Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Ethanolic Extract of Propolis
2.1.1. Phenolic Acids
2.1.2. Flavones
2.1.3. Flavanones
2.1.4. Flavonols
2.1.5. Flavanols
2.1.6. Terpenoids
2.2. In Vitro Antimicrobial Activity
2.2.1. Agar-Based Disk Diffusion Assay
2.2.2. MIC, MBC and MDK99
2.2.3. Antibiofilm Activity
2.3. The Use of Ethanolic Extract of Propolis in Salmon Tartare
2.3.1. Storage Test and Sensory Evaluation
2.3.2. Challenge Test to Monitor Listeria monocytogenes Growth
3. Discussion
3.1. In Vitro Antimicrobial Activity and Chemical Composition
3.2. The Use of Ethanolic Extract of Propolis in Salmon Tartare
4. Materials and Methods
4.1. Sampling of Propolis and Extract Preparation
4.2. Chemical Analysis: Qualitative Analysis by UHPLC-ESI/HRMS
4.3. In Vitro Antimicrobial Activity
4.3.1. Preparation of the Strains
4.3.2. Agar-Based Disk Diffusion Assay
4.3.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.3.4. Tolerance Evaluation: Minimum Duration for Killing the 99% (MDK99) of the Bacterial Population
4.3.5. Antibiofilm Activity
The Biofilm Inhibition Assay
The Biofilm Eradication Assay
4.4. In Situ Analysis: Evaluation of the Use of Ethanolic Extract of Propolis in Salmon Tartare
4.4.1. Preparation of Salmon Tartare Samples
4.4.2. Storage Test and Sensory Evaluation
4.4.3. Challenge Test
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Borba, R.S.; Klyczek, K.K.; Mogen, K.L.; Spivak, M. Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health. J. Exp. Biol. 2015, 218, 3689–3699. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey constituents up-regulate detoxification and immunity genes in the western honeybee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, T.; Farooqui, A.A. Beneficial effects of propolis on human health and neurological diseases. Front. Biosci. Elite 2012, 4, 779–793. [Google Scholar] [CrossRef]
- Sabir, A.; Sumidarti, A. Interleukin-6 expression on inflamed rat dental pulp tissue after capped with Trigona sp. propolis from south Sulawesi, Indonesia. Saudi J. Biol. Sci. 2017, 24, 1034–1037. [Google Scholar] [CrossRef]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement. Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Marsola, A.; Ikegaki, M.; Alencar, S.M.; Rosalen, P.L. The effect of seasons on Brazilian red propolis and its botanical source: Chemical composition and antibacterial activity. Nat. Prod. Res. 2017, 31, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Šturm, L.; Ulrih, N.P. Advances in the propolis chemical composition between 2013 and 2018: A review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Zampini, I.C.; Salas, A.L.; Maldonado, L.M.; Simirgiotis, M.J.; Isla, M.I. Propolis from the Monte region in Argentina: A potential phytotherapic and food functional ingredient. Metabolites 2021, 11, 76. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021, 115, 297–306. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Presti, V.L.; Zekkori, B.; Nalbone, L.; Elsharkawy, E.R.; Bentayeb, A.; Giarratana, F. Effectiveness of essential oil from the Artemisia herba-alba aerial parts against multidrug-resistant bacteria isolated from food and hospitalized patients. Biodivers. J. Biol. Divers. 2021, 22, 2995–3005. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; Ed-Dra, A.; Aazza, M.; Nalbone, L.; Giarratana, F.; Alibrando, F.; Miceli, N.; Mondello, L.; Cacciola, F. Chemical profile, antibacterial, antioxidant, and anisakicidal activities of Thymus zygis subsp. gracilis essential oil and its effect against Listeria monocytogenes. Int. J. Food Microbiol. 2022, 383, 109960. [Google Scholar] [CrossRef] [PubMed]
