In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila
Abstract
:1. Introduction
2. Results
2.1. Effects of Resveratrol on Biofilm Formation
2.2. Effects of Resveratrol on Biofilm Structure
2.3. Effects of Resveratrol on Motility
2.4. Cytotoxicity of Resveratrol on J774A.1, with or without A. hydrophila NJ-35 Infection
2.5. Transcriptome Analysis of A. hydrophila NJ-35 Treated with Resveratrol
2.5.1. Screening and Functional Enrichment Analysis
2.5.2. Analysis of DEGs Related to Biofilm Formation and Motility
2.6. Validation of Differentially Expressed Genes by qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Crystal Violet Biofilm Assay
4.3. Exopolysaccharides Assay
4.4. Total Biofilm Protein Assay
4.5. Scanning Electron Microscopy
4.6. Lactate Dehydrogenase Assay
4.7. Swimming and Swarming Motility
4.8. Transcriptome Analysis
4.9. Real-Time Quantitative PCR (qRT-PCR) Verification
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janda, J.M. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 1991, 4, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.M.; Marquez, R.F.; Yano, T. Incidence of toxic Aeromonas isolated from food and human infection. FEMS Immunol. Med. Microbiol. 2002, 32, 237–242. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C. Modern trends in Aeromonas hydrophila disease management with fish. Rev. Fish. Sci. 2005, 13, 281–320. [Google Scholar] [CrossRef]
- Parker, J.L.; Shaw, J.G. Aeromonas spp. clinical microbiology and disease. J. Infect. 2011, 62, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics 2022, 11, 1574. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wu, G.; Chen, H.; Li, L.; Kong, X.H. Analysis of virulence and immunogenic factors in Aeromonas hydrophila: Towards the development of live vaccines. J. Fish Dis. 2020, 43, 747–755. [Google Scholar] [CrossRef]
- Rasmussen-Ivey, C.R.; Figueras, M.J.; McGarey, D.; Liles, M.R. Virulence factors of Aeromonas hydrophila: In the wake of Reclassification. Front. Microbiol. 2016, 7, 1337. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.J.; Swift, S.; Kirke, D.F.; Keevil, C.W.; Dodd, C.E.R.; Williams, P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol. 2002, 4, 18–28. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, H.S.; Joo, S.W.; Chandra Regmi, S.; Kim, J.A.; Ryu, C.M.; Ryu, S.Y.; Cho, M.H.; Lee, J. Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling 2013, 29, 1189–1203. [Google Scholar] [CrossRef]
- Cao, Y.; Naseri, M.; He, Y.; Xu, C.; Walsh, L.J.; Ziora, Z.M. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J. Glob. Antimicrob. Resist. 2020, 21, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Gu, Y.; Chen, G.; Wang, G.; Liu, L. Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment. Ecotoxicol. Environ. Saf. 2020, 194, 110340. [Google Scholar] [CrossRef] [PubMed]
- Webster, S.S.; Lee, C.K.; Schmidt, W.C.; Wong, G.C.L.; O’Toole, G.A. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation. Proc. Natl. Acad. Sci. USA 2021, 118, e2105566118. [Google Scholar] [CrossRef]
- Khajanchi, B.K.; Sha, J.; Kozlova, E.V.; Erova, T.E.; Suarez, G.; Sierra, J.C.; Popov, V.L.; Horneman, A.J.; Chopra, A.K. N-Acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology 2009, 155, 3518–3531. [Google Scholar] [CrossRef] [Green Version]
- Khajanchi, B.K.; Kozlova, E.V.; Sha, J.; Popov, V.L.; Chopra, A.K. The two-component QseBC signalling system regulates in vitro and in vivo virulence of Aeromonas hydrophila. Microbiology 2012, 158, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Li, X.H.; Lee, J.H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Dembic, M.; Andersen, H.S.; Bastin, J.; Doktor, T.K.; Corydon, T.J.; Sass, J.O.; Lopes, C.A.; Djouadi, F.; Andresen, B.S. Next generation sequencing of RNA reveals novel targets of resveratrol with possible implications for Canavan disease. Mol. Genet. Metab. 2019, 126, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, M.; Chen, K.; Chen, B.; Zhao, Y.; Gong, H.; Zhao, X.; Qi, R. Suppression of TLR4 activation by resveratrol is associated with STAT3 and Akt inhibition in oxidized low-density lipoprotein-activated platelets. Eur. J. Pharmacol. 2018, 836, 1–10. [Google Scholar] [CrossRef]
