurosurg. Soc. 2013, 54, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Basic-Jukic, N. Acute Peritonitis Caused by Staphylococcus capitis in a Peritoneal Dialysis Patient. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2017, 37, 115–116. [Google Scholar] [CrossRef]
- Narita, A.; Suzuki, A.; Nakajima, T.; Takakubo, Y.; Ito, J.; Sasaki, A.; Takagi, M. Assessing an alpha-defensin lateral flow device for diagnosing septic arthritis: Reporting on a false-negative case and a false-positive case. Mod. Rheumatol. Case Rep. 2019, 4, 156–160. [Google Scholar] [CrossRef]
- Oud, L. Community-acquired meningitis due to Staphylococcus capitis in the absence of neurologic trauma, surgery, or implants. Heart Lung 2011, 40, 467–471. [Google Scholar] [CrossRef]
- Young, N.; Bhally, H. Bilateral Neck Pyomyositis Caused by Staphylococcus capitis and Staphylococcus saccharolyticus in a Diabetic Adult. Case Rep. 2017, 2017, 3713212. [Google Scholar]
- Wirth, T.; Bergot, M.; Rasigade, J.-P.; Pichon, B.; Barbier, M.; Martins-Simoes, P.; Jacob, L.; Pike, R.; Tissieres, P.; Picaud, J.-C.; et al. Niche specialization and spread of Staphylococcus capitis involved in neonatal sepsis. Nat. Microbiol. 2020, 5, 735–745. [Google Scholar] [CrossRef]
- Van Der Zwet, W.C.; Debets-Ossenkopp, Y.J.; Reinders, E.; Kapi, M.; Savelkoul, P.H.M.; Van Elburg, R.M.; Hiramatsu, K.; Vandenbroucke-Grauls, C.M.J.E. Nosocomial Spread of a Staphylococcus capitis Strain with Heteroresistance to Vancomycin in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2002, 40, 2520–2525. [Google Scholar] [CrossRef] [Green Version]
- Butin, M.; Rasigade, J.-P.; Subtil, F.; Martins-Simões, P.; Pralong, C.; Freydière, A.-M.; Vandenesch, F.; Tigaud, S.; Picaud, J.-C.; Laurent, F. Vancomycin treatment is a risk factor for vancomycin-nonsusceptible Staphylococcus capitis sepsis in preterm neonates. Clin. Microbiol. Infect. 2017, 23, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Savey, A.; Fleurette, J.; Salle, B. An analysis of the microbial flora of premature neonates. J. Hosp. Infect. 1992, 21, 275–289. [Google Scholar] [CrossRef]
- Cossey, V.; Vanhole, C.; Verhaegen, J.; Schuermans, A. Intestinal Colonization Patterns of Staphylococci in Preterm Infants in Relation to Type of Enteral Feeding and Bacteremia. Breastfeed. Med. 2014, 9, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Lepainteur, M.; Desroches, M.; Bourrel, A.S.; Aberrane, S.; Fihman, V.; L’Hériteau, F.; Razafimahefa, H.; Derouin, V.; Doucet-Populaire, F.; Decousser, J.-W. Role of the Central Venous Catheter in Bloodstream Infections Caused by Coagulase-negative Staphylococci in Very Preterm Neonates. Pediatr. Infect. Dis. J. 2013, 32, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Decalonne, M.; Dos Santos, S.; Gimenes, R.; Goube, F.; Abadie, G.; Aberrane, S.; Ambrogi, V.; Baron, R.; Barthelemy, P.; Bauvin, I.; et al. Staphylococcus capitis isolated from bloodstream infections: A nationwide 3-month survey in 38 neonatal intensive care units. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Adeghate, J.O.; Juhász, E.; Iván, M.; Pongrácz, J.; Kristóf, K. Similar Strains of Coagulase-Negative Staphylococci Found in the Gastrointestinal Tract and Bloodstream of Bacteremic Neonates. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 3509676. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Chow, V.C.Y.; Lee, C.H.; Ling, J.M.L.; Wong, H.L.; Chan, R.C.Y. Persistent Staphylococcus capitis Septicemia in a Preterm Infant. Pediatr. Infect. Dis. J. 2006, 25, 652–654. [Google Scholar] [CrossRef]
