Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review
Abstract
:1. Introduction
2. Search Strategy
3. Ventilator-Associated Infections: VAP and VAT
4. Rationale for the Use of Aerosolized Antibiotics in the Management of Ventilator Associated Infections
5. Methods for Delivery of Antibiotics in the Tracheal Tree
6. Aerosolized or Instilled Antibiotics for the Prevention of Ventilator Associated Infections
Author (Country, Year) | Design and Setting | Patients | Drugs and Method of Nebulization | Findings | Limitations |
---|---|---|---|---|---|
Klastersky, Belgium, 1974 [16] | Double blind, placebo controlled | 85 | Gentamicin 80 mg, tid, intratracheal injection | Purulent secretions (gentamicin vs. placebo): 87.7% vs. 94.8%, p < 0.02 Positive tracheal aspirates: 56.5% vs. 79.3%, p < 0.01 Pulmonary infection: 11.6% vs. 40.4%, p < 0.01 | Single center Non-aerosolized aministraion of antibiotic |
Placebo 2 mL of N/S, tid, intratracheal injection | Deaths probably resulting from infection: 26% vs. 37.5% | ||||
Duration: UNK (seven and five patients were treated for more than 30 days) | Resistance emergence: isolates slightly more resistant in gentamicin group compared to placebo | ||||
Klick, J.M., USA, 1975 [18] | Prospective, placebo- controlled During alternating peiods of | 655 | Polymyxin 2.5 mg/k/day (6 doses daily) aerosolized antibiotic in the posterior pharynx and tracheal tube | Colonization: Upper airway (polymyxin vs. placebo): P. aeroginosa: 1.6% vs. 9.6%, p < 0.01 Enterobacteriae: 18.7% vs. 6.8%, p < 0.01 Staph aureus: 2.4% vs. 2.8%, p = NS | Single center Comparison between periods of different treatments (non-synchronous) |
Placebo N/S | |||||
Duration: alternating cycles of eight weeks during which the same treatment was administered to all patients | Pneumonia: 9% vs. 5.6%, p < 0.01 | ||||
Feeley, T.W., USA, 1975 [17] | Prospective, non-comparative | 292 | Polymyxin 2.5 mg/kg/day (n six doses) | Colonization: GNB: An amount of 69 patients (90 episodes) (24%) Polymyxin R: An amount of 67/90 (74%) GPB: An amount of 48 patients (16%) Fungi: An amount of 40 patients (14%) | Single center Absence of control arm Non-aerosolized aministraion of antibiotic |
Non-intubated patients: polymyxin sprayed in the phranx | Pneumonia: Eleven patients (10 polymyxin R)–incidence 3.8% An amount of 10/11 patients had prior colonization (same pathogen). | ||||
Intubated patients: polymyxin injected into the tracheal tube | ICU LOS: No microorganism: five days 1 GNB: 7.2 days ≥2 GNB: 11.8 days | ||||
Duration: ICU stay (mean—five days) | Mortality: General: 12% VAP patients: 64% | ||||
Rouby, J.J., France, 1994 [44] | Prospective, non-randomized, comparative | 598 | Colistin 1,600,000 IU/day (eight doses/24 h) | Bronchopneumonia Survivors: 37% coli(−) vs. 27% coli(+), p < 0.01 Non-survivors: 61% coli(−) vs. 36% coli(+), p < 0.001 bronchopneumonia from Gram(+): 18% coli(−) vs. 30% coli(+), p < 0.01 | Single center Non-randomized Non-aerosolized aministraion of antibiotic Use of digestive selective decontamination |
Intratracheally injected | |||||
Duration: 15 days | Resistance emergence: 55% coli(−) vs. 67% coli(+), p = NS | ||||
Wood, C.G., USA, 2002 [46] | Prospective, randomized, placebo-controlled | 40 | Aerosolized ceftazidime 250 mg bid | VAP by D7 (ceftazidime vs. placebo): 10% vs. 26%, non significant difference VAP by D14: 16% vs. 56%, p = 0.021 VAP through ICU stay: 32% vs. 68%, p = 0.022 | Single center Limited number of patients |