- Xu, B.P.; Yao, M.; Li, Z.J.; Tian, Z.R.; Ye, J.; Wang, Y.J.; Cui, X.J. Neurological recovery and antioxidant effects of resveratrol in rats with spinal cord injury: A meta-analysis. Neural Regen. Res. 2020, 15, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A. Comprehensive review on the antimicrobial potency of the plant polyphenol Resveratrol. Biomed. Pharmacother. 2017, 95, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- He, Z.T.; Huang, Z.W.; Zhou, W.; Tang, Z.S.; Ma, R.; Liang, J.P. Anti-biofilm Activities from Resveratrol against Fusobacterium nucleatum. Front. Microbiol. 2016, 7, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustine, N.; Goel, A.K.; Sivakumar, K.C.; Kumar, R.A.; Thomas, S. Resveratrol--a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 2014, 21, 286–289. [Google Scholar] [CrossRef]
- Qin, N.; Tan, X.J.; Jiao, Y.M.; Liu, L.; Zhao, W.S.; Yang, S.; Jia, A.Q. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2014, 4, 5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.A.; Lima, E.M.F.; Franco, B.D.G.M.; Pinto, U.M. Exploring phenolic compounds as quorum sensing inhibitors in foodborne bacteria. Front. Microbiol. 2021, 12, 735931. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.H.; Ryu, S.Y.; Cho, M.H.; Lee, J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog. Dis. 2014, 11, 710–717. [Google Scholar] [CrossRef]
- Cho, H.S.; Lee, J.H.; Cho, M.H.; Lee, J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling 2015, 31, 1–11. [Google Scholar] [CrossRef]
- Tan, H.L.; Chen, K.; Xi, B.W.; Qin, T.; Pan, L.K.; Xie, J. Resveratrol inhibits growth, virulence and biofilm formation of Aeromonas hydrophila. Acta Hydrobiol. Sin. 2019, 43, 861–868. [Google Scholar] [CrossRef]
- Hossain, S.; De Silva, B.C.J.; Dahanayake, P.S.; Heo, G.J. Characterization of Virulence Properties and Multi-Drug Resistance Profiles in Motile Aeromonas Spp. Isolated from Zebrafish (Danio rerio). Lett. Appl. Microbiol. 2018, 67, 598–605. [Google Scholar] [CrossRef]
- Ranjbar, R.; Salighehzadeh, R.; Sharifiyazdi, H. Antimicrobial Resistance and Incidence of Integrons in Aeromonas Species Isolated from Diseased Freshwater Animals and Water Samples in Iran. Antibiotics 2019, 8, 198. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Luo, H.Z.; Jiang, H.; Wang, Z.N.; Jia, A.Q. Inhibition of Quorum Sensing and Biofilm Formation of Esculetin on Aeromonas hydrophila. Front. Microbiol. 2021, 12, 737626. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.S.L.; Tan, L.T.-H.; Chan, K.-G.; Yap, W.H.; Pusparajah, P.; Chuah, L.-H.; Ming, L.C.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol. 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafavi, S.K.S.; Najar-Peerayeh, S.; Mobarez, A.M.; Parizi, M.K. Characterization of uropathogenic E. coli O25b-B2-ST131, O15:K52:H1, and CGA: Neutrophils apoptosis, serum bactericidal assay, biofilm formation, and virulence typing. J. Cell Physiol. 2019, 234, 18272–18282. [Google Scholar] [CrossRef]
- Ruan, X.C.; Deng, X.L.; Tan, M.; Yu, C.B.; Zhang, M.S.; Sun, Y.; Jiang, N.H. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli. BMC Vet. Res. 2021, 17, 249. [Google Scholar] [CrossRef]
- Kirov, S.M.; Tassell, B.C.; Semmler, A.B.; O’Donovan, L.A.; Rabaan, A.A.; Shaw, J.G. Lateral flagella and swarming motility in Aeromonas species. J. Bacteriol. 2002, 184, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.K. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ. Microbiol. 2009, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kirov, S.M.; Castrisios, M.; Shaw, J.G. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect. Immun. 2004, 72, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-B.; Lai, H.-C.; Hsueh, P.-R.; Chiou, R.Y.-Y.; Lin, S.-B.; Liaw, S.-J. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J. Med. Microbiol. 2006, 55, 1313–1321. [Google Scholar] [CrossRef]