- Thorn, L.M.; Ussher, J.E.; Broadbent, R.S.; Manning, J.M.; Sharples, K.J.; Crump, J.A. Risk factors for Staphylococcus capitis pul-sotype NRCS-A colonisation among premature neonates in the neonatal intensive care unit of a tertiary-care hospital: A retrospec-tive case-control study. Infect. Prev. Pract. 2020, 2, 100057. [Google Scholar] [CrossRef]
- Ben Said, M.; Hays, S.; Bonfils, M.; Jourdes, E.; Rasigade, J.-P.; Laurent, F.; Picaud, J.-C. Late-onset sepsis due to Staphylococcus capitis ‘neonatalis’ in low-birthweight infants: A new entity? J. Hosp. Infect. 2016, 94, 95–98. [Google Scholar] [CrossRef]
- Rasigade, J.P.; Raulin, O.; Picaud, J.C.; Tellini, C.; Bes, M.; Grando, J.; Said, M.B.; Claris, O.; Etienne, J.; Tigaud, S.; et al. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neo-nates. PLoS ONE 2012, 7, e31548. [Google Scholar] [CrossRef] [Green Version]
- Butin, M.; Dumont, Y.; Monteix, A.; Raphard, A.; Roques, C.; Simoes, P.M.; Picaud, J.-C.; Laurent, F. Sources and reservoirs of Staphylococcus capitis NRCS-A inside a NICU. Antimicrob. Resist. Infect. Control 2019, 8, 157. [Google Scholar] [CrossRef]
- Lemriss, H.; Lemriss, S.; Martins-Simoes, P.; Butin, M.; Lahlou, L.; Rasigade, J.P.; Kearns, A.; Denis, O.; Deighton, M.; Ibrahimi, A.; et al. Genome Sequences of Four Staphylococcus capitis NRCS-A Isolates from Geographically Distant Neonatal Intensive Care Units. Genome Announc. 2015, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Butin, M.; Rasigade, J.-P.; Martins-Simões, P.; Meugnier, H.; Lemriss, H.; Goering, R.; Kearns, A.; Deighton, M.; Denis, O.; Ibrahimi, A.; et al. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin. Microbiol. Infect. 2015, 22, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Tevell, S.; Baig, S.; Hellmark, B.; Simoes, P.M.; Wirth, T.; Butin, M.; Nilsdotter-Augustinsson, A.; Söderquist, B.; Stegger, M. Presence of the neonatal Staphylococcus capitis outbreak clone (NRCS-A) in prosthetic joint infections. Sci. Rep. 2020, 10, 22389. [Google Scholar] [CrossRef] [PubMed]
- Salimi, E.; Pakbaz, Z.; Pourmand, M.R.; Majelan, P.A.; Dehbashi, S. Nasal Carriage of Uncommon Coagulase-Negative Staphylococci in Nurses and Physicians of Tehran University Hospitals. Acta Medica Iran. 2016, 54, 330–333. [Google Scholar]
- Guen, C.G.-L.; Fournier, S.; Andre-Richet, B.; Caillon, J.; Chamoux, C.; Espaze, E.; Richet, H.; Roze, J.C.; Lepelletier, D. Almond oil implicated in a Staphylococcus capitis outbreak in a neonatal intensive care unit. J. Perinatol. 2007, 27, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Cadot, L.; Bruguiere, H.; Jumas-Bilak, E.; Didelot, M.N.; Masnou, A.; de Barry, G.; Cambonie, G.; Parer, S.; Romano-Bertrand, S. Extended spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak reveals incubators as pathogen reservoir in neona-tal care center. Eur. J. Pediatr. 2019, 178, 505–513. [Google Scholar] [CrossRef]
- Chavignon, M.; Reboux, M.; Tasse, J.; Tristan, A.; Claris, O.; Laurent, F.; Butin, M. Persistent microbial contamination of incuba-tors despite disinfection. Pediatr. Res. 2021, 90, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.M.; Bena, J.F.; Ciudad, C.; Keleekai-Brapoh, N.; Morrison, S.L.; Rice, K.; Slifcak, E.; Runner, J.C. Contamination of reus-able electroencephalography electrodes: A multicenter study. Am. J. Infect. Control 2018, 46, 1360–1364. [Google Scholar] [CrossRef]
- McAleese, T.; Broderick, J.; Stanley, E.; Curran, R. Thyroid radiation shields: A potential source of intraoperative infection. J. Orthop. 2020, 22, 300–303. [Google Scholar] [CrossRef]
- Gargiulo, D.A.; Mitchell, S.J.; Sheridan, J.; Short, T.G.; Swift, S.; Torrie, J.; Webster, C.S.; Merry, A.F. Microbiological Contamina-tion of Drugs during Their Administration for Anesthesia in the Operating Room. Anesthesiology 2016, 124, 785–794. [Google Scholar] [CrossRef]