Placebo | Antibiotic duration (for documented infections): 6 ± 8 vs. 13 ± 11, p = 0.024 MV duration: 16 ± 11 vs. 18 ± 13, p = NS ICU LOS: 19 ± 11 vs. 21 ± 12, p = NS | ||||
Duration: seven days | Resistance emergence: non-different resistance patterns compared to historical controls | ||||
Adair, C.G., UK, 2002 [48] | Prospective, non-comparative | 36 | Aerosolized gentamicin 80 mg, tid (12 patients) | Biofilm formation: 41.6% vs. 100% vs. 100% | Single centre, Lack of VAP estimaton |
Parenteral cefotaxime (12 patients) | Tracheal antibiotic concentrations: Gentamycin >>> MIC, cefotaxime < MIC, cefuroxime < MIC | ||||
Parenteral cefuroxime (12 patients) | |||||
Duration: covered intubation period (six days) [(2–32) vs. (2–13) vs. (2–15), respectively] | |||||
Claridge, J.A., USA, 2007 [47] | Double-blind, randomized, placebo controled | 105 | Aerosolized ceftazidime 250 mg, bid | VAP D15: 46% vs. 40%, p = 0.5 VAP D30: 50% vs. 49% MDR VAP: 28% vs. 23%, p = NS MDR infections: 34% vs. 23%, p = NS | Single center Small size |
Placebo | |||||
Duration: seven days or until extubation | |||||
Karvouniaris, M., Greece, 2015 [6] | Single center, two-arm, randomized, open-label, controlled | 168 | Aerosolized colistin 500.000 IU, tid | Positive TBA (colistin vs. placebo): 71.4%vs. 83.3% Isolation day: 10 vs. 4, p < 0.01 | Single center Open label |
Placebo: N/S | |||||
Duration: 10 days | VAP incidence: 16.7% vs. 29.8%, p = 0.07 Incidence density rate: 11.4 vs. 25.6, p < 0.01 VAT incidence: 6% vs. 7.1%, p = NS Insidence density rate: 4.1 vs. 6.6, p < 0.01 ICU mortality: 29.8% vs. 34.5%, p = 0.62 ICU mortality (VAP patients): 7.1% vs. 44%, p = 0.028 Resistance emergence: no difference between groups |
7. Aerosolized Antibiotics as a Monotherapy for Ventilator-Associated Tracheobronchitis
Author (Country, Year) | Design and Setting | Patients | Drugs and Method of Nebulization | Findings | Limitations |
---|---|---|---|---|---|
Palmer L.B., USA, 2008 [51] | Double-blind, randomized, placebo-controlled study | 43 | Vancomycin 120 mg/8 h or gentamicin 80 mg/8 h in 2 mL normal saline every 8 h for 14 days) or nebulized placebo. Similar systemic antibiotics were given in both groups. | Neulisation vs. placebo group Criteria for VAP diagnosis (CDC-NNIS criteria) s at day 14 in 36% in the nebulization group vs. 79% in the placebo group Resistance emergence 0/19 vs. 8/24, p = 0.0056 | Single center comparison with contrls from other studies |
WBC day 14: 9.2 ± 3.3 vs. 14.9 ± 8.1, p = 0.016 New antibiotic initiation 8/19 vs. 17/24, p = 0.042 Weaning: 84.2% vs. 54.1%, p = 0.052 Mortality: 4/19 vs. 4/24, p = 0.999 | |||||
Palmer, L.B. USA, 2014 [53] | Double-blind placebo-controlled study | 47 | Vancomycin 120 mg every 8 h for 14 days and or Aminoglycoside (gentamicinsulfate,80 mg every 8 h, or amikacin,400 mg every 8 h) dissolved in N/S 0.9% to achieve volume of 2 mL vs. placebo via a jet nebulizer for 7 days. Similar amounts of appropriate systemic antibiotics were given in both groups | AA eradicated the original resistant organism at EOT in 26/27 pts compared with 2 of 23 for placebo AA eradicated 14 out of 16 for MDRO patients compared with 1 of 11 for placebo. More newly resistant organisms were seen in the placebo group. AA significantly reduced mCPIS, secretions volume, and ventilator days in the treatment group. | Non-formal quantitative cultures Eradication of bacteria at EOT could be attributed to in vitro suppression of bacterial growth and not death. Difference in baseline APACHE scores. |