- Paulo, F.; Paula, V.; Estevinho, L.M.; Santos, L. Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. Food Bioprod. Process. 2021, 127, 408–425. [Google Scholar] [CrossRef]
- Tosi, E.A.; Ré, E.; Ortega, M.E.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Marek Kuś, P.; Jerković, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Ghallab, D.S.; Mohyeldin, M.M.; Shawky, E.; Metwally, A.M.; Ibrahim, R.S. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. LWT 2021, 136, 110298. [Google Scholar] [CrossRef]
- Silva, D.A.; Davies, N.M.; Doschak, M.R.; Al-Gousous, J.; Bou-Chacra, N.; Löbenberg, R. Mechanistic understanding of underperforming enteric coated products: Opportunities to add clinical relevance to the dissolution test. J. Control. Release 2020, 325, 323–334. [Google Scholar] [CrossRef]
- Pierson, J.T.; Monteith, G.R.; Roberts-Thomson, S.J.; Dietzgen, R.G.; Gidley, M.J.; Shaw, P.N. Phytochemical extraction, characterisation and comparative distribution across four mango (Mangifera indica L.) fruit varieties. Food Chem. 2014, 149, 253–263. [Google Scholar] [CrossRef]
- Vieira de Morais, D.; Rosalen, P.L.; Ikegaki, M.; de Souza Silva, A.P.; Massarioli, A.P.; de Alencar, S.M. Active antioxidant phenolics from Brazilian red propolis: An optimization study for their recovery and identification by LC-ESI-QTOF-MS/MS. Antioxidants 2021, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Bertrams, J.; Kunz, N.; Müller, M.; Kammerer, D.; Stintzing, F.C. Phenolic compounds as marker compounds for botanical origin determination of German propolis samples based on TLC and TLC-MS. J. Appl. Bot. Food Qual. 2013, 86, 134–138. [Google Scholar]
- Sartori, G.; Pesarico, A.P.; Pinton, S.; Dobrachinski, F.; Roman, S.S.; Pauletto, F.; Rodrigues, L.C.J.; Prigol, M. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: Involvement of antioxidant and anti-inflammatory mechanisms. Cell Biochem. Funct. 2012, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Jahan, N.; Rahman, K.U.; Sultana, B.; Jamil, S. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their angiotensin-converting enzyme (ACE) inhibition potential. Oxid. Med. Cell. Longev. 2018, 2018, 4643736. [Google Scholar] [CrossRef]
- Yuan, M.; Yuan, X.J.; Pineda, M.; Liang, Z.Y.; He, J.; Sun, S.W.; Pan, T.L.; Li, K.P. A comparative study between Chinese propolis and Brazilian green propolis: Metabolite profile and bioactivity. Food Funct. 2020, 11, 2368–2379. [Google Scholar] [CrossRef]
- Castro, C.; Mura, F.; Valenzuela, G.; Figueroa, C.; Salinas, R.; Zuñiga, M.C.; Torres, J.L.; Fuguet, E.; Delporte, C. Identification of phenolic compounds by HPLC-ESI-MS/MS and antioxidant activity from Chilean propolis. Food Res. Int. 2014, 64, 873–879. [Google Scholar] [CrossRef]
- Saftić, L.; Peršurić, Ž.; Fornal, E.; Pavlešić, T.; Pavelić, S.K. Targeted and untargeted LC-MS polyphenolic profiling and chemometric analysis of propolis from different regions of Croatia. J. Pharm. Biomed. Anal. 2019, 165, 162–172. [Google Scholar]
- Meng, X.; Lee, M.J.; Li, C.; Sheng, S.; Zhu, N.; Sang, S.; Ho, C.T.; Yang, C.S. Formation and Identification of 4′-O-Methyl-(−)-Epigallocatechin in Humans. Drug Metab. Dispos. 2001, 29, 789–793. [Google Scholar]
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Bryan, J.; Redden, P.; Traba, C. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria. Lett. Appl. Microbiol. 2016, 62, 192–198. [Google Scholar] [CrossRef]
- Giarratana, F.; Nalbone, L.; Ziino, G.; Giuffrida, A.; Panebianco, F. Characterization of the temperature fluctuation effect on shelf life of an octopus semi-preserved product. Ital. J. Food Saf. 2020, 9, 8590. [Google Scholar] [CrossRef]