- Kim, J.R.; Cha, M.H.; Oh, D.-R.; Oh, W.K.; Rhee, J.H.; Kim, Y.R. Resveratrol modulates RTX toxin-induced cytotoxicity through interference in adhesion and toxin production. Eur. J. Pharmacol. 2010, 642, 163–168. [Google Scholar] [CrossRef]
- Colin, R.; Ni, B.; Laganenka, L.; Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 2021, 45, fuab038. [Google Scholar] [CrossRef]
- Pamp, S.J.; Tolker-Nielsen, T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 2531–2539. [Google Scholar] [CrossRef] [Green Version]
- Romling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.A.; Stibitz, S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 2007, 10, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, E.V.; Khajanchi, B.K.; Sha, J.; Chopra, A.K. Quorum sensing and c-di-GMP dependent alterations in gene transcripts and virulence-associated phenotypes in a clinical isolate of Aeromonas hydrophila. Microb. Pathog. 2011, 50, 213e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlova, E.V.; Khajanchi, B.K.; Popov, V.L.; Wen, J.; Chopra, A.K. Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Microb. Pathog. 2012, 53, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Zhang, L.S.; Liu, Y.T.; Zhou, S.; Yang, Y.B.; Xu, N.; Yang, Q.H.; Ai, X.H. Resveratrol influences the pathogenesis of Aeromonas hydrophila by inhibiting production of aerolysin and biofilm. Food Control 2021, 126, 108083. [Google Scholar] [CrossRef]
- Maddocks, S.E.; Oyston, P.C.F. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology (Reading) 2008, 154 Pt 12, 3609–3623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, A.; Tariq, A.; Shehzad, A.; Iqbal, M.; Mirza, O.; Maslov, D.A.; Rahman, M. Transcriptional regulation of drug resistance mechanisms in Salmonella: Where we stand and what we need to know. World J. Microbiol. Biotechnol. 2020, 36, 85. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, X.; Yang, C.X.; Song, S.H.; Cui, C.Y.; Zhou, X.F.; Deng, Y.Y. A LysR Family Transcriptional Regulator Modulates Burkholderia cenocepacia Biofilm Formation and Protease Production. Appl. Environ. Microbiol. 2021, 87, e0020221. [Google Scholar] [CrossRef]
- Modrzejewska, M.; Kawalek, A.; Bartosik, A.A. The LysR-Type Transcriptional Regulator BsrA (PA2121) Controls Vital Metabolic Pathways in Pseudomonas aeruginosa. mSystems 2021, 6, e0001521. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Cai, Q.L.; Wang, Y.Q.; Li, W.X.; Yu, J.; Yang, G.D.; Lin, W.X.; Lin, X.M. Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila. World J. Microbiol. Biotechnol. 2019, 35, 127. [Google Scholar] [CrossRef]
- Gao, J.W.; Xi, B.W.; Chen, K.; Song, R.; Qin, T.; Xie, J.; Pan, L.K. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2019, 8, e00664. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.N.; Wu, Y.F.; Pang, M.D.; Liu, J.; Lu, C.P.; Liu, Y.J. Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2015, 46, 297–304. [Google Scholar] [CrossRef]
- Pang, M.D.; Jiang, J.W.; Xie, X.; Wu, Y.F.; Dong, Y.H.; Kwok, A.H.Y.; Zhang, W.; Yao, H.C.; Lu, C.P.; Leung, F.C.; et al. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci. Rep. 2015, 5, 9833. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.H.; Liu, J.; Pang, M.D.; Du, H.C.; Wang, N.N.; Awan, F.; Lu, C.P.; Liu, Y.J. Catecholamine-stimulated growth of Aeromonas hydrophila requires the TonB2 energy transduction system but is independent of the amonabactin siderophore. Front. Cell. Infect. Microbiol. 2016, 6, 183. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Gilbert, E.S. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol. 2004, 70, 6951–6956. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Jin, P.; Sun, Z.; Du, L.; Wang, D.; Zhao, T.; Doyle, M.P. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control 2021, 119, 107473. [Google Scholar] [CrossRef]
- Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 2015, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621. [Google Scholar] [CrossRef] [PubMed]
- Anders, S. Analysing RNA-Seq data with the DESeq package. Mol. Biol. 2012. Available online: https://www.bioconductor.org/packages//2.7/bioc/vignettes/DESeq/inst/doc/DESeq.pdf (accessed on 19 February 2023).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene ID | log2 Fold-Change | Description | |
---|---|---|---|
Res 50/Res 0 | Res 100/Res 0 | ||
Motility | |||
U876_RS13815 | −1.55 | −3.00 | Flagellin |
U876_RS13830 | - | −3.12 | Flagellin |
U876_RS13835 | - | −2.50 | Flagellin-like protein |
U876_RS15700 | −1.80 | - | Flagellar biosynthesis protein FlhB |
U876_RS05370 | −1.39 | - | Type IV pilus biogenesis protein PilO |
U876_RS15085 | 1.89 | - | Flp pilus assembly protein CpaB |
U876_RS15095 | 2.30 | 2.04 | Flp family type IVb pilin |
U876_RS19675 | −1.45 | −2.03 | type IV pilin |
Chemotaxis | |||
U876_RS17720 | −2.20 | −3.57 | Chemotaxis protein CheA |
U876_RS17730 | −2.77 | −2.89 | Chemotaxis protein CheW |
U876_RS17740 | −1.96 | −3.06 | Protein-glutamate O-methyltransferase CheR |
U876_RS21115 | −3.57 | −4.71 | Chemotaxis protein |
c-di-GMP | |||
U876_RS00255 | - | −1.81 | GGDEF-domain-containing protein |
U876_RS04630 | −4.55 | −5.06 | GGDEF-domain-containing protein |
Extracellular Proteases | |||
U876_RS04035 | −1.86 | −2.85 | Protease |
U876_RS18875 | −2.76 | −4.74 | Elastase |
U876_RS20565 | −2.94 | −3.58 | Collagenase |
Lipase | |||
U876_RS20585 | −1.66 | −2.34 | Lipase |
U876_RS20590 | −1.68 | −1.93 | Lipase chaperone |
T6SS | |||
U876_RS21275 | −1.47 | - | Type II/IV secretion system protein |
U876_RS13095 | −1.72 | - | Type VI secretion system baseplate subunit TssK |
U876_RS13100 | −1.73 | - | Type VI secretion system lipoprotein TssJ |
U876_RS13105 | −1.69 | - | Type VI secretion system-associated FHA domain protein TagH |
U876_RS13110 | −1.34 | - | Type VI secretion system baseplate subunit TssG |
U876_RS13155 | - | −1.81 | Type VI secretion system tip protein VgrG |
Small drug resistance | |||
U876_RS03760 | −3.43 | - | SMR family multidrug efflux pump |
U876_RS03765 | −2.91 | −2.21 | SMR family multidrug efflux pump |
Others | |||
U876_RS01620 | −1.93 | −3.42 | Helix-turn-helix transcriptional regulator |
U876_RS08385 | - | −2.26 | OmpA family protein |
Gene ID | Description | Primer | Sequence (5′ to 3′) | Reference |
---|---|---|---|---|
U876_RS04260 | Universal stress protein | F | CCACAAGGCTGAACTCAA | This study |
R | CAGGTCGGCTTTCTCTTC | |||
U876_RS17710 | Response regulator | F | CGGTTATGAGGTGATGGAG | This study |
R | TTCCTGCTTCTTGCTGTC | |||
U876_RS21115 | Chemotaxis protein | F | TGCTGTACGCCTTCTAATG | This study |
R | CATGCTGTAGTGCTGACC | |||
U876_RS03905 | Competence protein ComEA | F | ATGAACTACAAGACCCTGAC | This study |
R | GATCCACGGTAGTGAACTT | |||
U876_RS01620 | Helix-turn-helix transcriptional regulator | F | GCGATCTGGTCAACTACTA | This study |
R | GCGGTTCTTCACATTCAAT | |||
ropB | Housekeeping gene, RNA polymerase beta subunit | F | ACCGACGAAGTGGACTATCT | [53] |
R | CGGCGTTCATAAAGGTGGAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, T.; Chen, K.; Xi, B.; Pan, L.; Xie, J.; Lu, L.; Liu, K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics 2023, 12, 686. https://doi.org/10.3390/antibiotics12040686
Qin T, Chen K, Xi B, Pan L, Xie J, Lu L, Liu K. In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics. 2023; 12(4):686. https://doi.org/10.3390/antibiotics12040686
Chicago/Turabian StyleQin, Ting, Kai Chen, Bingwen Xi, Liangkun Pan, Jun Xie, Liushen Lu, and Kai Liu. 2023. "In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila" Antibiotics 12, no. 4: 686. https://doi.org/10.3390/antibiotics12040686
APA StyleQin, T., Chen, K., Xi, B., Pan, L., Xie, J., Lu, L., & Liu, K. (2023). In Vitro Antibiofilm Activity of Resveratrol against Aeromonas hydrophila. Antibiotics, 12(4), 686. https://doi.org/10.3390/antibiotics12040686