Maskin L.P., Argentina, 2015 [52] | Prospective observational study of inhaled colistin in patients with VAT due to MDR-GNB | 20 | Colistimethate sodium (CMS) 625.000 IU dissolved in 3 N/S 0.9% to achieve volume of 6 mL every 8 h via a vibrating mesh nebulizer for seven days | Decreased tracheal secretion volume, purulence and bacterial load. Negative aspirates culture (eradication) at day 7 for 95% (19/20) of the pts. CPIS score improvement. One patient subsequently developed VAP. | Absence of control arm. Single center study |
Athanassa Z.E., Greece, 2014 [57] | Prospective observational study of inhaled CMS in patients with VAT | 20 | 1 MU (80 mg) dissolved in N/S 0.9% to achieve volume of 9 mL every 8 h for seven days. | Cure in 16 of 20 patients (80%), microbiological response in 12 (all GNB), [eradication in eight and bacterial growth decline in four] | Not designed to evaluate VAP prevention |
8. Adverse Effects of the Aerosolized Antibiotic Therapies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinarz, J.A.; Pierce, A.K.; Mays, B.B.; Sanford, J.P. The potential role of inhalation therapy equipment in nosocomial pulmonary infection. J. Clin. Investig. 1965, 44, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Di Pompeo, C.; Pronnier, P.; Beague, S.; Onimus, T.; Saulnier, F.; Grandbastien, B.; Mathieu, D.; Delvallez-Roussel, M.; Durocher, A. Nosocomial tracheobronchitis in mechanically ventilated patients: Incidence, aetiology and outcome. Eur. Respir. J. 2002, 20, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Esperatti, M.; Ferrer, M.; Theessen, A.; Liapikou, A.; Valencia, M.; Saucedo, L.M.; Zavala, E.; Welte, T.; Torres, A. Nosocomial pneumonia in the intensive care unit acquired by mechanically ventilated versus nonventilated patients. Am. J. Respir. Crit. Care Med. 2010, 182, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Wyncoll, D.; Camporota, L. Number needed to treat and cost-effectiveness in the prevention of ventilator-associated pneumonia. Crit. Care (Lond. Engl.) 2012, 16, 430. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Coakley, J.D.; Nseir, S. Should We Treat Ventilator-Associated Tracheobronchitis with Antibiotics? Semin. Respir. Crit. Care Med. 2017, 38, 264–270. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Makris, D.; Zygoulis, P.; Triantaris, A.; Xitsas, S.; Mantzarlis, K.; Petinaki, E.; Zakynthinos, E. Nebulised colistin for ventilator-associated pneumonia prevention. Eur. Respir. J. 2015, 46, 1732–1739. [Google Scholar] [CrossRef]
- Lei, Y.; Hudcova, J.; Rashid, J.; Sarwar, A.; Gillespie, W.; Finn, C.; Goggin, M.; Omran, M.B.; Boroda, E.; Craven, D.E. Natural History, Outcomes and Antibiotic Treatment for Ventilator-Associated Tracheobronchitis in Critical Ill Patients. Mod. Res. Inflamm. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Makris, D.; Desrousseaux, B.; Zakynthinos, E.; Durocher, A.; Nseir, S. The impact of COPD on ICU mortality in patients with ventilator-associated pneumonia. Respir. Med. 2011, 105, 1022–1029. [Google Scholar] [CrossRef]
- Timsit, J.F.; Esaied, W.; Neuville, M.; Bouadma, L.; Mourvllier, B. Update on ventilator-associated pneumonia. F1000Research 2017, 6, 2061. [Google Scholar] [CrossRef]