- Vadillo-Rodríguez, V.; Cavagnola, M.A.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells. Colloids Surf. B Biointerfaces 2021, 200, 111571. [Google Scholar] [CrossRef] [PubMed]
- Uzel, A.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Regueira, N.M.S.; Tintino, S.R.; da Silva, A.R.P.; Costa, M.D.S.; Boligon, A.A.; Matias, E.F.F.; de Queiroz Balbino, V.; Menezes, I.R.A.; Melo Coutinho, H.D. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food Chem. Toxicol. 2017, 107, 572–580. [Google Scholar] [CrossRef]
- De Marco, S.; Piccioni, M.; Pagiotti, R.; Pietrella, D. Antibiofilm and antioxidant activity of propolis and bud poplar resins versus Pseudomonas aeruginosa. Evid. Based Complement. Altern. Med. 2017, 2017, 5163575. [Google Scholar] [CrossRef]
- Jorge, R.; Furtado, N.A.J.C.; Sousa, J.P.B.D.; da Silva Filho, A.A.; Gregório Junior, L.E.; Martins, C.H.G.; Soares, A.E.E.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.A. Brazilian propolis: Seasonal variation of the prenylated p-coumaric acids and antimicrobial activity. Pharm. Biol. 2008, 46, 889–893. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.G. Chemical composition of European propolis: Expected and unexpected results. Z. Nat. C 2002, 57, 530–533. [Google Scholar] [CrossRef]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complement. Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef]
- Miguel, M.G. Chemical and biological properties of propolis from the western countries of the Mediterranean basin and Portugal. Int. J. Pharm. Pharm. Sci. 2013, 5, 403–409. [Google Scholar]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Boz, H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015, 50, 2323–2328. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth biocontrol of foodborne pathogens and spoilage microorganisms of food by Polish propolis extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef]
- Majiene, D.; Trumbeckaite, S.; Pavilonis, A.; Savickas, A.; Martirosyan, D.M. Antifungal and Antibacterial Activity of Propolis. Curr. Nutr. Food Sci. 2007, 3, 304–308. [Google Scholar] [CrossRef]
- Rajendran, N.; Subramaniam, S.; Christena, L.R.; Muthuraman, M.S.; Subramanian, N.S.; Pemiah, B.; Sivasubramanian, A. Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens. Nat. Prod. Res. 2016, 30, 2002–2006. [Google Scholar] [CrossRef]
- Ming, D.; Wang, D.; Cao, F.; Xiang, H.; Mu, D.; Cao, J.; Li, B.; Zhong, L.; Dong, X.; Zhong, X.; et al. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front. Microbiol. 2017, 8, 2263. [Google Scholar] [CrossRef]
- Laranjo, M.; Andrade, N.; Queiroga, C. Antibiofilm activity of propolis extracts. In Understanding Microbial Pathogens: Current Knowledge and Educational Ideas on Antimicrobial Research; Torres-Hergueta, E., Méndez-Vilas, A., Eds.; Formatex Research Center: Badajoz, Spain, 2018; pp. 1–8. [Google Scholar]
- Dogan, N.; Doganlı, G.; Ülger, G.; Habesoglu, D.; Güzel, S.; Yasar, Y.; Arar, D.; Şensoy, T.; Bozbeyoglu, N. Antibiofilm Effect of Two Propolis Samples from Turkey. J. App. Biol. Sci. 2014, 8, 27–31. [Google Scholar]
- Nalbone, L.; Sorrentino, G.; Giarratana, F.; Schiopu-Mariean, A.; Ziino, G.; Giuffrida, A. Effects of osmotic stress on Listeria monocytogenes ATCC 7644: Persistent cells and heat resistance. Ital. J. Food Saf. 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Brauner, A.; Shoresh, N.; Fridman, O.; Balaban, N.Q. An experimental framework for quantifying bacterial tolerance. Biophys. J. 2017, 112, 2664–2671. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Topuzova, M.; Todorova, M. Food Industry Applications of Propolis: A Review. J. Hyg. Eng. 2022, 40, 257–265. [Google Scholar]