- Slater, K.; Cooke, M.; Whitby, M.; Fullerton, F.; Douglas, J.; Hay, J.; Rickard, C. Microorganisms present on peripheral intrave-nous needleless connectors in the clinical environment. Am. J. Infect. Control 2017, 45, 932–934. [Google Scholar] [CrossRef]
- Clesham, K.; Ryan, P.; Murphy, C. Assessment of theatre shoe contamination in an orthopaedic theatre. J. Hosp. Infect. 2018, 99, 299–302. [Google Scholar] [CrossRef]
- Mahida, N.; Levi, K.; Kearns, A.; Snape, S.; Moppett, I. Investigating the impact of clinical anaesthetic practice on bacterial contamination of intravenous fluids and drugs. J. Hosp. Infect. 2015, 90, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Ory, J.; Cazaban, M.; Richaud-Morel, B.; Di Maio, M.; Dunyach-Remy, C.; Pantel, A.; Sotto, A.; Laurent, F.; Lavigne, J.-P.; Butin, M. Successful implementation of infection control measure in a neonatal intensive care unit to combat the spread of pathogenic multidrug resistant Staphylococcus capitis. Antimicrob. Resist. Infect. Control 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.; Oh, K.W.; Lim, G. Routine scrubbing reduced central line associated bloodstream infection in NICU. Am. J. Infect. Control 2020, 48, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Kalab, M.; Yi, Q.-L.; Landry, C.; Greco-Stewart, V.; Brassinga, A.K.; Sifri, C.; Ramirez-Arcos, S. Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 2014, 54, 2974–2982. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.G.; Rong, A.; Miller, D.; Tran, A.Q.; Head, T.; Lee, M.C.; Lee, W.W. 0.01% Hypochlorous Acid as an Al-ternative Skin Antiseptic: An In Vitro Comparison. Dermatol. Surg. 2018, 44, 1489–1493. [Google Scholar] [CrossRef]
- Tran, A.Q.; Topilow, N.; Rong, A.; Persad, P.J.; Lee, M.C.; Lee, J.H.; Anagnostopoulos, A.G.; Lee, W.W. Comparison of Skin An-tiseptic Agents and the Role of 0.01% Hypochlorous Acid. Aesthet 2020, 28, 28. [Google Scholar]
- Lepainteur, M.; Royer, G.; Bourrel, A.; Romain, O.; Duport, C.; Doucet-Populaire, F.; Decousser, J.-W. Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: The creeping threat? J. Hosp. Infect. 2013, 83, 333–336. [Google Scholar] [CrossRef]
Grouping | Number |
---|---|
Antimicrobial Resistance | 81 |
Clinical Management Adults/General | 44 |
Clinical Management Neonates | 33 |
Detection | 33 |
Environment and Decontamination | 25 |
Genomic and Biochemical Analysis | 82 |
Guidelines | 2 |
Outbreak and Epidemiology | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heath, V.; Cloutman-Green, E.; Watkin, S.; Karlikowska, M.; Ready, D.; Hatcher, J.; Pearce-Smith, N.; Brown, C.; Demirjian, A. Staphylococcus capitis: Review of Its Role in Infections and Outbreaks. Antibiotics 2023, 12, 669. https://doi.org/10.3390/antibiotics12040669
Heath V, Cloutman-Green E, Watkin S, Karlikowska M, Ready D, Hatcher J, Pearce-Smith N, Brown C, Demirjian A. Staphylococcus capitis: Review of Its Role in Infections and Outbreaks. Antibiotics. 2023; 12(4):669. https://doi.org/10.3390/antibiotics12040669
Chicago/Turabian StyleHeath, Victoria, Elaine Cloutman-Green, Samuel Watkin, Magdalena Karlikowska, Derren Ready, James Hatcher, Nicola Pearce-Smith, Colin Brown, and Alicia Demirjian. 2023. "Staphylococcus capitis: Review of Its Role in Infections and Outbreaks" Antibiotics 12, no. 4: 669. https://doi.org/10.3390/antibiotics12040669
APA StyleHeath, V., Cloutman-Green, E., Watkin, S., Karlikowska, M., Ready, D., Hatcher, J., Pearce-Smith, N., Brown, C., & Demirjian, A. (2023). Staphylococcus capitis: Review of Its Role in Infections and Outbreaks. Antibiotics, 12(4), 669. https://doi.org/10.3390/antibiotics12040669