- Vandana Kalwaje, E.; Rello, J. Management of ventilator-associated pneumonia: Need for a personalized approach. Expert Rev. Anti-Infect. Ther. 2018, 16, 641–653. [Google Scholar] [CrossRef]
- Nair, G.; Niederman, M. Using ventilator-associated pneumonia rates as a health care quality indicator: A contentious concept. Semin. Respir. Crit. Care Med. 2017, 38, 237–244. [Google Scholar] [CrossRef]
- Álvarez-Lerma, F.; Palomar-Martínez, M.; Sánchez-García, M.; Martínez-Alonso, M.; Álvarez-Rodríguez, J.; Lorente, L.; Arias-Rivera, S.; García, R.; Gordo, F.; Añón, J.M.; et al. Prevention of Ventilator-Associated Pneumonia: The Multimodal Approach of the Spanish ICU “Pneumonia Zero” Program. Crit. Care Med. 2018, 46, 181–188. [Google Scholar] [CrossRef]
- Makris, D.; Luna, C.; Nseir, S. Ten ineffective interventions to prevent ventilator-associated pneumonia. Intensiv. Care Med. 2018, 44, 83–86. [Google Scholar] [CrossRef]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Makris, D.; Manoulakas, E.; Zygoulis, P.; Mantzarlis, K.; Triantaris, A.; Chatzi, M.; Zakynthinos, E. Ventilator-associated tracheobronchitis increases the length of intensive care unit stay. Infect. Control Hosp. Epidemiol. 2013, 34, 800–808. [Google Scholar] [CrossRef]
- Klastersky, J.; Huysmans, E.; Weerts, D.; Hensgens, C.; Daneau, D. Endotracheally administered gentamicin for the prevention of infections of the respiratory tract in patients with tracheostomy: A double-blind study. Chest 1974, 65, 650–654. [Google Scholar] [CrossRef]
- Feeley, T.W.; Du Moulin, G.C.; Hedley-Whyte, J.; Bushnell, L.S.; Gilbert, J.P.; Feingold, D.S. Aerosol polymyxin and pneumonia in seriously ill patients. N. Engl. J. Med. 1975, 293, 471–475. [Google Scholar] [CrossRef]
- Klick, J.M.; du Moulin, G.C.; Hedley-Whyte, J.; Teres, D.; Bushnell, L.S.; Feingold, D.S. Prevention of gram-negative bacillary pneumonia using polymyxin aerosol as prophylaxis. II. Effect on the incidence of pneumonia in seriously ill patients. J. Clin. Investig. 1975, 55, 514–519. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Povoa, P.; Rodríguez, A.; Curcio, D.; Suarez, D.; Mira, J.P.; Cordero, M.L.; Lepecq, R.; Girault, C.; Candeias, C.; et al. TAVeM study. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): A multicentre, prospective, observational study. Lancet Respir. Med. 2015, 3, 859–868. [Google Scholar] [CrossRef]
- Nseir, S.; Favory, R.; Jozefowicz, E.; Decamps, F.; Dewavrin, F.; Brunin, G.; Di Pompeo, C.; Mathieu, D.; Durocher, A.; VAT Study Group. Antimicrobial treatment for ventilator-associated tracheobronchitis: A randomized, controlled, multicenter study. Crit Care 2008, 12, R62. [Google Scholar] [CrossRef]
- Craven, D.E.; Chroneou, A.; Zias, N.; Hjalmarson, K.I. Ventilator-associated tracheobronchitis: The impact of targeted antibiotic therapy on patient outcomes. Chest 2009, 135, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Voulgaris, G.L.; Samonis, G.; Falagas, M.E. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Arvaniti, K.; Judd, M.; Lalos, N.; Tjoeng, I.; Xu, E.; Armaganidis, A.; Lipman, J. Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat? Antibiotics 2020, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Kalanuria, A.A.; Zai, W.; Mirski, M. Ventilator-associated pneumonia in the ICU. Crit. Care 2014, 18, 208. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.B. Ventilator-associated infection: The role for inhaled antibiotics. Curr. Opin. Pulm. Med. 2015, 21, 239–242. [Google Scholar] [CrossRef]