- Payandan, E.; Sayyed-Alangi, S.Z.; Shamloofar, M.; Koohsari, H. Study of chemical composition and efficacy of different extracts of Iranian propolis on the microbiological and sensory parameters of minced Cyprinus carpio meat at 4 °C storage. J. Aquat. Food Prod. Technol. 2017, 26, 593–603. [Google Scholar] [CrossRef]
- Hassanin, S.I.; El-Daly, E.S.A. Effect of propolis and garlic on Nile Tilapia Oreochromis niloticus fillets during frozen storage. J. Arab. Aquacul. Soc. 2013, 8, 237–247. [Google Scholar]
- Yazgan, H.; Burgut, A.; Durmus, M.; Kosker, A.R. The impacts of water and ethanolic extracts of propolis on vacuum packaged sardine fillets inoculated with Morganella psychrotolerans during chilly storage. J. Food Saf. 2020, 40, e12767. [Google Scholar] [CrossRef]
- Thamnopoulos, I.A.I.; Michailidis, G.F.; Fletouris, D.J.; Badeka, A.; Kontominas, M.G.; Angelidis, A.S. Inhibitory activity of propolis against Listeria monocytogenes in milk stored under refrigeration. Food Microbiol. 2018, 73, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Castro, S.M.; Jácome, S.; Teixeira, P. Antimicrobial activity of ethanolic extract of propolis in “Alheira”, a fermented meat sausage. Cogent Food Agric. 2016, 2, 1125773. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Lecce, L.; Incoronato, A.L.; Del Nobile, M.A. Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. J. Food Process. Eng. 2015, 38, 527–535. [Google Scholar] [CrossRef]
- dos Reis, A.S.; Diedrich, C.; de Moura, C.; Pereira, D.; de Flório Almeida, J.; da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavare, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT-Food Sci. Technol. 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Mello, B.C.; Hubinger, M.D. Antioxidant activity and polyphenol contents in Brazilian green propolis extracts prepared with the use of ethanol and water as solvents in different pH values. Int. J. Food Sci. Technol. 2012, 47, 2510–2518. [Google Scholar] [CrossRef]
- Mazzarrino, G.; Paparella, A.; Chaves-López, C.; Faberi, A.; Sergi, M.; Sigismondi, C.; Compagnone, D.; Serio, A. Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control. 2015, 50, 794–803. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Gao, Z.; Zhong, W.; Chen, K.; Tang, P.; Guo, J. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Ind. Crops Prod. 2020, 144, 112036. [Google Scholar] [CrossRef]
- ISO 4833:2013; Microbiology of the Food Chain-Horizontal Method for the Enumeration of Microorganisms-Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- ISO 21528-2:2017; Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Enterobacteriaceae-Part 2: Colony-Count Technique. ISO: Geneva, Switzerland, 2017.
- ISO 13720:2010; Meat and Meat Products-Enumeration of Presumptive Pseudomonas spp. ISO: Geneva, Switzerland, 2010.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria-Colony-Count Technique at 30 °C. ISO: Geneva, Switzerland, 1998.
- ISO 6658:2017; Sensory Analysis-Methodology-General Guidance. ISO: Geneva, Switzerland, 2017.
- ISO 8589:2007; Sensory Analysis-General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- ISO 5492:2008; Sensory Analysis-Vocabulary. ISO: Geneva, Switzerland, 2008.
- ISO 8586:2012; Sensory Analysis-General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- ISO 11290-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 2: Enumeration Method. ISO: Geneva, Switzerland, 2017.