- Palmer, L.B. Inhaled antibiotics for ventilator-associated infections. Infect. Dis. Clin. N. Am. 2017, 31, 577–591. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Brain, J.D.; Valberg, P.A. Deposition of Aerosol in the Respiratory Tract. Am. Rev. Respir. Dis. 1979, 120, 1325–1373. [Google Scholar]
- Gorham, J.; Taccone, F.S.; Hites, M. How to Use Nebulized Antibiotics in Severe Respiratory Infections. Antibiotics 2023, 12, 267. [Google Scholar] [CrossRef]
- Dhand, R. How should aerosols be delivered during invasive mechanical ventilation? Respir. Care 2017, 62, 1343–1367. [Google Scholar] [CrossRef]
- Weers, J. Inhaled antimicrobial therapy-barriers to effective treatment. Adv. Drug Deliv. Rev. 2015, 85, 24–43. [Google Scholar] [CrossRef]
- Wong, F.J.; Dudney, T.; Dhan, R. Aerosolized Antibiotics for Treatment of Pneumonia in Mechanically Ventilated Subjects. Respir. Care 2019, 64, 962–979. [Google Scholar] [CrossRef]
- Mukker, J.K.; Shankar, R.; Singh, P.; Derendorf, H. Pharmacokinetic and pharmacodynamic implications in inhalable antimicrobial therapy. Adv. Drug Deliv. Rev. 2015, 85, 57–64. [Google Scholar] [CrossRef]
- Rello, J.; Rouby, J.; Sole-Lleonart, C.; Chastre, J.; Blot, S.; Luyt, C.; Riera, J.; Vos, M.; Monsel, A.; Dhanani, J.; et al. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin. Microbiol. Infect. 2017, 23, 640–646. [Google Scholar] [CrossRef]
- Bassetti, M.; Luyt, C.E.; Nicolau, D.P.; Pugin, J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann. Intensiv. Care 2016, 6, 35. [Google Scholar] [CrossRef]
- Kollef, M.H.; Ricard, J.D.; Roux, D.; Francois, B.; Ischaki, E.; Rozgonyi, Z.; Boulain, T.; Ivanyi, Z.; János, G.; Garot, D.; et al. A Randomized Trial of the Amikacin Fosfomycin Inhalation System for the Adjunctive Therapy of Gram-Negative Ventilator-Associated Pneumonia: IASIS Trial. Chest 2017, 151, 1239–1246. [Google Scholar] [CrossRef]
- Niederman, M.S.; Alder, J.; Bassetti, M.; Boateng, F.; Cao, B.; Corkery, K.; Dhand, R.; Kaye, K.S.; Lawatscheck, R.; McLeroth, P.; et al. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with Gram-negative pneumonia (INHALE): A double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect. Dis. 2020, 20, 330–340. [Google Scholar] [CrossRef]
- Berendt, R.F.; Magruder, R.D.; Frola, F.R. Treatment of Klebsiellapneumoniae respiratory tract infection of squirrel monkeys with aerosol administration of kanamycin. Am. J. Vet. Res. 1980, 41, 1492–1494. [Google Scholar]
- Crouch, T.W.; Higuchi, J.H.; Coalson, J.J.; Johanson, W.G., Jr. Pathogenesis and prevention of nosocomial pneumonia in a nonhuman primate model of acute respiratory failure. Am. Rev. Respir. Dis. 1984, 130, 502–504. [Google Scholar]
- Johanson, W.G., Jr.; Seidenfeld, J.J.; de los Santos, R.; Coalson, J.J.; Gomez, P. Prevention of nosocomial pneumonia using topical and parenteral antimicrobial agents. Am. Rev. Respir. Dis. 1988, 137, 265–272. [Google Scholar] [CrossRef]
- Souli, M.; Galani, I.; Giamarellou, H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Eurosurveillance 2008, 13, 19045. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.R.; Song, J.-H.; Kim, S.H.; Thamlikitkul, V.; Huang, S.-G.; Wang, H.; So, T.M.-K.; Yasin, R.M.D.; Hsueh, P.-R.; Carlos, C.C.; et al. High Prevalence of Multidrug-Resistant Nonfermenters in Hospital-acquired Pneumonia in Asia. Am. J. Respir. Crit. Care Med. 2011, 184, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Solé-Lleonart, C.; Rouby, J.-J.; Chastre, J.; Poulakou, G.; Palmer, L.B.; Blot, S.; Felton, T.; Bassetti, M.; Luyt, C.-E.; Pereira, J.M.; et al. Intratracheal Administration of Antimicrobial Agents in Mechanically Ventilated Adults: An International Survey on Delivery Practices and Safety. Respir. Care 2016, 61, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Rouby, J.J.; Poète, P.; Martin de Lassale, E.; Nicolas, M.H.; Bodin, L.; Jarlier, V.; Korinek, A.M.; Viars, P. Prevention of gram negative nosocomial bronchopneumonia by intratracheal colistin in critically ill patients. Histologic and bacteriologic study. Intensiv. Care Med. 1994, 20, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Povoa, F.C.; Cardinal-Fernandez, P.; Maia, I.S.; Reboredo, M.M.; Pinheiro, B.V. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J. Crit. Care 2018, 43, 240–245. [Google Scholar] [CrossRef]
- Wood, G.C.; Boucher, B.A.; Croce, M.A.; Hanes, S.D.; Herring, V.L.; Fabian, T.C. Aerosolized ceftazidime for prevention of ventilator-associated pneumonia and drug effects on the proinflammatory response in critically ill trauma patients. Pharmacotherapy 2002, 22, 972–982. [Google Scholar] [CrossRef]
- Claridge, J.A.; Edwards, N.M.; Swanson, J.; Fabian, T.C.; Weinberg, J.A.; Wood, C.; Croce, M.A. Aerosolized ceftazidime prophylaxis against ventilator-associated pneumonia in high-risk trauma patients: Results of a double-blind randomized study. Surg. Infect. 2007, 8, 83–90. [Google Scholar] [CrossRef]
- Adair, C.G.; Gorman, S.P.; Byers, L.M.; Jones, D.S.; Feron, B.; Crowe, M.; Webb, H.C.; McCarthy, G.J.; Milligan, K.R. Eradication of endotracheal tube biofilm by nebulised gentamicin. Intensiv. Care Med. 2002, 28, 426–431. [Google Scholar] [CrossRef]
- Otterbeck, A.; Hanslin, K.; Lantz, E.L.; Larsson, A.; Stålberg, J.; Lipcsey, M. Inhalation of specific anti-Pseudomonas aeruginosa IgY antibodies transiently decreases P. aeruginosa colonization of the airway in mechanically ventilated piglets. Intensiv. Care Med. Exp. 2019, 7, 21. [Google Scholar] [CrossRef]
- Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P.Ø.; Moser, C.; Høiby, N. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. J. Cyst. Fibros. 2016, 15, 171–178. [Google Scholar] [CrossRef]
- Palmer, L.B.; Smaldone, G.C.; Chen, J.J.; Baram, D.; Duan, T.; Monteforte, M.; Varela, M.; Tempone, A.K.; O’Riordan, T.; Daroowalla, F.; et al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit. Care Med. 2008, 36, 2008–2013. [Google Scholar] [CrossRef]
- Maskin, L.P.; Setten, M.; Rodríguez, P.O.; Bonelli, I.; Attie, S.; Stryjewski, M.E.; Valentini, R. Inhaled colistimethate sodium in ventilator-associated tracheobronchitis due to multidrug-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2015, 45, 199–200. [Google Scholar] [CrossRef]
- Palmer, L.B.; Smaldone, G.C. Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am. J. Respir. Crit. Care Med. 2014, 189, 1225–1233. [Google Scholar] [CrossRef]
- Russell, C.J.; Shiroishi, M.S.; Siantz, E.; Wu, B.W.; Patino, C.M. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: A systematic review. BMC Pulm. Med. 2016, 16, 40. [Google Scholar] [CrossRef]
- Agrafiotis, M.; Siempos, I.I.; Falagas, M.E. Frequency, prevention, outcome and treatment of ventilator-associated tracheobronchitis: Systematic review and meta-analysis. Respir. Med. 2010, 104, 325–336. [Google Scholar] [CrossRef]