- Viscardi, D.Z.; Oliveira, V.S.D.; Arrigo, J.D.S.; Piccinelli, A.C.; Cardoso, C.A.; Maldonade, I.R.; Kassuya, C.A.L.; Sanjinez-Argandoña, E.J. Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp. Rev. Bras. Farm. 2017, 27, 220–227. [Google Scholar] [CrossRef]
- Jeong, C.H.; Bae, Y.I.; Lee, H.J.; Shim, K.H. Chemical components of propolis and its ethanolic extracts. J. Korean Soc. Food Sci. Nutr. 2003, 32, 501–505. [Google Scholar]
- Sahlan, M.; Hapsari, N.R.A.; Pratami, K.D.; Khayrani, A.C.; Lischer, K.; Alhazmi, A.; Mohammedsaleh, Z.M.; Shater, A.F.; Saleh, F.M.; Alsanieh, W.F.; et al. Potential hepatoprotective effects of flavonoids contained in propolis from South Sulawesi against chemotherapy agents. Saudi J. Biol. Sci. 2021, 28, 5461–5468. [Google Scholar] [CrossRef]
- Ahmed, E.F.; Elkhateeb, W.A.; Taie, H.A.; Rateb, M.E.; Fayad, W. Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. J. App. Pharmac. Sci. 2017, 7, 98–103. [Google Scholar] [CrossRef]
Strain | MIC | MBC | |
---|---|---|---|
ATCC | L. innocua 33090 | 0.625 | 12.5 |
L. ivanovii 19119 | 2.5 | 12.5 | |
L. monocytogenes 13932 | 0.25 | 2.5 | |
L. monocytogenes 19112 | 0.125 | 6.25 | |
L. monocytogenes 19111 | 0.125 | 1.25 | |
L. monocytogenes 7644 | 0.125 | 1.25 | |
S. aureus 25923 | 0.0625 | 2.5 | |
S. aureus 6538 | 0.125 | 2.5 | |
Wild | L. monocytogenes 1 | 0.125 | 2.5 |
L. monocytogenes 2 | 0.125 | 2.5 | |
L. monocytogenes 3 | 0.125 | 2.5 | |
L. monocytogenes 4 | 0.125 | 1.25 | |
S. aureus 1 | 0.125 | 2.5 | |
S. aureus 2 | 0.125 | 2.5 |
Strains | ||
---|---|---|
ATCC | Wild (Origin) | |
Gram-positive | Listeria innocua 33090 | Listeria monocytogenes 1 (smoke salmon) |
Listeria ivanovii 19119 | Listeria monocytogenes 2 (smoked tuna) | |
Listeria monocytogenes 13932 | Listeria monocytogenes 3 (smoked swordfish) | |
Listeria monocytogenes 19112 | Listeria monocytogenes 4 (aged cheese) | |
Listeria monocytogenes 19111 | Staphylococcus aureus 1 (aged cheese) | |
Listeria monocytogenes 7644 | Staphylococcus aureus 2 (smoked salmon) | |
Staphylococcus aureus 25923 | ||
Staphylococcus aureus 6538 | ||
Gram-negative | Salmonella Enteridis 13076 | Salmonella Enteritidis (eggs) |
Salmonella Typhimurium 14028 | Salmonella Typhimurium (pork meat) | |
Pseudomonas aeruginosa 27853 | Pseudomonas fluorescens (fresh cheese) | |
Escherichia coli 35218 | Escherichia coli (milk) | |
Escherichia coli 25922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nefzi, N.; Pagliari, S.; Campone, L.; Megdiche-Ksouri, W.; Giarratana, F.; Cicero, N.; Ziino, G.; Nalbone, L. Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia. Antibiotics 2023, 12, 802. https://doi.org/10.3390/antibiotics12050802
Nefzi N, Pagliari S, Campone L, Megdiche-Ksouri W, Giarratana F, Cicero N, Ziino G, Nalbone L. Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia. Antibiotics. 2023; 12(5):802. https://doi.org/10.3390/antibiotics12050802
Chicago/Turabian StyleNefzi, Nermine, Stefania Pagliari, Luca Campone, Wided Megdiche-Ksouri, Filippo Giarratana, Nicola Cicero, Graziella Ziino, and Luca Nalbone. 2023. "Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia" Antibiotics 12, no. 5: 802. https://doi.org/10.3390/antibiotics12050802
APA StyleNefzi, N., Pagliari, S., Campone, L., Megdiche-Ksouri, W., Giarratana, F., Cicero, N., Ziino, G., & Nalbone, L. (2023). Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia. Antibiotics, 12(5), 802. https://doi.org/10.3390/antibiotics12050802