- Rello, J.; Sole-Lleonart, C.; Rouby, J.J.; Chastre, J.; Blot, S.; Poulakou, G.; Luyt, C.E.; Riera, J.; Palmer, L.B.; Pereira, J.M.; et al. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2017, 23, 629–639. [Google Scholar] [CrossRef]
- Athanassa, Z.E.; Myrianthefs, P.M.; Boutzouka, E.G.; Tsakris, A.; Baltopoulos, G.J. Monotherapy with inhaled colistin for the treatment of patients with ventilator-associated tracheobronchitis due to polymyxin-only-susceptible Gram-negative bacteria. J. Hosp. Infect. 2011, 78, 335–336. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 575–582. [Google Scholar] [CrossRef]
- Tablan, O.C.; Anderson, L.J.; Besser, R.; Bridges, C.; Hajjeh, R.; CDC Healthcare Infection Control Practices Advisory Committee. Guidelines for preventing health-care-associated pneumonia, 2003: Recommendations of CDC and Healthcare Infection Control Practices Advisory Committee. MMWR Recomm. Rep. 2004, 53, 1–36. [Google Scholar]
- Poulakou, G.; Matthaiou, D.K.; Nicolau, D.P.; Siakallis, G.; Dimopoulos, G. Inhaled antimicrobials for ventilator-associated pneumonia: Practical aspects. Drugs 2017, 77, 1399–1412. [Google Scholar] [CrossRef]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.E.; Hekiman, G.; Brechot, N.; Chastre, J. Aerosol therapy for pneumonia in the intensive care unit. Clin. Chest Med. 2018, 39, 823–836. [Google Scholar] [CrossRef] [PubMed]
Aerosol Generation | Advantages | Disadvantages | |
---|---|---|---|
Direct tracheal instillation | None | Easy to perform | Restricted time of antibiotic contact to the tracheal tube and upper tracheobronchial tree |
No cost | |||
Jet | Compressed gas (air or oxygen) | Low cost | Long treatment time High residual drug volume (0.8–2 mL) Risk of denaturing the medication (fighly turbulent flow) Increase in delivered tidal volume |
Synchronisation with each breath | |||
Ultrasonic | High frequency vibrations through piezoelectric crystals | Generate droplets of different sizes (higher frequency-smaller droplets-deeper penetration in the lung parenchyma) | Intermeddiate cost Overheating of the solution (after the nebuliser is in use for 10–15 min) Posible denaturing/drug inactivation. |
Treatment time | |||
Lower residual volume (0.4–1.2 mL) | |||
Vibrating mesh | Vibration of a plate Partice generation of 1–5 μm in size | Short treatment time, lowest residual volume (0.2 mL) | High cost |
Minimal change in solution temperature (less likely to denature and inactivate the drug). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrianthefs, P.; Zakynthinos, G.E.; Tsolaki, V.; Makris, D. Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review. Antibiotics 2023, 12, 801. https://doi.org/10.3390/antibiotics12050801
Myrianthefs P, Zakynthinos GE, Tsolaki V, Makris D. Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review. Antibiotics. 2023; 12(5):801. https://doi.org/10.3390/antibiotics12050801
Chicago/Turabian StyleMyrianthefs, Pavlos, George E. Zakynthinos, Vasiliki Tsolaki, and Demosthenes Makris. 2023. "Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review" Antibiotics 12, no. 5: 801. https://doi.org/10.3390/antibiotics12050801
APA StyleMyrianthefs, P., Zakynthinos, G. E., Tsolaki, V., & Makris, D. (2023). Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review. Antibiotics, 12(5), 801. https://doi.org/10.3390/antibiotics12050801